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We have studied the effect of the spin-orbit interaction on generation and conversion of optical vortices
in multihelicoidal fibers, that is, the fibers possessing a multihelical refractive index profile. On the basis of
a fully analytical approach we have obtained the spectra of coupled modes and their structure. Specifically,
we have established selection rules, under which the spin-orbit interaction mediates the conversion of optical
vortices into vortices with the topological charge changed by ±(� ± 2), � being the number of helical branches in
refractive index distribution. Also, we have shown that the spin-orbit interaction can lead to generation of radially
and azimuthally polarized TE and TM modes from optical vortices. We have also demonstrated that if such
generation is mediated by a scalar-type perturbation of the fiber’s form, it is possible only for weakly deformed
fibers. For strongly deformed fibers such perturbation can result only in generation of vortices with zero total
angular momentum. Additionally, we have studied the possibility of polarization control over the orbital angular
momentum of the generated state in such a system.
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I. INTRODUCTION

A multihelicoidal fiber (MHF) is an optical fiber possessing
a multihelical refractive index profile as shown in Fig. 1.
The refractive index distribution of a MHF has � helical
branches and possesses the �-fold rotational symmetry. Recent
theoretical studies of such fibers have revealed their ability
to change the topological charge of incoming beams in both
transmitted [1–4] and reflected fields [5]. Certain types of
photonic crystal fibers (PCFs) also belong to such a class of
optical fibers [6]. These works have shown that in a certain
spectral range the spiraling lattice imparts its “imprinted”
charge, which coincides with the order of symmetry �, to
the incoming field with a well-defined topological charge
changing it by ±� units. This ability to control the topological
charge of the output beam and its orbital angular momentum
(OAM) could be useful in information applications of OAM
carrying beams both in free space [7–10] and, especially, in
optical fibers [11,12].

However, there are sharp discrepancies between scalar
and vector approximations to the analysis of MHFs. The
above-mentioned analysis has been limited to the scalar
approximation, which makes it impossible to reveal all the
variety of intermodal transitions in MHFs. Meticulous studies
beyond the scalar approximation, carried out by Xu and
co-workers [13,14], demonstrate the existence of a different
class of mode transitions. In those transitions the topological
index of the generated field can be changed by � ± 2 units,
rather than by the “charge” � of the lattice, as the scalar-
approximation theory predicts. As has been indicated, such
mode transformations also involve flipping of the circular
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polarization of the incoming field. All such effects are
impossible to uncover within the frameworks of the scalar
approximation, which implies conservation of the spin state of
the field in the process of mode transformation.

The reported change of spin accompanied by the change
of the OAM state gives evidence that the transformation is
mediated by the spin-orbit interaction (SOI). However, the
approach, used in those inspiring works and suggested in
Refs. [15,16], has not allowed the authors to establish the
dynamical reason of such a novel effect connected with the
SOI. As a consequence, the authors have not emphasized the
importance of spin transformations during mode transitions
concealing such information in a simple angular momentum
(AM) selection rule established in Eq. (2) of Ref. [14].
Meanwhile, the type of interaction, which mediates the mode
transition, determines not only its main characteristics and
the spatial scale of mode transformation. In some cases the
type of mode transformation is determined not only by formal
selection rules but also by the proximity of other points of
resonant mode transitions. It turns out that for ill-resolved
in wavelength mode transition points the mutual influence of
neighboring resonant transitions may drastically change the
type of such transitions. In this way, neglecting the factor of
proximity of such resonant points connected with generation
of the TE and TM modes the authors made some incorrect
statements on the possibility of their generation in MHFs.
Although this fact does not diminish the significance and
scientific quality of the mentioned papers, it is desirable to
analyze in detail the role of the SOI on mode transformations
in MHFs.

In this paper we provide an analytical treatment of reso-
nance mode transitions in MHFs and demonstrate the effect of
the SOI on the conversion of optical vortices (OVs) in MHFs.
We construct the SOI Hamiltonian and establish dynamical

063814-11050-2947/2013/88(6)/063814(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.063814


ALEXEYEV, ALEXEYEV, LAPIN, MILIONE, AND YAVORSKY PHYSICAL REVIEW A 88, 063814 (2013)

FIG. 1. (Color online) The model of an � = 4 MHF. Note that the
pitch H is 4 times greater than the minimal distance, at which the
refractive index is restored. Shown schematically is the generation of
an OV from m = 0 Gaussian beam (intensity distribution is given).

and kinematical selection rules for possible resonance mode
transitions in such fibers. We also obtain the values of the
corresponding coupling coefficients and show that for the
SOI-induced transitions a narrow-band generation of the TE
and TM modes from the input OV beams is possible. For the
transitions induced by a strong scalar perturbation the only
possible type is a broadband generation of OVs.

II. BASIC EQUATIONS AND THE
SPIN-ORBIT-INTERACTION HAMILTONIAN

Chiral fiber gratings have long been under consideration
in fiber optics [14–18], although the majority of works
have been devoted to the study of circular birefringence in
them [17,19–27]. Only quite recently the focus of attention
has somewhat shifted to the study of higher-order mode
propagation in such optical systems, including nonlinear and
PCFs [28]. The refractive index distribution in such a MHF
has the form [29]

n2(r,ϕ) ≈ ñ2 − n2
co�(r) cos �(ϕ − qz) ≡ ñ2 − ν2, (1)

where ñ2 = n2
co[1 − 2�f (r)] is the refractive index of the

unperturbed ideal fiber, �(r) = 2�δrf ′, � is the height of the
profile f , δ � 1 is the dimensionless parameter of the cross
section’s deformation, nco is the core’s refractive index, and
q = 2π/H , H being the pitch of the lattice. The cylindrical-
polar coordinates (r,ϕ,z) are introduced in the standard way.
The electric field in optical fibers satisfies the so-called vector
wave equation [30], which can be reduced for long-period fiber
gratings to the equation in the transverse electric field Et :

(∇2 + k2n2)Et = −∇t (Et · ∇t ln n2), (2)

where k is the wave number in vacuum and ∇t = (∂/∂x,∂/∂y).
Without its right-hand side this equation turns into the scalar
wave equation. As is known, the right-hand side of Eq. (2)
comprises the effect of the SOI in optical fibers [31]. The notion
of the SOI for photons has been introduced by Zel’dovich et al.
[32]. Basically, it describes the influence of spin (polarization)
properties of an electromagnetic wave on the spatial (orbital)
characteristics of its energy propagation. In optical fibers
the SOI is also manifested through the difference in the
propagation constants of certain modes with the same orbital
number m (at m � 2) and opposite circular polarizations.
This basic interaction is the reason of a number of optical
phenomena, such as the optical Magnus effect, etc. [33,34].

The SOI plays an important role in forming the mode structure
of weakly guiding fibers, where the wave properties of light
are essential.

We will restrict our further considerations to the case of
weakly guiding fibers (� � 1). For such fibers the gradient
SOI term on the right of Eq. (2) is additive since ln n2 ≈ ln ñ2 −
(ν2/n2

co). In this way, the SOI is divided into two different parts.
The first part depends on the refractive index distribution of
the ideal fiber ñ and stands for a “background” SOI. The
second part involves the correction to ñ, which makes the fiber
�-fold rotational symmetric. One can expect that these two
parts of the SOI would manifest themselves separately. The
main feature of Eq. (2) is its translational noninvariance in z.
The standard procedure of regaining the desired invariance in
z comprises an effective transition to the corotating frame. To
this end one has to recast Eq. (2) in a matrix form in the basis
of circular polarizations, in which Et ∼ |
〉 = col(E+,E−)
and E± = 1√

2
(Ex ∓ iEy) [29]. Then in the obtained equation,

which has the form Ĥ |
〉 = 0, where Ĥ is a certain matrix
operator, it is necessary to make the following transformations:

Ĥ → CĤC−1 ≡ ˆ̃H,
(3)

|
〉 → C|
〉 ≡ |
̃〉 = col(Ẽ+,Ẽ−),

where C = diag(eiqz,e−iqz). Having carried out these trans-
formations one should pass to the new variables: r̃ = r ,
z̃ = z, ϕ̃ = ϕ − qz. The obtained equation turns out to be
translational invariant with respect to z̃, which enables one to
make the standard substitution: Ẽt (r̃ ,ϕ̃,z̃) = ẽt (r̃ ,ϕ̃) exp(iβz̃),
where β is the propagation constant. The resulting equation in
|ψ̃〉 = col(ẽ+,ẽ−) reads as[∇2

t + k2n2 − (β − qĴz)
2 + Ĥso + V̂so

]|ψ̃〉 = 0, (4)

where Ĵz = l̂z + τ̂3 is the total AM operator, l̂z = −i∂/∂ϕ̃, and
τ̂i is the Pauli matrix. Also in Eq. (4) Ĥso is the operator of the
SOI in ideal fibers, which reads as [31]

Ĥso = (2ψ + r̃ψ ′ + r̃ψ∇r̃ )τ̂0 + ψτ̂3 l̂z

+
(

0 exp(−2iϕ̃)â+
exp (2iϕ̃) â− 0

)
, (5)

where â± = r̃ψ∇r̃ + r̃ψ ′ ± ψl̂z and ψ = �f ′/r̃ . Here and in
the following the primes stand for the derivatives with respect
to r̃ . The operator V̂so of the SOI induced by the deformation
of the cross section is given by

V̂so = 1

2

[
�̂0τ̂0 + �̂3τ̂3 −

(
0 exp (−2iϕ̃) b̂−

exp (2iϕ̃) b̂+ 0

)]
,

(6)

where

b̂∓ = cos �ϕ̃

[
�′′ − 1

r̃
�′ + �2

r̃2
� + �′

(
∇r̃ ∓ i

r̃
∇ϕ̃

)]

± i�

r̃2
sin �ϕ̃[2r̃�′ − 2� + �(r̃∇r̃ ∓ i∇ϕ̃)],

�̂0 = ��

r̃2
sin �ϕ̃∇ϕ̃ − �′ cos �ϕ̃∇r̃ ,

�̂3 = i

r̃
[�� sin �ϕ̃∇r̃ + cos �ϕ̃�′∇ϕ̃].
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III. PERTURBATION THEORY AND RESONANCE
COUPLING

Equation (4) represents a special type of eigenvalue prob-
lem, in which it is convenient to choose Ĥ0 = ∇2

t + k2ñ2 −
(β − qĴz)2 for the unperturbed zero-approximation opera-
tor. Then from the zero-approximation eigenvalue equation
Ĥ0(β̄)|ψ̃0〉 = β̄2|ψ̃0〉, where |ψ̃0〉 is the zero-approximation
eigenfunction (mode), one can obtain for β̄ [1,2]

β̄m = β̃m + Jq, (7)

where J = m + σ is the index of the total AM of the
eigenfunction, β̃m is the scalar propagation constant of the
corresponding ideal-fiber mode [30], and m = 0,1,2· · · is
its azimuthal index (here and throughout we omit the radial
number). In the weak guidance limit it is convenient to choose
the eigenfunctions |ψ̃0〉 in the form of OVs |σ,m〉 [31,35],
which in the basis of linear polarizations |e〉 = col(ex,ey) can
be represented as

|σ,m〉 =
(

1
iσ

)
exp(imϕ̃)Fm(r̃), (8)

where σ = ±1 determines the sense of circular polarization,
m specifies the topological charge and the radial function Fm

satisfies the standard equation [30]. Note that the same vectors
in the basis of circular polarizations |ψ〉 = col(e+,e−) will
have a different form, for example, col(1,0) exp(imϕ̃)Fm(r̃)
for the state |1,m〉. Generally, the spectra [Eq. (7)] are
not degenerate; however, at certain q the spectral curves
may intersect. The position of such points of accidental
degeneracy, where the spectral curves for |σ,m〉 and |σ ′,m′〉
zero-approximation eigenfunctions intersect, is determined by

q0 = β̃m′ − β̃m

J − J ′ , β̄m(q0) = J β̃m′ − J ′β̃m

J − J ′ , (9)

where the first equation represents the kinematical resonance
condition for modes with OAM, first introduced in [1]. The
examples of such intersections are given in Fig. 2(a). Note
that here and throughout the requirement q0 > 0 imposes an
additional restriction on the type of possible mode coupling.

Near such points the hybridization of the corresponding
zero-approximation modes is possible. However, whether the
coupling between the modes |i〉 and |j 〉 does take place is
dictated by the dynamical condition, which reads as Vij ≡
〈i|V̂ |j 〉 �= 0, where the perturbation operator is V̂ = Ĥso +
V̂so − k2ν2. The scalar product here is defined in the standard
way:

〈�|
〉 =
∫∫

S

( �∗
+ �∗

− )

(

+

−

)
dS, (10)

where S is the total transverse cross section of the fiber.
The condition Vij �= 0 provides dynamical selection rules for
possible transitions. As has been shown [3], the scalar-type
perturbation k2ν2 enables the coupling between the states with

|m − m′| = �, σ = σ ′, (11)

which presents the selection rule for the scalar-perturbation-
induced transitions. Note that although Eq. (11) can also
be represented as |J − J ′| = �, the previous form is more
informative since it comprises information on the spin and

FIG. 2. (Color online) Plots of zero-approximation spectral
curves and resonance points. (a) illustrates the statement that the
scalar-perturbation term enables transitions with both the raising and
the lowering of the orbital index of the incident mode (|1,3〉, black
solid line) by � (here � = 1, which stands for a helical-core fiber). In
the point (a) it can be converted into the mode |1,2〉 (blue dotted line)
with the lowering of the orbital index, whereas in the point (c) it can
be converted into the mode |1,4〉 (red dashed line) with the raising of
the orbital index. In the point (b), although the resonance conditions
are met, no conversion between the modes |1,2〉 and |1,4〉 takes
place since the dynamical selection rule [Eq. (11)] is not satisfied.
(b) shows the spectral curves for the mode family |m| = 1. Note a
double degeneracy of J = 0 curves for |1, −1〉 and |−1,1〉 OVs. Inset
shows degeneracy lifting due to the SOI with the forming of the |TE〉
and |TM〉 modes spectral curves.

orbital indices separately. Equation (11) explicitly indicates
that the coupling is induced by the scalar-type operator term,
which does not imply spin changes, and does not comprise
the SOI. It should be noted that the first condition in Eq. (11)
allows transitions with both the raising and the lowering of
the orbital index by � for a lattice with the same chirality
[see Fig. 2(a)]. This is possible due to the fact that the
scalar-type perturbation in this case comprises the factor
cos �ϕ ∼ exp(i�ϕ) + exp(−i�ϕ), which makes nonzero the
scalar product for the state vectors with |�m| = �.

Consider now the effect of the standard ideal-fiber SOI term
Ĥso on the mode coupling. As is evident [31], this interaction
couples only the fields |σ,m〉 with �J = 0. Using (9) one
can show that this entails q0 = ∞; that is, the corresponding
spectral curves do not intersect. Exceptions to this rule are the
fields |1,−1〉 and |−1,1〉, whose spectral curves coincide [see
Fig. 2(b)]. In this case the SOI lifts the degeneracy by splitting
these lines (see inset) and forms the standard |TE〉 and |TM〉
modes. Although this part of the SOI does not couple the
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modes |σ,m〉 other than in the above given sense, it makes
the mode coupling induced by other perturbation terms more
versatile, as will be shown further.

The most interesting part of the SOI Hamiltonian is the
V̂so term, which originates due to the cross influence of
the scalar-type perturbation term and the gradient term on the
right of Eq. (2) and describes the SOI induced by the special
rotational symmetry of the lattice in question. As can be easily
shown, this operator couples the states |σ,m〉 and |σ ′,m′〉 in
the case

m′ − m − 2σ = ∓�, σ = −σ ′, (12)

which presents the dynamical selection rule for coupling by
the second part of the SOI operator. As earlier, Eq. (12)
can be represented as |J − J ′| = �; however, for the same
reason we prefer the expanded form of this selection rule.
Note that here for definiteness we assume that the order of
indices in the matrix element is as follows: 〈σ,m|V̂so|σ ′,m′〉.
The corresponding q, at which such a coupling takes place, is

q0 = ±(β̃m′ − β̃m)/�, (13)

which conveys the kinematical selection rule. The signs
in Eqs. (12) and (13) should be chosen correspondingly,
which guarantees the existence of two possible types of
transitions connected with the raising and the lowering of
topological charge by � ± 2 units. Note that while calculating
the resonance pitch we take into consideration that β̃m′ > β̃m

if m > m′. Once again, the increment of the AM in such
a transition is |J − J ′| = �, as in the case of the scalar-
perturbation term [see Eq. (11)].

IV. SPIN-ORBIT-INTERACTION-INDUCED GENERATION
OF OPTICAL VORTICES

As is known, to establish the structure of hybrid modes near
the points of accidental degeneracy one has to build the matrix
G of the total Hamiltonian over the basis of such eigenvectors
of Ĥ0, whose spectral curves intersect [1–3]. In the simplest
case of intersection of two curves, which correspond to zero-
approximation eigenvectors |σ,m〉 and |σ ′,m′〉, that matrix has
the form

G(m,m′) =
(

β̃2
m − (β − Jq)2 2β̃0Q

2β̃0Q β̃2
m′ − (β − J ′q)2

)
, (14)

where Q is the corresponding coupling integral:

Q = 1

2β̃0
〈σ,m|V̂ |σ ′,m′〉. (15)

It is implied here that the solution x = col(x1,x2) of the
eigenvector equation G(m,m′)x = 0 corresponds to the eigen-
mode |
〉 = x1|σ,m〉 + x2|σ ′,m′〉. Near the intersection point
[q0,β̄m(q0)] by introducing the following detunings,

κ = β − β̄m(q0), ε = q − q0, (16)

one can linearize the eigenvector equation G(m,m′)x = 0:(
Jε − κ Q

Q J ′ε − κ

)
x = 0. (17)

The spectra of coupled modes are obtained in the form

β = β̄m(q0) + 1
2 [ε(J + J ′) ± 2�], (18)

where � = 1
2

√
(εM)2 + 4Q2; M = J ′ − J . Equation (18)

describes the known effect of repulsion of the spectral curves
[1]. The expressions for such hybridized modes read as (in the
laboratory frame)

|ψ1〉 =
{
C1|σ,m〉 exp

[
i

(
β̃m + ε

2
M

)
z

]

+C2|σ ′,m′〉 exp

[
i

(
β̃m′ − ε

2
M

)
z

]}
exp(iz�),

|ψ2〉 =
{
C2|σ,m〉 exp

[
i

(
β̃m + ε

2
M

)
z

]

−C1|σ ′,m′〉 exp

[
i

(
β̃m′ − ε

2
M

)
z

]}
exp(−iz�),

(19)

where C1,2 = 1√
2

√
1 ∓ εM

2�
, so that |C1|2 + |C2|2 = 1.

As usual, mode coupling implies intermodal transitions
between zero-approximation fields. Indeed, if a semi-infinite
MHF is excited with the OV |σ,m〉, in the simplest reflection-
less approximation the field within the fiber is described by

|�〉 = |σ,m〉 exp[i(β̃m − β̃m′ + εM)z]

(
cos �z − i

εM

2�
sin �z

)

+ iQ

2�
sin �z|σ ′,m′〉. (20)

At zero detuning ε = 0 the evolution of the field has
the simplest form and yields the total conversion of the
OV |σ,m〉 into the OV |σ ′,m′〉 at the conversion length
sk = π (2k + 1)/2Q, k = 0,1,2 · · · . Equations (18)–(20)
generalize the earlier obtained results of Refs. [1–3]. It should
be noted that the conversion length depends on the conversion
type only through the coupling constant Q. As has been
mentioned previously, each part of the perturbation operator
V̂ is responsible for a special kind of mode conversion.

Since the effect of the scalar-type perturbation described by
the k2ν2 term has been exhaustively studied in earlier papers
[1–4], we focus our attention on the transitions enabled by the
SOI term V̂so. The corresponding coupling constant for the
transition |σ,m〉 → |σ ′,m′〉, where selection rules [Eq. (12)]
are justified, can be brought to the form

Q = K

∫ ∞

0

{
RF ′′

mF ′
m + RF ′

mF ′
m′

+F ′
mFm′[1 − σ (m ± �)] − (2mσ + 1)F ′

m

−mFm

(
σF ′

m′ ∓ �

R
Fm′

)}
∂f

∂R
dR, (21)

where K = �δ

2kr2
0 nco

√
NmNm′

, R = r/r0, r0 is the core’s radius,

and the normalization coefficient is Nm = ∫ ∞
0 RF 2

mdR. It is
assumed here that Q is defined by Eq. (15). In the following
we restrict our considerations to the case of step-index fibers,
where ∂f

∂R
= δ(R − 1); δ(x) is the Dirac function [30]. Since

also Fm(R = 1) = 1 one can simplify Eq. (21) and bring it to
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FIG. 3. Transmission coefficient T plotted in the reflectionless
approximation for the SOI-induced conversion of the OV |1,1〉
into the OV |−1,5〉 in an elliptical spun fiber (� = 2). Fiber
parameters: nco = 1.5, � = 10−2, δ = 5 × 10−2, r0 = 10λ0, λ0 =
6.328 × 10−7 m.

the form

Q = K{F ′′
mF ′

m + F ′
mF ′

m′ − σ (3m ± �)F ′
m

−m(σF ′
m′ ∓ �)}R=1. (22)

Note that here the derivatives should be taken with respect
to R and Fm depends on ŨR, where Ũ is the known fiber
parameter [30]. Figure 3 shows a typical transmittance curve
plotted in the reflectionless approximation for the SOI-induced
conversion of the OV |1,1〉 into the OV |−1,5〉 in an elliptical
spun fiber (� = 2). Note that here it is the term δĤso which
enables this conversion.

Among the perturbation terms the SOI operator V̂so pro-
vides the weakest coupling. Indeed, using the definition of
�(r) Eq. (1) one can show that the matrix elements with
this operator are proportional to (V̂SO)ij ∝ �δ/r2

0 , since the
scale of spatial variations of the functions Fm(r) has the order
of core’s radius. The scalar-perturbation term generates the
matrix elements of order (k2ν2)ij ∝ �δk2, which is clear from
its definition. The case where such elements are the largest will
be further referred to as the case of a strongly perturbed fiber.
The order of the matrix elements generated by the ideal-fiber
SOI operator Ĥso can be assessed as (ĤSO)ij ∝ �/r2

0 . Once
again, this estimate is based on the fact that upon transition to
the dimensionless variable R the expression [Eq. (5)] acquires
a general multiplier of r−2

0 . This set of matrix elements can
also be the largest among the three sets of perturbation matrix
elements; the corresponding condition reads as δ � (λ/r0)2,
where λ is the wavelength (see also [31]). This hierarchy
of interactions, as will be shown further, is essential for
implementation of certain transitions not forbidden by the
selection rules.

Unlike the transitions induced by the scalar-type perturba-
tion term k2ν2, the SOI-induced transitions, governed by the
selection rules [Eq. (12)], make principally possible the control
of the OAM state of the outcoming beam by controlling the
polarization state of the input field. Indeed, in an � = 3 MHF
along with the SOI-induced conversion |1,2〉 → |−1,7〉

FIG. 4. (Color online) Controlling the OAM state of the out-
coming beam by controlling the polarization state of the input
field. By changing the circular polarization of the input OV with
the topological charge 2 from right (red dashed line |1,2〉) to left
(blue dotted line |−1,2〉) one can generate OVs of either charge
7 or 3 (black solid labeled lines). The SOI-induced conversion
|1,2〉 → |−1,7〉 (M = +3) occurs at q01, whereas the transformation
process |−1,2〉 → |1,3〉 (M = +3) takes place at q02 (here � = 3).
Insets show repulsion of spectral curves due to mode coupling [see
also Eq. (18)].

(M = +3), the transformation process |−1,2〉 → |1,3〉 (M =
+3) is also possible. This example shows that by changing
the circular polarization of the input OV with the topological
charge 2 from right to left one can generate OVs of either
charge 7 or 3. In this way, such a control is formally possible.
However, these resonance transitions occur at different values
of q (see Fig. 4): The first one takes place in the lattice with
q01 = (β̃2 − β̃7)/3, whereas the second transition requires the
lattice with q02 = (β̃2 − β̃3)/3. Moreover, since calculations
of the coupling integrals [Eqs. (21) and (22)] in these cases
imply integrations of the products of radial functions with
orbital indices l = 2,7 and l = 2,3, respectively, the conversion
lengths would also be different. So, the conversion process
|1,2〉 → |−1,7〉 occurs at the resonance pitch 2 × 10−4 m and
is accomplished at the conversion length s0= 2.6 × 10−2 m
(fiber parameters are given in the legend for Fig. 3). On
the contrary, the conversion |−1,2〉 → |1,3〉 requires reso-
nance pitch of H = 2 × 10−3 m and the conversion length
is s0= 7.5 × 10−2 m. That is why it is hardly possible to
implement spin control over the OAM state through such
devices.

All the above-studied cases were related to intersections
of nondegenerate spectral curves. Consider now resonance
points formed by intersections of spectral curves with a double-
degenerate J = 0 spectral curve, which corresponds to |1,−1〉
and |−1,1〉 OVs [see Fig. 2(b)]. To allow for the effect of the
standard ideal-fiber SOI described by the term Ĥso one has to
construct the perturbation matrix in the space spanned over the
states |1,−1〉, |−1,1〉. Since the scalar propagation constants
for such scalar-approximation modes coincide and J = J ′ = 0
the perturbation matrix equation (14) reduces to the form

G(1,1) =
(

β̃2
1 − β2 + 2β̃0b1 2β̃0b1

2β̃0b1 β̃2
1 − β2 + 2β̃0b1

)
, (23)
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where b1 = 〈1,−1|Ĥso|−1,1〉/2β̃0 is the ideal-fiber SOI con-
stant [31]. It should be stressed that in this particular case
m = m′ = 1 and Ĥso also gives a contribution to the diagonal
elements of this matrix. At m �= m′ such elements either do
not appear or are irrelevant. In like manner, the eigenvalue
equation G(1,1)x = 0 can be brought to the form analogous
to Eq. (17): (

−κ + b1 b1

b1 −κ + b1

)
x = 0, (24)

where κ = β − β̃1. Analogously, the solution x = col(x1,x2)
corresponds to the eigenmode |
〉 = x1|1,−1〉 + x2|−1,1〉.
One readily obtains from this equation the splitting of spectrum
curves:

β1 ≡ βTM = β̃1 + 2b1, β2 ≡ βTE = β̃1. (25)

The eigenvector x1 = col(1,1), which corresponds to β1,
represents the mode |TM〉 = |1,−1〉 + |−1,1〉, whereas the
eigenvector x2 = col(1,−1) belongs to the eigenvalue β2 and
represents the TE mode: |TE〉 = |1,−1〉 − | − 1,1〉 [31]. As is
evident, since for weakly guiding fibers one has β̃i ≈ knco [30],
the distance between these split spectrum curves has the order
of �/kr2

0 and is proportional to the SOI coupling.
Consider now intersection of |TE〉 and |TM〉 spectral curves

with some other spectral curve that corresponds to a mode
|σα,lα〉. Using Eq. (7) one can easily determine that this curve
intersects with the |TE〉 and |TM〉 curves at qTE = (βTE −
β̃α)/J and qTM = (βTM − β̃α)/J , where J = σα + lα . From
Eq. (25) the separation of these points in the q domain is

η ≡ qTM − qTE = 2b1/J ∝ �/kr2
0 . (26)

As is obvious, this quantity has also the order of separation of
the spectral curves for the TE and TM modes. On the other
hand, as follows from Eqs. (18) and (19), in the q domain the
width of the coupling area is proportional to the coupling
constant Q. The order of this parameter is determined by
the order of the perturbation term, which is responsible for
the corresponding resonance mode coupling. In this way, the
width of the resonance area for coupling mediated by the SOI
operator V̂so has the order of �δ/kr2

0 , whereas the width of the
area, where the coupling mediated by the scalar-perturbation
term k2ν2 is essential, has the order of �δk. These estimates
are critical for understanding the nature of mode coupling in
such a nearly degenerate regime.

Indeed, if the coupling with J = 0 TE and TM modes,
whose spectral curves are closely spaced, is caused by the
weakest V̂so perturbation term, the distance between the
intersection points η is much greater than the width �δ/kr2

0
of the resonance area, where the coupling is still essential:
η = �/kr2

0 � �δ/kr2
0 [see Fig. 5(a)]. In this situation there is

no cross influence of resonance transitions between the mode
|α〉 and the |TE〉 and |TM〉 modes. In each of the points one has
the standard case of the two-mode coupling and the mode
conversion in such well-separated points will run between the
input excited mode |α〉 and the |TE〉 (or |TM〉, depending on
the resonance point) mode. Note that if |α〉 can be coupled to
the |TE〉 mode it also can be coupled with the |TM〉 mode.
Exactly this possibility is reflected in Table 3 of Ref. [14].
Naturally, such a coupling between the input field |α〉 and |TE〉,

FIG. 5. (Color online) Hybridization of spectral curves with
nearly degenerate J = 0 curves. For the case where the width of
the coupling area is much less than the distance between the |TE〉
and |TM〉 spectral curves (a) the two-mode coupling scheme is
implemented and the transitions in such well-separated points run
between the corresponding input mode |α〉 (red line) and the |TE〉 or
|TM〉 modes (blue lines) leading to transformation of spectral curves
(see inset). In the opposite case (b) the mode coupling affects the input
mode |α〉 and one of the OVs |1,−1〉, |−1,1〉, which form the hybrid
modes with the spectral curves |1〉 and |2〉 (see inset). The remaining
OV of the pair |1, −1〉, |−1,1〉 is uncoupled and its spectral curve
(middle blue line in inset) does not hybridize.

|TM〉 modes can also be mediated by the scalar-perturbation
term k2ν2. In this case the situation will be qualitatively the
same only for weakly perturbed MHFs, that is, the fibers in
which the influence of the standard SOI term Ĥso is much
greater than the influence of the scalar perturbation [this takes
place at δ � (λ/r0)2]. All the above-mentioned cases enable
generation of radially and azimuthally polarized beams, which
is a topical problem in modern optics [36].

However, the situation will be drastically different if the
transition-enabling scalar perturbation is much greater than
the standard SOI, which takes place at δ � (λ/r0)2. In this
case the separation of the resonance points in the q domain
is insufficient to prevent the effective cross influence between
the neighboring hybridized spectral curves, which essentially
overlap. To establish the type of coupling one has to build the
perturbation matrix G over the three states in question [37].
Since the scalar perturbation k2ν2 couples the states according
to selection rules Eq. (11), that is, regardless of their spin states,
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FIG. 6. (Color online) Schematic plot of the spectral curves in the
intermediate case of comparable coupling constants Q, b1 in Eq. (29).

the eigenvalue equation in the three-component vector x3 can
be represented near the intersection region as⎛

⎜⎝
Jε − κ Q 0

Q b1 − κ b1

0 b1 b1 − κ

⎞
⎟⎠ x3 = 0. (27)

Here for definiteness we have assumed without the loss of
generality |α〉 = |1,lα〉, so that the vector x3 stands for the field
|
〉 = x1|α〉 + x2|1,−1〉 + x3|−1,1〉. Note that in this case
b1 � Q and Eq. (27) can be decomposed into two eigenvalue
equations:(

Jε − κ Q

Q b1 − κ

)
x2 = 0, (b1 − κ)x1 = 0, (28)

where x2 belongs to the space spanned over {|α〉,|1,−1〉} states
and a one-dimensional vector x1 is related to the field |−1,1〉.
The first of these equations, obviously, describes the coupling
between the fields |α〉 and |1,−1〉. The second equation
conveys the fact that the second OV |−1,1〉 remains uncoupled
and its spectral curve does not change. The behavior of the
spectral curves in this case is shown in Fig. 5(b).

This result can be understood in the following manner. Be-
ing in this case the strongest interaction, the scalar perturbation
first couples the two fields {|α〉,|1,−1〉}, which satisfy the
selection rule, Eq. (11), forming a typical two-mode hybrid
spectral curve. Then the relatively small standard SOI term
couples the remaining OV |−1,1〉 to the newly formed hybrid
modes. However, since this coupling is weak, the resulting
field will be approximately the same as after the first coupling
in this “succession” of couplings. In the intermediate case of
comparable constants Q, b1 it is possible to plot the spectral
curves, which on the plane (κ,εJ ) satisfy the equation

εJ = κ − Q2(κ − b1)

κ(κ − 2b1)
. (29)

The plot of this curve is given in Fig. 6. As is evident, in
the limit b1 � Q the central curve tends to the straight line,
and the whole plot turns into the one presented in the inset in
Fig. 5(b).

Summarizing, one can say that in the case of strong scalar
perturbation neither |TE〉 nor |TM〉 modes can be formed in
the process of resonance mode generation in MHFs. Instead,
this coupling process leads to generation of either |1,−1〉

or |−1,1〉 OVs. This contradicts the corresponding statement
of Ref. [14], according to which the only possible type of
J = 0 mode generation is the generation of |TE〉 and |TM〉
modes. Moreover, the fiber parameters used there in numerical
simulations are related rather to the case of strong ellipticity,
where the scalar perturbation is the strongest interaction and
only the fields |1,−1〉 and |−1,1〉 can be generated in the
points of intersection with the degenerate spectrum lines.

Finally, let us discuss the possibility of implementing such
processes of mode conversion in waveguides designed for
other spectral ranges. Although for state-of-the-art technology
manufacturing long-period chiral fiber gratings for optical
range is no longer a challenge, making laboratory experiments
on verification of the suggested theory using other types
of dielectric waveguides may prove to be convenient. This
technique of modeling the optical processes in a different
wavelength range is rather widely used by experimentalists
and is very fruitful (see, for example, Refs. [23,38]). To
assess applicability of our results to other wavelength ranges
it is necessary to study the scaling properties of the main
relations, which the physics of mode conversion is based
on. The main question here is how the waveguide should be
scaled to possess the same transformation properties for a
different wavelength range. Even a superficial analysis reveals
the essential difference in this relation between MHFs and
planar chiral structures, such as, for example, cholesteric liquid
crystals. Indeed, in cholestericlike systems the transmittance
can be described in terms of a dimensionless combination
“λ/H ,” for example. In this way, the transmittance properties
for a lattice with a larger pitch are the same provided the central
wavelength λ0, at which the conversion is maximally effective,
is properly scaled.

In MHFs such a simple scaling is insufficient since there
is an extra dimension parameter, namely, the fiber’s radius,
which also determines the properties of the system, such
as its waveguide parameter V [30], the coupling integral K

[Eq. (21)], etc. By keeping intact only the ratio of λ/H , as
proves to be sufficient for cholesterics, one would obtain, for
example, the distortion of Figs. 2(a) and 4. This distortion
takes place because the scalar propagation constants β̃m, which
determine vertical displacements of the spectral curves, depend
on the core’s radius. In this way, one cannot establish the value
of the resonance lattice pitch for any wavelength knowing only
such a pitch value for a certain wavelength.

To establish necessary scale transformations, which one has
to make over the system to keep invariant the results obtained
for a certain spectral range, consider dimensionless forms of
the basic relations for mode conversion. Using a well-known
relation [30],

β̃m = 1

r0

√
V 2

2�
− Ũ 2

m ≡ nm

r0
, (30)

where V = 2π λ
r0

nco

√
2� and Ũm is determined through V

from the known dimensionless characteristic equation, one
can bring the kinematical resonance condition, Eq. (9), to a
dimensionless form,

r0

H0
= nm′ − nm

J − J ′ , (31)
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where H0 is the resonance pitch. Note that nm depends on
the dimensionless parameter ξ = λ/r0. As is evident from
this relation and the definition of V , the kinematical reso-
nance condition, Eq. (31), is invariant under a simultaneous
scaling:

λ → γ λ, r0 → γ r0, H0 → γH0. (32)

This implies that in a MHF with the pitch γ times greater
than that of a certain etalon MHF the corresponding mode
conversion would take place at the γ times greater resonance
wavelength, provided the core’s radius is γ times increased.

In like manner one can show that under the scaling
transformation, Eq. (32), the form of the transmittance curve
(see Fig. 3) would also be maintained. To prove this it is
useful to notice that the coupling constant Q [Eq. (21)] can be
represented as Q = Q̄(ξ )/r0, where Q̄ is the dimensionless
function. Then Eq. (19) for coupled modes can be recast in
terms of dimensionless variables ζ = z/r0 and ε̄ = εr0 by
changing β̃m → nm; for example,

|ψ1〉 =
{
C1|σ,m〉 exp

[
i

(
nm + ε̄

2
M

)
ζ

]

+C2|σ ′,m′〉 exp

[
i

(
nm′ − ε̄

2
M

)
ζ

]}
exp(iζ �̄), (33)

where �̄ = �r0. Under the scale transformation equation (32)
this implies that the width of the resonance area (in the q

domain) decreases γ times, which entails increasing of the
width of the transmittance curves in the λ domain by the same
factor. Analogously, the conversion length sk also increases γ

times.

V. CONCLUSION

In the present paper we have studied the effect of the
spin-orbit interaction on generation and conversion of optical
vortices in multihelicoidal fibers. On the basis of a consistent
analytical approach we have obtained an effective translation-
invariant vector wave equation for this problem. By applying
degenerate perturbation theory we have obtained the spectra
of resonant coupled modes and their structure. We have shown
that if the obtained selection rules are justified, in this system a
SOI mediated conversion of optical vortices into vortices with
changed topological charge is possible in a narrow spectral
range. The charges of the generated vortices are found to
differ from the charge of the input vortex by ±(� ± 2), where
� is the number of helical branches in the refractive index
distribution of the fiber. We have also shown that the spin-orbit
interaction may lead to a narrow-band generation of radially
and azimuthally polarized TE and TM modes from certain
optical vortices. Such generation caused by the scalar-type
multihelicoidal perturbation of form is possible only for
weakly deformed fibers, whereas for strongly deformed fibers
such perturbation may result only in generation of vortices with
zero total angular momentum. We have studied the possibility
of polarization control over the orbital angular momentum of
the generated state in such a system and found it impossible
for a MHF with nonvarying parameters.
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