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Measurement of the Kerr nonlinear refractive index of Cs vapor
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Atomic vapors are systems well suited for nonlinear optics studies but very few direct measurements of their
nonlinear refractive index have been reported. Here we use the z-scan technique to measure the Kerr coefficient,
n2, for a Cs vapor. Our results are analyzed through a four-level model, and we show that coherence between
excited levels as well as cross-population effects contribute to the Kerr nonlinearity.
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I. INTRODUCTION

Atomic vapors are systems well suited for studies of optical
nonlinearities. First of all, they are easy to saturate, which
enables the observation of nonlinear effects with low intensity
continuous-wave laser light [1,2]. At the same time, atomic
vapors are damage-free which is important, for instance, for
filamentation studies [3]. Second, as the resonances are sharp
the nonlinear parameters can be easily modified by finely
tuning the frequency near or across a resonance [4]. This allows
to play with the relative contributions of linear and nonlinear
effects by changing the laser wavelength. Third, atomic
systems allow for a variety of level schemes exploring fine,
hyperfine, and Zeeman levels such as two-level systems [5,6],
� three-level schemes [4], double-� four-level schemes [7,8],
five-level schemes [9], and so on. Fourth, in most experiments,
when one can ignore radiation trapping and collisional effects,
atomic vapors behave as locally saturable media and are thus
easy to model [10].

As atomic vapors are isotropic media, the first nonlinear
contribution to the polarization is a third-order term in the
electric field (χ (3)E3), in the dipole approximation [11]. The
third-order susceptibility χ (3) is responsible for phenomena
such as EIT [4], four-wave mixing [12], third-harmonic gen-
eration [13], self-focusing, and self-trapping effects [14,15].
Those phenomena are expected to have applications, for
instance, in correlated photons generation [16], nondemolition
measurement [17], and generation of optical solitons [2]. In
this article, we are interested in the self-focusing of a light
beam, which originates from the real part of the third-order
susceptibility and results in a Kerr-like term in the medium
refraction index: n = n0 + n2I . Self-focusing was observed
in the early 1970s [15]. The change from self-focusing to
self-defocusing behavior when one scans the laser frequency
through an atomic resonance has recently been used to generate
an error signal for frequency stabilization [18,19].

A very simple and easy-to-implement technique to measure
the Kerr coefficient, n2, is the well-known z-scan technique
[20]. Despite the potential of atomic samples for self-focusing
study, very few direct experimental measurements of n2 have
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been carried out. The z-scan technique was used to probe
Na [21] and Rb [22,23] vapors and for clouds of cold
Cs atoms [6]. In this article we report on measurements
of the Kerr coefficient for the D2 line of hot Cs vapors.
As alkali-metal atomic vapors have sharp resonances, with
linewidths of a few MHz for cold atomic clouds to hundreds
of MHz for Doppler-broadened resonances, the behavior of n2

with detuning is rich and accessible to lasers with relatively
narrow tuning ranges. This makes atomic systems qualitatively
different from solid-state and liquid systems, these two last
exhibiting nonlinear properties varying weakly with frequency.
In [21] are reported measurements in a sample of Na vapor,
carried out far from central resonance. In this limit, n2 has a
well-known behavior n2 ∼ 1/δ3 [15], where δ is the frequency
detuning. Experimental results for detunings of a few Doppler
widths from Rb resonance [22] indicate that a model of
velocity integration of the resonant line shape, simulated by
the derivative of a Gaussian function, is more adequate than
the 1/δ3 behavior. There are no reports on the observation
of the two regimes of detuning in the same system. Moreover,
the expressions used in [21,22] are derived from a two-level
model, which is a reasonable approximation in these systems
where the Doppler width is much larger than the hyperfine
spacing. However, as the Cs 6P3/2 hyperfine sublevel spacing
is close to the Doppler width of the D2 transition, one has to
consider a four-level system in order to get a more realistic
description. In this article we measure n2 for a hot Cs vapor
in both the close-to- and the far-from-resonance regimes and
develop a four-level model, consisting in one ground and three
excited levels. We show that cross population and excited
coherence terms give important contributions to the n2 value.
The experimentally measured n2 values are shown to be much
more consistent with this four-level theory.

II. THEORETICAL MODELS

Self-focusing of a laser beam in a nonlinear medium
is a third-order nonlinear effect, i.e., it is induced by
the intensity-dependent term in the refractive index
n = n0 + n2I . The Kerr coefficient, n2, is related to the
third-order susceptibility, χ (3), by [24]

n2 = 3

4n2
0ε0c

Reχ (3), (1)

where n0 is the intensity-independent refractive index (n0 ≈ 1
for a dilute vapor), ε0 is the vacuum permittivity, c is

063818-11050-2947/2013/88(6)/063818(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.063818
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the speed of light in vacuum, and Reχ (3) is the real part
of χ (3).

The third-order susceptibility can be calculated, using the
density-matrix formalism, as

χ (3) = N

3E3ε0

∑
j

(
μj0ρ

(3)
0j + μ0j ρ

(3)
j0

)
, (2)

where |j 〉 denotes the excited states, |0〉 denotes the ground
state, N is the atomic density, E is the electric-field amplitude,
and μ0j = 〈0| μ̂ |j 〉 is the ground-excited electric dipole
matrix element. In (2), the density matrix has been expanded
in a series of powers of E: ρ = ∑

l ρ
(l) and ρ

(3)
0j is the

ground-excited coherence term that has a cubic dependence
with E.

For an atomic vapor, one has to integrate the velocity-
dependent coherence term, ρ0j (v), over the Maxwell-
Boltzmann velocity distribution, W (v), to take into account
the Doppler shift induced by the atomic motion. Thus

ρ0j =
∫

dv W (v)ρ0j (v). (3)

In the following, we will calculate the Kerr coefficient first
for a general two-level system, and then for the specific Cs
D2 line, for which we take into account one hyperfine ground
state and three hyperfine excited levels.

A. Two-level system

We write a Hamiltonian for a closed two-level system in
the rotating-wave and dipole approximations, which is given
by

H = h̄ωj |j 〉 〈j | − h̄�je
iωt |0〉 〈j | − h̄�je

−iωt |j 〉 〈0| , (4)

where h̄ωj is the energy of the excited state |j 〉 (the ground state
is taken at zero energy), �j = μ0jE/h̄ is the Rabi frequency,
and ω is the field frequency.

For an atom with velocity component v along the beam
axis, it is well known that the real part of the susceptibility can
be written as [24]

Reχv = 4Nμ0j

Eε0

�jδv/	2

(
1 + 4δ2

v

	2 + 8�2

	2

)2 , (5)

where δv = ω − ωj − kv = δ − kv, k is the wave number, and
	 is the homogeneous linewidth. For a weak light intensity one
can expand the expression (5) and obtain [25]

Reχ (3)
v = 32Nμ4

0j

3ε0h̄
3

δv/	4

(
1 + 4δ2

v

	2

)2 , (6)

which gives the contribution to the third-order susceptibility
from atoms in each class of velocity. To sum the contributions
of all the atoms of the vapor, one integrates (6) over the
Maxwell-Boltzmann distribution of atomic velocities:

Reχ (3) =
∫

dv Reχ (3)
v W (v). (7)

Notice that χ (3) has a strong spectral dependence around
the frequency of atomic transitions. Therefore, we will now
consider two asymptotic regimes for the velocity integration:

(i) close to resonance, and under the condition 	 � 	D (	D

is the Doppler width), and (ii) far from resonance.
Close to resonance, the main contribution to the integral (7)

comes from the classes of velocity for which the detuning
is given by δv = ±	/

√
12 in the atomic reference frame

[maximum of expression (6)]. Thus n2 is proportional to
the difference of population densities for which δ − kv =
±	/

√
12. Therefore, n2 is proportional to the derivative of

a Gaussian line shape [22]:

n2 (cm2/W) = 104 × 8π7/2μ4
0jN

3cε2
0h

3

2πδ

	(ku)3
e−4π2δ2/(ku)2

, (8)

where u is the width of the atomic velocity distribution.
For a radiation tuned far from atomic resonance, all

velocity classes that have a sizable population comply with the
condition |δv| � 0. Thus the contribution of all the atoms is
essentially nonresonant, and all the velocity classes contribute
in the same way (weighted by the population density) to
the integral (7). The Kerr coefficient is then given by the
far-from-resonance limit of expression (6) and exhibits the
well known δ−3 behavior (δv � 	D) [21,22]:

n2 (cm2/W) = 104 × μ4
0jN

2cε2
0h̄

3δ3
. (9)

To obtain n2 in the intermediate detuning range, one has to
integrate Eq. (7). In order to compare the obtained result with
the two asymptotic expressions (8) and (9), we show in Fig. 1
the n2(δ) curve numerically calculated from (7), for a large
detuning range on the blue side of the resonance, together
with the close- [Eq. (8)] and far- [Eq. (9)] from-resonance
asymptotic curves. Similar results are obtained on the red
side of the resonance since χ (3) has an antisymmetric line
shape with detuning in a two-level model. The observation of
the Kerr coefficient in a large range of detunings is one of the
accomplishments reported in this article.

B. Multilevel system

The D2 transition of alkali-metal atoms has multiple excited
hyperfine levels. In Cs atoms, the hyperfine energy splitting
is of the same order of magnitude as the Doppler width. As
a consequence, this hyperfine structure must be taken into

FIG. 1. (Color online) Calculated n2 values [two-level model,
Eq. (7)] as a function of the laser detuning and the close- [red dashed,
Eq. (8)] and far-from-resonance [blue dots, Eq. (9)] asymptotic
behavior, in a log10-log10 scale.
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FIG. 2. (Color online) (a) Schematic representation of the
relevant sublevels of the Cs 6S1/2(F = 4) → 6P3/2(F ′ = 3,4,5)
transition (out of scale). (b) Calculated values of n2 using the
ground-excited coherence from the four-level model [Eq. (11)]. The
contributions of the self-population (dashed, red), cross population
(dots, green), and the coherence between excited levels (dot-dashed,
blue) are shown, together with the total Kerr coefficient (solid, black).
(c) Same as (b) for blue-detuned frequencies relative to the Cs
6S1/2(F = 4) → 6P3/2(F ′ = 5) transition, in log10-log10 scale.

account in the n2 line-shape calculation. On the other hand,
the splitting between fundamental hyperfine levels is much
larger than the typical laser linewidth and the Doppler width
of the D2 transition, so that we only take one ground state
into account. Therefore, we consider cesium atoms as closed
four-level systems consisting of one fundamental hyperfine
level and three dipole-accessible excited hyperfine levels of the
D2 transition [see Fig. 2(a)]. The Hamiltonian considered here
is a generalization of the Hamiltonian written above [Eq. (4)]
for the two-level system:

H =h̄
∑

j

ωj |j 〉〈j |−
∑

j

[h̄�je
iωt |0〉 〈j | − h̄�je

−iωt |j 〉 〈0|],

(10)

and its expansion in powers of I is not straightforward. To
gain a direct insight into χ (3), we consider a perturbative
expansion of the density-matrix elements ρ = ∑

l ρ
(l) (see

the Appendix), and calculate χ (3) using (2). The steady-state
solutions for this third-order density-matrix ground-excited
coherence are given by

ρ
(3)
0j = −iδj−	/2

δ2
j+	2/4

[
2i�jρ

(2)
jj + i

∑
l �=j

�jρ
(2)
ll + i

∑
l �=j

�lρ
(2)
lj

]
.

(11)

Analyzing the contribution to n2 [Eq. (1)] of the first term
inside the brackets in Eq. (11), we notice that it simply
consists in the summation of three independent two-level
systems. Since the electric dipole moments are different for
every hyperfine transition, the resulting line shape is slightly
asymmetric, as depicted in Fig. 2. The F = 4 → F ′ = 5
contribution dominates because of its larger dipole moment,
since n2 scales as μ4. This first term is the index effect of

population exchange between the ground state and the excited
level |j 〉 and we call it the self-population contribution. The
change in population in the other excited states is at the origin
of the second term inside the brackets in Eq. (11) and we call
it the cross-population contribution. This term results from
the ground-state depopulation and enhances the n2 values,
modifying the line shape towards a more symmetric shape than
the self-population term. The third term inside the brackets in
Eq. (11) comes from a coherence buildup between excited
states [26], and its relative contribution to n2 is greater at large
detunings [see Fig. 2(c)].

In the far-from-resonance asymptotic regime all terms in
Eq. (11) scale as δ−3 and one obtains back the same n2

values given by expression (9). In this limit, the self-population
contributes one-half of the signal, while the cross population
and the excited coherence terms contribute one-fourth each.

III. EXPERIMENT

We measured the Kerr nonlinearity of a hot Cs vapor
with a setup of the well-known z-scan technique [20]. The
experimental configuration is shown in Fig. 3. We collimate a
Gaussian beam of diameter 3 mm at the output of a monomode
fiber. This beam is then focused by a 20-cm-focal lens and
detected in the far field after the focal point. The shape of the
beam and its diameter are checked all along the beam path
using the knife-edge technique [27,28]. The beam is linearly
polarized. No magnetic shielding is used, nor is applied any
external magnetic field, so that the system is submitted to
the geomagnetic field only. An aperture is placed before the
detector to spatially filter the beam. The far-from-resonance
aperture transmittance is S = 0.6. When a 1-mm-thick cell
containing Cs vapor is displaced along the beam across the
focal point, the light intensity transmitted through the aperture
is modified due to self-focusing or self-defocusing effects in
the vapor. The cell thickness is shorter than the Rayleigh
length (∼5 mm) so that beam shaping due to propagation
and nonlinear refraction in the vapor is negligible [20]. The
aperture transmittance as a function of the cell position z,

LL CELLCELL

AA

PDPD

Z0
F-P
and
SA

LLLL

OF
M

BS

Laser

FIG. 3. (Color online) Experimental setup. The laser beam passes
through a single-mode optical fiber to generate a fundamental
Gaussian profile. After the fiber, the beam passes through a
20-cm-focal lens and is detected in the far-field region after a circular
aperture, placed 39 cm from the focus point. A Cs vapor cell of
thickness 1 mm is scanned along the beam path (z axis). A Fabry-Pérot
interferometer (F-P) and a saturated absorption (SA) setup allow one
to monitor the laser frequency. OF is an optical fiber, L are lenses, M
is a mirror, BS is a beamsplitter, and PD is a photodetector.
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relative to the focal point, is given by [20]

T = 1 − 4 ��0x

(x2 + 9)(x2 + 1)
, (12)

where x = z/zR , zR is the Rayleigh length, and ��0 is the
on-axis phase shift at focal point [20,22].

Fitting Eq. (12) to the experimental curve one obtains the
Kerr coefficient through

n2 = λ

2πI0L
��0, (13)

where λ is the light beam wavelength, L is the cell thickness,
and I0 is the light intensity at focal point. The on-axis phase
shift is proportional to the peak-to-peak amplitude of the
transmission signal (�T ) [20],

��0 = �T/[0.406(1 − S)0.25]. (14)

IV. EXPERIMENTAL RESULTS

For the slightly heated Cs vapor we used (T ≈ 70 ◦C,
N = 2.4 × 1012 atoms/cm3 [29]), the Doppler width is
	D ∼ 2π × 250 × 106 s−1. We have measured n2 for red
detuning |δ| � 2π × 600 × 106 s−1 = 2.4	D relative to the
cyclic hyperfine transition. The intensity transmitted through
the aperture is affected by defects of the moving elements.
Thus we have normalized the z-scan signal at the frequencies
of interest by the z-scan signal at a frequency detuned 4
GHz to the red side of the resonance. Furthermore, for the
range of detuning from 600 MHz to 800 MHz, the nonlinear
absorption is not negligible and we have further normalized
the signal of the aperture transmission by an open-aperture
signal. This procedure showed to be enough to obtain good
values of n2, even though, for a rigorous approach, one
should take into account the attenuation of the intensity
through the vapor for those frequencies (the linear absorption
ranges from 40% for δ = 2π × 600 × 106 s−1 to 10% for
δ = 2π × 800 × 106 s−1) [23].

In Fig. 4 we show two typical normalized z-scan curves
obtained when the laser is detuned to the red side [Fig. 4(a)]

FIG. 4. (Color online) Z-scan curve for (a) red detuning,
ω − ω45 = −2π × 1000 × 106 s−1 and N = 2.8 × 1012 atoms/cm3;
(b) blue detuning, ω − ω45 = 2π × 600 × 106 s−1 and N = 2.4 ×
1012 atoms/cm3. Black curves: experimental data. The red curves are
best fits to the experimental curves and are calculated from Eq. (12).

or to the blue side [Fig. 4(b)] of the resonance. Note that,
typically, a change of a few percent in the aperture transmission
is obtained. For red detunings (n2 < 0), the medium is self-
defocusing and, as a consequence, the aperture transmission
is increased when the cell is before the focal point and
diminished when the cell is beyond it [Fig. 4(a)]. Conversely,
for blue-detuned laser frequencies (n2 > 0), the medium is
self-focusing and a decrease followed by an increase of the
signal is observed when the cell goes through the laser focus
[Fig. 4(b)]. The signals were fitted using Eq. (12) and the fit
parameters allow one to obtain values of n2.

For Eq. (12) the condition ��0 � 1 must be fulfilled, while
for Eq. (14) ��0 < π gives good enough values [20]. In our
experiment the maximum value of �φ0 is 0.4 which gives
good measured n2 values. Ideally, one should use low-intensity
beams to avoid higher-order effects in the refractive index
expansion (n4I

2). Nevertheless, as n2 decreases rapidly with
detuning, the signal-to-noise ratio becomes small for low-
intensity beams (��0 ∝ n2I → 0). We have thus repeated
the measurements for a few intensity values and fitted the
measured n2(I ) by a saturation law n2(I ) = nns

2 /(1 + I/IS),
where nns

2 is the desired nonsaturated Kerr coefficient value
and IS is the detuning-dependent saturation intensity, which is
kept as a fit parameter.

We have repeated the z-scan measurements for a variety of
detunings and plotted the respective values of nns

2 as a function
of δ in Fig. 5. Two asymptotic regimes are clearly identified:
for small detunings, nns

2 follows the derivative of a Gaussian
line shape, while, for large detunings, a δ−3 dependence is
observed. In Fig. 5, we also show the theoretical values of
n2, calculated from the ground-excited coherence given by
Eq. (11), as well as the particular contribution of each term
separately. The theoretical n2 curve fits well the experimental
values, showing that considering simply a summation of
independent two-level models is not enough to accurately
calculate n2.

We have estimated an upper limit for the error, of 30% of the
nonsaturated n2 values. Splitting between Zeeman sublevels
can be ignored since the maximum magnetic splitting due

FIG. 5. (Color online) Values of n2 for red-detuned frequencies
relative to F = 4 → F ′ = 5 transition, and T = 70 ◦C (N = 2.4 ×
1012 atoms/cm3). Triangle: experimental data. Other curves: different
contributions to the theoretical calculation [see Eqs. (2) and (11)]
together with the Kerr coefficient calculated for a two-level model
F = 4 → F ′ = 5. The error bars are estimated to be 30% of nns

2

values.
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to the geomagnetic field is smaller than 1 MHz. However, the
Zeeman structure modifies the atom-field interaction, introduc-
ing, for instance, optical pumping between sublevels, which
results in changes in the saturation intensity [23]. The good
agreement between experiment and calculated values indicates
that the contribution of the Zeeman structures to the signal is
inside the errors bars. The difference between the values of n2

obtained with the two-level and the four-level models is larger
than the error bars for detunings below 1600 MHz.

The ratio between measured nns
2 values and the vapor

atomic densities ranges from n2/N = 1.5 × 10−16 cm5/W
for detunings of the order of two Doppler widths to n2/N =
5 × 10−20 cm5/W for large detunings. The obtained values
are comparable to the ones obtained in [22] for a Rb vapor,
n2/N = 10−19 cm5/W for a detuning of 1 GHz.

V. CONCLUSION

We have measured the Kerr coefficient for a Cs vapor for
a large range of frequencies. The obtained nns

2 values vary
over four decades as a function of the laser detuning. The
experimental results clearly show two asymptotic regimes:
a line shape as the derivative of a Gaussian-like curve for
detunings of the order of two times the Doppler widths, and
a δ−3 behavior for much larger detunings. To interpret these
asymptotic behaviors, the velocity integration for a two-level
model was used and showed that it is not accurate for the
prediction of n2 values on the full detuning range. We have used
a four-level model (one ground and three excited hyperfine
levels) that correctly predicts the experimental results. From
this multilevel model we showed that the cross-population
contribution and the buildup of coherence between excited
levels must be taken into account to accurately calculate n2.
Further refinement of the theory, such as considering the
Zeeman structure, does not seem to be necessary for the level
of measurement precision we have.

ACKNOWLEDGMENTS

This work was partially funded by Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico (CNPq, Con-
tracts No. 472353/2009-8, No. 470834/2012-9, and No.
484774/2011-5), Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior (CAPES/Pró-equipamentos), and Finan-
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APPENDIX: DETAILS OF THE MULTILEVEL
CALCULATIONS

The Hamiltonian of the system is written in the dipole and
in the rotating wave approximation as

H = h̄
∑

j

ωj |j 〉 〈j | −
∑

j

[h̄�je
iωt |0〉 〈j | −h̄�je

−iωt |j 〉 〈0|],

(A1)

where the Rabi frequencies are written �j = μ0jE/h̄.
The Zeeman sublevels are not taken into account in our model
and the matrix elements of the electric dipole moment are
taken between the ground hyperfine level F = 4 and the
excited hyperfine levels F ′ = 3,4,5.

The matrix elements of the electric dipole moment are
calculated as [30]

μ0F ′ = 1

3
(2F ′ + 1) (2J + 1)

{
J J ′ 1
F F ′ I

}2

|〈J |μ|J ′〉|2,
(A2)

where F (J ) and F ′(J ′) represent the total atomic (electronic)

angular momentum quantum numbers for ground and excited
levels, respectively, and the term inside the brackets is the
Wigner 6-j symbol.

The fine-structure electric dipole moment is

|〈J ′|μ|J ′〉|2 = 3πε0h̄c3

ω3
0τ

2J ′ + 1

2J + 1
, (A3)

where τ is the excited-state lifetime.

In order to obtain the third-order atomic susceptibility we
calculate the density matrix using perturbation theory. This
is done by substituting ρ into the density-matrix equation of
motion by

∑
k=0 λNρN and V by λV . λ is a parameter with

values between zero and one and V = ∑
j [h̄�je

iωt |0〉〈j | −
h̄�je

−iωt |j 〉〈0|] is the interaction potential, treated as a
perturbation. Equating the terms with the same power of λ

one obtains

ρ(0)
mn = − i

h̄

[
H0,ρ

(0)
mn

] + relaxation terms, (A4)

ρ(k)
mn = − i

h̄

[
H0,ρ

(k)
mn

] − i

h̄

[
V,ρ(k−1)

nm

] + relaxation terms,

(A5)

where H0 = H − V .
In the zero-order density matrix (without light field), the

only nonzero term is ρ
(0)
00 = 1. For the first-order density matrix

one obtains the usual linear result:

ρ
(1)
0j = i�j

i(ωj − ω) − 	/2
. (A6)

Thus, in the linear regime, the four-level system is equivalent
to the sum of three independent two-level systems [31].

For the second-order density matrix the ground-excited
coherence term is zero as it is expected for isotropic
media, while the population terms and the excited-excited
coherences are nonzero. The population and excited-excited
coherences, that only appear in the nonlinear regime, are
responsible for the second and third terms in the right side of
Eq. (11).
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de Silans, M. Oriá, and M. Chevrollier, Appl. Phys. B 107, 313
(2012).

[19] W. Soares Martins, H. L. D. de S. Cavalcante, T. Passerat
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