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Boson sampling has emerged as a promising avenue towards postclassical optical quantum computation, and
numerous elementary demonstrations have recently been performed. Spontaneous parametric down-conversion
(SPDC) is the mainstay for single-photon state preparation, the technique employed in most optical quantum
information processing implementations to date. Here we present a simple architecture for boson sampling based
on multiplexed SPDC sources and demonstrate that the architecture is limited only by the postselection detection
efficiency assuming that other errors, such as spectral impurity, dark counts, and interferometric instability,
are negligible. For any given number of input photons, there exists a minimum detector efficiency that allows
postselection. If this efficiency is achieved, photon-number errors in the SPDC sources are sufficiently low as to
guarantee correct boson sampling most of the time. In this scheme, the required detector efficiency must increase
exponentially in the photon number. Thus, we show that idealized SPDC sources will not present a bottleneck for
future boson-sampling implementations. Rather, photodetection efficiency is the limiting factor, and thus, future
implementations may continue to employ SPDC sources.
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I. INTRODUCTION

Linear optics quantum computing (LOQC) [1–3] is a
promising route towards scalable universal quantum comput-
ing [4]. The first architecture, presented by Knill, Laflamme,
and Milburn (KLM) [1], demonstrated that scalable quantum
computation is possible using only single-photon sources,
photodetection, quantum memory, and fast feedforward. How-
ever, the physical resource requirements are daunting, and
large-scale LOQC appears distant. Since the advent of KLM,
numerous simplifications have been suggested, significantly
reducing physical resource requirements [5,6] but, nonethe-
less, require technologies, such as quantum memory and fast
feedforward that are not presently available.

Recently, Aaronson and Arkiphov [7] presented an alternate
linear optical scheme, known as boson sampling. This scheme
is believed to implement a classically hard algorithm for a
specific task but will likely not be universal for quantum
computation. In this model, only single-photon state prepara-
tion, passive linear optics (beam splitters and phase shifters),
and photodetection are required, doing away with the more
challenging requirements of fast feedforward and quantum
memory. The system’s Hilbert space scales exponentially with
the physical resources. Gard et al. present an elementary
argument from a quantum optics perspective as to why boson
sampling scales exponentially [8].

The technology to implement boson sampling is, for
the larger part, available today, making boson sampling an
attractive route towards a type of nonuniversal optical quantum
information processing. Recently, numerous experimental
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groups have begun implementing elementary demonstrations
of boson sampling using only a few photons [9–13].

Although boson sampling is one of the first nontrivial
computational problems solvable with a linear optical inter-
ferometer using Fock-state inputs, it is likely not the last.
Boson sampling is a completely new quantum computational
scheme that has yet to be fully explored and understood.
Fully understanding boson sampling may present us with new
computational problems not accessible by classical computers.
Furthermore, the exponentially large Hilbert space and compu-
tational complexity associated with such interferometers will
likely lead to further breakthroughs in the closely related fields
of quantum optical metrology, imaging, and sensing [14,15].

In this paper, we show that large-scale boson sampling can
be implemented provided that detection efficiencies, which
must increase exponentially with photon number, are sufficient
to guarantee postselection with high probability. Increasing
the input photon number will, thus, yield a larger required
detection efficiency.

Spontaneous parametric down-conversion (SPDC) has
become the mainstay for single-photon state preparation,
is widely used in optical quantum information processing,
and was employed in all of the recent experimental boson-
sampling implementations. A pressing question for future
larger-scale implementations is scalability. Scalability, in this
context, refers to increasing the input photon number into the
boson-sampling device provided that the error in the single-
photon photodetectors, which scales exponentially with the
input photon number, is sufficiently low to ensure successful
implementation of boson sampling most of the time. That
is, what are the limitations and requirements on physical
resources to implement a scalable device? In particular, will
SPDC sources suffice, or will we have to transition to other
photon source technologies?
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We consider a general architecture for the experimental
implementation of boson sampling where multiplexed SPDC
sources are employed for state preparation. We show that,
in such an architecture, the device is limited only by the
postselection probability. In other words, the architecture is
scalable provided that detector efficiencies are sufficiently high
to enable postselected computation. In this regime, the quality
of current SPDC states is sufficient to enable large-scale boson
sampling. Thus, it is photodetection, not SPDC sources, that
provide the bottleneck for larger-scale demonstrations.

II. THE BOSON-SAMPLING MODEL

We begin by preparing an m-mode state in which the first
n modes are initialized with single-photon Fock states and the
remainder in the vacuum state,

|ψ〉in = |11, . . . ,1n,0n+1, . . . ,0m〉
= â

†
1 · · · â†

n|01, . . . ,0m〉, (1)

where â
†
i is the photon creation operator in the ith mode and

m = O(n2). This state is manipulated via a passive linear
optics network which implements a unitary map on the photon
creation operators,

â
†
i →

m∑
j=1

Uij â
†
j , (2)

where U is an m × m unitary matrix. It was shown by Reck
et al. [16] that any U can efficiently be constructed using
O(m2) linear optics elements.

In an occupation-number representation, the output state is
of the form

|ψ〉out =
∑

S

γS

∣∣n(S)
1 , . . . ,n(S)

m

〉
, (3)

where the S’s are the different photon-number configurations,
the number of which grows exponentially with the number of
photons as |S| = ( n + m − 1

n ) and n
(S)
i is the number of photons

in mode i associated with configuration S.
Finally, we perform number-resolved photodetection [17]

on the output distribution, obtaining a sample from the
distribution P (S) = |γS |2. The experiment is repeated many
times, building up statistics of the output distribution. It was
shown by Aaronson and Arkhipov [7] that this sampling
problem likely cannot be efficiently simulated classically. The
intuitive explanation for this supposed classical hardness is
that each of the amplitudes γS is proportional to an n × n

matrix permanent. Permanents are believed to be classically
hard to calculate, residing in the complexity class #P-complete,
the class of polynomial time-counting problems. The boson-
sampling model is illustrated in Fig. 1.

Boson sampling is not believed to be capable of efficiently
simulating full quantum computation. Nonetheless, it is a
relatively simple scheme that can likely rival classical com-
puters for certain tasks, thus, it is an attractive postclassical
quantum computation scheme. It was shown by Rohde and
Ralph that boson sampling may implement a computationally
hard algorithm even in the presence of high levels of loss [18]
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FIG. 1. The boson-sampling model. The input state is prepared,
comprising a number of single-photon Fock states and vacuum states.
The input state passes through a passive linear optics network U

comprising beam splitters and phase shifters. Finally, the experiment
is repeated many times, and each time, the output photon-number
statistics are sampled from P (S) via coincidence number-resolving
photodetection.

and mode mismatch [19], although formal hardness proofs are
still lacking.

III. EXPERIMENTAL ARCHITECTURE
FOR BOSON SAMPLING

Given that SPDC is the most widely used and readily
accessible source for single-photon state preparation, we will
present a simple architecture for boson sampling based on
SPDC sources. In an ideal boson-sampling implementation,
one would employ deterministic photon sources that produce
exactly one photon on demand. SPDC sources, on the other
hand, coherently prepare photon pairs in two modes with a
correlated Poisson probability distribution. By measuring one
of the modes and postselecting upon detecting one photon
in that mode, a single photon is guaranteed to appear in the
other mode. This method provides us with a probabilistic but
heralded single-photon source. It is critical that each photon is
heralded to ensure a pure set of Fock-state inputs.

Specifically, the two-mode state prepared by a SPDC is of
the form

|ψ〉SPDC =
∑

s

λs |s,s〉, (4)

and the photon-number probability distribution is given by [20]

P SPDC(s) = |λs |2 = tanh2sr

cosh2r
, (5)

where s is the photon number (per mode) and r is the squeezing
parameter. Thus, the SPDC source most often emits the vac-
uum state and sometimes higher-order pairs with exponentially
decreasing probability. For small squeezing parameters, the
higher-order terms can be made small, yielding a heralded
source that produces single pairs with high probability.

To herald a single photon, we detect one arm of a
single SPDC source using an inefficient number-resolving
photodetector. Such a detector can be characterized by the
conditional probability of detecting t photons given that s

photons were present. For a simple inefficient detector, this is
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given by

PD(t |s) =
(

s

t

)
ηt (1 − η)s−t , (6)

where η is the detection efficiency. Thus, in the presence of
loss, the detector exhibits ambiguity in the measured photon
number, sometimes detecting fewer photons than were present.
Dark counts, the other dominant source of imperfection in
photodetection, could also be incorporated into the model, but
this effect can be made very small with time gating.

We specifically consider heralded SPDC states using just
one mode of the SPDC for the computation rather than both to
ensure that the state entering U closely approximates Eq. (1).
Without the heralding, the SPDC state is Gaussian, which is
inconsistent with the boson-sampling model and is not known
to implement a classically hard algorithm [21,22].

Combining Eqs. (5) and (6), we obtain the probability of
detecting t photons in the heralding arm of a single SPDC
source,

P SPDC
D (t) =

∑
i�t

PD(t |i)P SPDC(i)

=
∑
i�t

(
i

t

)
ηt (1 − η)i−tP SPDC(i). (7)

Thus, the probability of detecting a single photon in the
heralding arm simply is

P SPDC
D (1) =

∑
i�1

iη(1 − η)i−1P SPDC(i). (8)

We will operate N such heralded sources in parallel where
N � n. The probability that at least n of the SPDC sources
successfully herald is given by

Pprep(n) =
∑
i�n

(
N

i

)[
P SPDC

D (1)
]i[

1 − P SPDC
D (1)

]N−i
. (9)

In the limit of large N , this asymptotes to unity,

lim
N→∞

Pprep(n) = 1. (10)

The asymptotic behavior of Pprep is illustrated in Fig. 2. Clearly,
with a sufficiently large number of SPDC sources operating in
parallel, we are guaranteed to successfully herald the required
n single photons.

Having successfully heralded at least n SPDC sources, we
employ a dynamic multiplexer [23] to route n of the heralded
states to the first n modes of the boson-sampling interferometer
U . We will assume the multiplexer is ideal in our analysis,
although losses could be absorbed into the detector efficiency.
Experimental progress has recently been made in developing
active multiplexers [24].

Following the unitary network, number-resolving photode-
tection is applied. Because the photodetectors do not have unit
efficiency, we must postselect on events where all n photons
are detected. The postselection probability scales as

Ppost(n) = ηn. (11)

Thus, the required detection efficiency exponentially asymp-
totes to unity for large n. This necessitates that future

FIG. 2. (Color online) Asymptotic behavior of the state prepara-
tion success probability as a function of the number of SPDC sources
N and detector efficiency η in the case where we are required to
successfully herald n = 20 photons. In the limit of large N, Pprep

approaches unity.

large-scale boson-sampling implementations will require ex-
tremely high efficiency photodetectors.

The full architecture is illustrated in Fig. 3. Note that the
multiplexer is critical to the operation of the device. Without
the multiplexer, we still have a high likelihood of sampling
from at least an n-photon input distribution. However, every
time the device is run, we are likely to sample from a
different permutation of the vacuum and single-photon states
at the input, making it impossible to perform sampling on
a consistent input. Thus, the multiplexing ensures that the
input state is consistently of the form of Eq. (1) if the
photodetectors have perfect efficiency. The realistic case of
inefficient photodetectors is presented next.

IV. SCALABILITY OF THE ARCHITECTURE

Having described a general architecture for boson sampling
based on SPDC sources, the pressing question is its scalability.
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FIG. 3. Architecture for boson sampling with SPDC sources. N

sources operate in parallel, each heralded by an inefficient single-
photon number-resolving detection. It is assumed that N � n, which
guarantees that at least n photons will be heralded. The multiplexer
dynamically routes the successfully heralded modes to the first n

modes of the unitary network U . Finally, photodetection is performed,
and the output is postselected on the detection on all n photons.
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The obvious scaling issue arises from Eq. (11), whereby
the photodetection efficiency must be exponentially close to
unity. Unless error correction mechanisms are introduced, this
scaling is inevitable, and postselection is the only avenue to
guarantee the successful operation of the device. However, no
error correction has been described in the context of boson
sampling. Thus, we will focus on the postselected operation
of the device and will address the question as to whether the
device acts correctly in that context.

In the described architecture, the dominant error source is
an incorrect heralding of the SPDC states. In the limit of perfect
detectors, we are guaranteed to have prepared single-photon
states. However, inefficient detectors introduce ambiguity
in the heralding, creating a situation where higher-order
photon-number terms are perceived as single-photon terms.
For example, if a single photon is lost via detection inefficiency,
the two-photon state will be interpreted as a single-photon
state. This will corrupt the input state to the interferometer,
yielding an input state different than Eq. (1).

For a single detector, the probability that we have prepared
the s-photon Fock state, given that the detector has outcome t ,
is given by Bayes’ rule,

Pcorr(s|t) = PD(t |s)P SPDC(s)

P SPDC
D (t)

=
( s

t )(1 − η)s−t tanh2sr∑
i�t ( i

t )(1 − η)i−t tanh2i r
. (12)

We are interested in the case where we herald a single photon.
Thus,

Pcorr(1|1) = [1 − (1 − η)tanh2r]2. (13)

Pcorr(1|1) can be interpreted as the conditional probabil-
ity that we have prepared the correct single-photon state
given that heralding was successful. For small pump powers
(r ≈ 0), the unconditional probability of detecting a single
photon approaches zero, although the conditional probability
approaches unity since there are negligible higher photon-
number contributions.

The probability that a single photon is correctly heralded n

times in parallel, thereby preparing the n copies of a single-
photon Fock state, is

Ppar(n) = [Pcorr(1|1)]n = [1 − (1 − η)tanh2r]2n. (14)

We will require that, given n heralded SPDC states,
upon postselection, we correctly detect exactly n photons
the majority of the time. We will arbitrarily require that
Ppost(n) > ε, where ε is the lower bound on the probability
that n single photons successfully are detected at the output
of the boson-sampling device. This puts a lower bound on the
required photodetection efficiency of

η = n
√

ε. (15)

Next we will assume that all photodetectors in the ar-
chitecture have the same efficiency. Thus, we obtain that
the probability of correctly preparing all n photons via
postselected SPDC is

Ppar(n) = [1 + ( n
√

ε − 1)tanh2r]2n. (16)

FIG. 4. (Color online) Probability that we are sampling from
the correct input distribution in the limit of large n, obtained from
Eq. (17), plotted against the SPDC squeezing parameter r .

In the limit of large n (i.e., large instances of boson sampling),
this asymptotes to

lim
n→∞ Ppar(n) = ε2 tanh2r . (17)

For small r , this approaches unity and in the limit of large r

to ε2. Thus, for ε = 1/2, in the worst-case scenario, we are
sampling from the correct distribution in 1/4 of the trials. This
is shown in Fig. 4.

Equation (17) specifies the asymptotic probability of
sampling from the correct input distribution, given that
postselection was successful. For small squeezing, we sample
from the correct input distribution most of the time due to the
lower probability of higher-order terms occurring. Thus, for
experimentally realistic SPDC sources, provided that detector
efficiencies are sufficiently high to enable postselection, we
have a high likelihood of correct boson sampling, and SPDC
photon-number errors are negligible.

Conversely, we could require that Ppar > ε′ from Eq. (14),
where ε′ is the lower bound on the probability that a single
photon correctly is heralded n times in parallel before entering
the multiplexer. Solving this for η yields

η = 1 + ( 2n
√

ε′ − 1)coth2r. (18)

From Eq. (11), we obtain an expression for the postselection
probability under the condition that we require a certain fidelity

FIG. 5. (Color online) The postselection probability Ppost from
Eq. (19) presented as a function of the squeezing parameter r and
n single photons being correctly heralded in parallel before entering
the multiplexer. Here we assume a fidelity of ε ′ = 0.9.
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on the SPDC heralding,

Ppost(n) = [1 + ( 2n
√

ε′ − 1)coth2r]n. (19)

Figure 5 illustrates Ppost(n) as a function of the squeezing
parameter r and the number of successfully routed photons
n. We observe that, for large n, postselection is highly likely
to succeed if the SPDC state preparation was successful to
within an error of ε′ = 0.9. We observe that, in the limit of
large n and experimentally realistic values of r ≈ 1/2, boson
sampling using N � n SPDC sources is scalable.

V. CONCLUSION

We presented a simple architecture for boson sampling
via multiplexed SPDC sources. We demonstrated that the
SPDCs do not limit the scalability of the architecture.
Rather, the single-photon detectors, whose efficiencies must
increase exponentially with input photon number, limit the
scalability. That is, provided that detection efficiencies are
sufficiently high to enable postselected operation, the SPDCs
will produce Fock states of sufficient fidelity to implement
correct boson sampling with high probability. Conversely, if
detection efficiencies are sufficiently high to guarantee SPDC
heralding with high fidelity, postselection will succeed with
high probability.

Thus, SPDC sources are a viable photon source technology
for future large-scale demonstrations of boson sampling,
and experimentalists should prioritize improving detection
efficiencies and developing single-photon multiplexing tech-
nologies. Additionally, existing SPDC sources will likely
need significant improvement to increase squeezing purity and
mode matching.

Although postselection guarantees correct operation of a
boson-sampling device, the required detection efficiencies
scale unfavorably. Thus, future work should further address
the question as to whether lossy boson sampling is computa-
tionally hard [18] as this could significantly reduce physical
resource requirements. Other error models, such as mode
mismatch [19], should also be investigated further.

The analysis presented could be applied to other postse-
lected linear optics protocols employing SPDCs as heralded
Fock-state sources.
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