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We provide a theoretical treatment of the quantum backaction of Larmor frequency measurements on a spinor
Bose-Einstein condensate by an off-resonant light field. Two main results are presented; the first is a “quantum
jump” operator description that reflects the abrupt change in the spin state of the atoms when a single photon
is counted at a photodiode. The second is the derivation of a conditional stochastic master equation relating
the evolution of the condensate density matrix to the measurement record. We provide a few examples of the
application of this formalism and comment on its application to metrology.
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I. INTRODUCTION

Precision magnetometry has developed along several par-
allel tracks in recent years. Various magnetometers have
been designed using diamond nitrogen vacancy (NV) centers
[1,2], with superconducting quantum interference devices
representing a more established technology [3]. Atomic
vapor magnetometers of spin-polarized alkali-metal atoms are
another type of new field sensor with excellent performance
[4]. These magnetometers, based on the optical detection
of Larmor precession, have demonstrated field sensitivities
in the aT/Hz1/2 regime [5]. The use of optically trapped
ultracold atoms as the sensing medium holds promise for
magnetic microscopy at high spatial resolution as well as for
significant improvements in field sensitivity via entanglement-
assisted techniques [6–8]. Spinor Bose-Einstein condensates
are particularly suited to field sensing applications due to their
low spin-relaxation rates and absence of density-dependent
collision shifts [9].

The detection of Larmor precession and the subsequent
estimation of the magnetic field rely on the dispersive
interaction between the collective atomic spin and the optical
field, followed by a quantum-limited measurement of the light.
This interaction entangles the optical and atomic degrees of
freedom. Measuring the light breaks this entanglement and
must therefore cause a backaction on the atomic spins.

The ultimate sensitivity of such atomic magnetometers is
governed by the interplay between the projection noise of
the atomic spins, photon shot noise, and quantum backaction
due to the measurement of the optical field. Here, we
provide a theoretical treatment of this backaction by means
of a conditional stochastic master equation that relates the
condensate evolution to the optical measurement record. One
of the main results that distinguishes this work from similar
studies, e.g., Ref. [10,11], is the derivation of a quantum jump
operator reflecting the backaction on the atoms induced by the
detection of a single photon.

This paper is organized as follows. Section II introduces our
model of Larmor precession measurements via photoelectron
counting in a balanced Mach-Zehnder interferometer, dis-
cussing in general terms the photocount probabilities and the

measurement-reduced state of the atomic system. Section III
then introduces the quantum jump operators appropriate for
detection with feeble laser fields, and Sec. IV applies these
results to the development of a conditional stochastic equation
that describes the measurement scheme and its backaction on
the atomic system. Section V applies this formalism to a couple
of illustrative examples, and finally Sec. VI is a summary and
outlook.

II. MODEL

We consider a magnetometer consisting of a spinor Bose-
Einstein condensate of n � 1 spin-1 bosons trapped in their
motional ground state. The basic idea is that any external
magnetic field �B(t) will modify the Larmor precession
frequency of the spins, so that measuring that frequency is
a measurement of �B.

The formalism that we develop in the following is well
suited to both spinor gases with a ferromagnetic ground
state, such as 87Rb, and those with a polar ground state,
such as 23Na. It can also be readily extended to systems
with different internal state spaces or expanded to incorporate
spatial variations in the atomic spin field, although we assume
in this paper that the spatial extent of the gas is small enough
that the single-mode description of its center of mass is
appropriate.

Before proceeding further, we introduce multi-index no-
tation for the spin indices. This serves two purposes: first,
it shortens otherwise lengthy equations, making them easier
to read and parse; more importantly, it allows our general
results to be applied directly to atomic systems with different
internal manifolds simply by changing the number of indices
as appropriate. Specifically, we define

v = (v+,v0,v−), (1)

|v|1 = v+ + v0 + v−, (2)

v! = v+!v0!v−!, (3)

vw = v
w+
+ v

w0
0 v

w−
− , (4)

v · w = v+w+ + v0w0 + v−w−. (5)
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We use the one-norm rather than the more common two-norm
in Eq. (2) to make summation indices more elegant. The
notation in Eqs. (3) and (4) commonly appears in multinomial
arithmetic and multivariate calculus. Lastly, the dot product
notation in Eq. (5) is, aside from the spin rather than coordinate
indices, the same as it would be for spatial vectors, which are
denoted with over-arrows in this work to avoid ambiguity.

The atoms are prepared initially with high fidelity in the
pure spin state:

|ψ〉 = c+|+1〉 + c0|0〉 + c−|−1〉, (6)

for example, in the z basis. Under the influence of a transverse
magnetic field these coefficients will become time dependent.

For later use, we define a probability multi-index:

pi = |ci |2, (7)

where i ∈ {+,0,−}, with the state normalization implying that
|p|1 = 1. Single-atom spin expectation values are given in
terms of pi as

〈Fz〉 = p− − p−,
(8)〈

F 2
z

〉 = p+ + p−.

With this notation, the full n-particle state can be compactly
expressed as

|ψn〉 = â
†n
ψ |0〉/

√
n! =

∑
|j|1=n

√
n!

j!
cj|j〉, (9)

where â
†
ψ = c · â† is the Schrödinger field creation operator

for state |ψ〉, |0〉 is the vacuum, and |j〉 is the state with ji

atoms in spin eigenstate i.
The spin state of the condensate is optically detected either

by measuring the phase imprinted onto a coherent polarized
pulse of the light field by the condensate, as in phase-contrast
imaging [12,13], or by monitoring the polarization of the light
field, as in polarization spectroscopy (see, for example, [14]).
Without loss of generality, we assume the former method via
balanced homodyne detection. The condensate sits in one arm
of a balanced Mach-Zehnder interferometer, and the phase
shift is measured by subtracting the photocurrents at the two
detectors (see Fig. 1).

We assume that the probe field is detuned sufficiently
far from the atomic resonance so that the excited atomic
states can be adiabatically eliminated. We also assume an
optical transit time short enough that other contributions to
the condensate’s evolution may be neglected for now. By
introducing a multi-index of coupling strengths g that reflects
the spin dependence of the light-atom interaction, we then find
the interaction Hamiltonian:

HI = h̄g · N̂b̂†b̂, (10)

where Ni = â
†
i âi and b̂ is the light field annihilation operator.

See the Appendix for a detailed derivation in a specific
example. The effect of this Hamiltonian is to imprint a phase
rotation on the optical field that contains information about the
spin state of the atoms.

The quantum state of the combined atomic spin and two
output optical fields after passing through the final beam

FIG. 1. (Color online) A schematic of the proposed experimental
setup. The atomic condensate sits in one arm of a balanced Mach-
Zehnder interferometer, where two 50:50 beam splitters are adjusted
such that the output light will have equal intensity at each port in
the absence of any material inducing an additional phase shift. Thus,
the phase shift the atoms imprint on the light can be determined by
measuring the differential signal from the photodiodes.

splitter, just before measurement, is therefore

|ψ〉 =
∑
|j|1=n

√
n!

j!
cj|j〉 ⊗

∣∣∣∣A0

2
(1 + ie−iG·j)

〉

⊗
∣∣∣∣A0

2
(1 − ie−iG·j)

〉
, (11)

where A0 is the dimensionless amplitude of the coherent op-
tical pulse into the first beam splitter so that 〈b̂†b̂〉 = |A0|2/2,
τ is the light-matter interaction time, and the single-photon
single-atom dimensionless coupling is G = τg.

In deriving Eq. (11) we have assumed that no light is lost at
the mirrors or beam splitters and that absorption by the atomic
sample is likewise negligible, so that the output light fields
may be expressed in terms of their coherent amplitudes. We
also note that the additional phase rotations due to the free
propagation of the light cancel out if the interferometer arms
are properly balanced. The probe beam’s contribution to the
output fields has been phase rotated due to the unitary evolution
induced by the Hamiltonian Eq. (10). Importantly, unless the
atoms are in the unlikely configuration of a Fock state of
the spin field, this interaction entangles the optical field with
the collective spin state of the atoms [15]. In the rest of this
article, we quantify the backaction induced on the condensate
due to measurement of the light.

Assuming the photodetectors have unit efficiency, the joint
probability of obtaining photocounts C+ and C− at the first
and second photodiodes, respectively, is

P (C+,C−) = e−|A0|2 (|A0|2/2)C++C−

C+!C−!

∑
|j|1=n

n!

j!
pj

×(1 + sin G · j)C+(1 − sin G · j)C− . (12)
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After an ideal measurement with outcome (C+,C−) the atomic
state is given by

|ψ(C+,C−)〉 = N
∑
|j|1=n

√
n!

j!
cj(1 + ie−iG·j)C+

×(1 − ie−iG·j)C−|j〉, (13)

where N is the normalization factor. Note that this state can
in general no longer be expressed as n atoms in an identical
single particle state as in Eq. (9).

To proceed, we make the assumption that n|G| 	 1.
Physically this implies weak coupling between a single photon
and the condensate, or equivalently it means that the phase
rotation imprinted on the light is small. This is typically the
case for off-resonant light, as the coupling constants G are
inversely proportional to the detuning and directly proportional
to the light-atom interaction time. For a condensate that is
micron scale, this time is on the order of tens of femtoseconds.
Of course, to measure a very small phase rotation in turn
requires a large incident photon number, that is, intense light.
Dephasing of the condensate due to optical absorption thus
may be a concern. However, this effect scales inversely with the
detuning squared. On the other hand, the off-resonant coupling
and, hence, the signal scale only inversely with the detuning.
This yields the important result that by increasing both the
detuning and the intensity one can amplify the signal while
suppressing absorption by the atomic state.

Using Eqs. (12) and (8) and with the above assumption,
we find for the mean observed photon count difference the
expression

〈�C〉 =
∑

C+,C−

P (C+,C−)(C+ − C−) ≈ |A0|2nG · p

= |A0|2n
(

G0 + G+ − G−
2

〈Fz〉

+ G+ − 2G0 + G−
2

〈
F 2

z

〉)
. (14)

The signal in Eq. (14) can be interpreted as follows. If the
atoms are precessing in a magnetic field perpendicular to the
direction of propagation of the light field, the phase contrast
signal has a large dc component proportional to the number
of atoms, an ac signal at the Larmor precession frequency,
and a third smaller signal at twice the Larmor frequency. The
magnitude of the respective contributions can be controlled
by changing the polarization and/or the detuning of the probe
light, thereby changing the relative values of the quantities
G [12].

Finally, since in an experiment the number of condensed
atoms is classically uncertain the spin state |�n〉 must be
replaced by a density matrix ρ̂. The atom number in an
experimental condensate obeys roughly Poissonian statistics:

ρ̂ = e−n̄

∞∑
n=0

n̄n

n!
|ψn〉〈ψn|, (15)

where n̄ is the mean atom number over many runs and |�n〉
is given by Eq. (9). Repeating the computation in Eq. (12)
in this case leads to a simple modification of Eq. (14): the

substitution n → n̄. Similarly, the postmeasurement density
matrix is found by substituting the state in Eq. (13) into
Eq. (15), with a different overall normalization factor.

III. QUANTUM JUMP OPERATOR

So far, we have considered the measurement of the
condensate state by a pulse of light. To reach a continuous
measurement limit, we consider coherent light with a photon
flux per unit time f and examine the evolution of the system
in a time interval δt such that f δt 	 1. By making the sub-
stitution A0 → √

f δt we model this continuous observation
as a series of short, weak pulses. In this case, the probability
for detecting C = C+ + C− total photons in a single “pulse”
is proportional to (f δt)C . Therefore, to leading order, we need
only consider the cases where zero or one photons are detected.
The free evolution of the atoms is negligible on this timescale,
i.e., between individual photon clicks.

Rather than restricting ourselves to the case where there are
n atoms in an identical spin state, as in the previous section,
we consider an arbitrary initial atomic state:

|ψI〉 =
∑

j

cj|j〉. (16)

To leading order in f δt , the postmeasurement states for the
three outcomes with zero or one total photons are given by a
slight modification of Eq. (13):

|ψ(0,0)〉 =
(

1 − f δt

2

)
|ψI〉,

|ψ(1,0)〉 =
√

f δt

2

∑
j

cj(1 + ie−iG·j)|j〉, (17)

|ψ(0,1)〉 =
√

f δt

2

∑
j

cj(1 − ie−iG·j)|j〉,

where these are normalized to reflect the respective probabili-
ties of their occurrence, which are, to leading order,

P (0,0) = 1 − f δt,

P (1,0) = f δt

2

⎛
⎝1 +

∑
j

|cj|2 sin G · j

⎞
⎠ , (18)

P (0,1) = f δt

2

⎛
⎝1 −

∑
j

|cj|2 sin G · j

⎞
⎠ .

From Eqs. (17) we see that a single click has the effect of
acting on the state with quantum jump operators

|ψ(1,0)〉 = Ĵ+|ψI〉,
|ψ(0,1)〉 = Ĵ−|ψI〉, (19)

Ĵ± =
√

f δt

2
(1 ± ie−iG·N̂),

and “no click” simply rescales the state slightly.
The same analysis applied to an arbitrary initial density

matrix yields a similar result; namely, a single click at one
of the detectors acts on the density matrix with one of
the jump operators Ĵ±. For example, in the standard theory
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of photodetection—a one-sided cavity with damping rate κ

and single mode operator â—the detection of a photon is
characterized by the jump operator

√
κδtâ [16]. While this

appears to be similar to the present case, a difference is that the
light field is now used to determine the dynamics of the atoms,
but no atoms are annihilated in the process. Also, as long as
〈G · N̂〉 	 1, a single jump will have only a very small effect on
the atomic state. This is to be expected—a single nonresonant
photon passing through our apparatus ought not perturb the
atoms much. In the next section, we combine this jump
operator with the free spin evolution of the atoms to arrive at a
master equation describing the effects of the detection process.

IV. CONDITIONAL STOCHASTIC MASTER EQUATION

With these results in hand we are now in a position to derive
a stochastic master equation that also includes the effect of
an external, possibly time-dependent magnetic field �B(t)—
eventually the field to be detected—on the spin dynamics.
Consistent with the experimental situation, we consider both
the light-atom interaction and the Zeeman interaction induced
by �B:

HZ = h̄gLμB �B · �̂F, (20)

where gL is the Landé g factor, μB is the Bohr magneton,

and �̂F are the Schrödinger field spin operators, e.g., F̂z =
N̂+ − N̂−. This Hamiltonian could be modified or replaced in
more general settings, for instance, by including the quadratic
Zeeman effect. We consider the dynamics of the system over a
time scale �t � δt and an incident flux f such that a natural
separation of scales occurs:

f �t ∼ ε−1, (21)

gLμB〈 �B · �̂F 〉�t ∼ ε, (22)

〈G · N̂〉 ∼ ε2. (23)
Roughly speaking, these scales establish a large photon
number, a small free evolution, and an even smaller effect
from a single quantum jump, respectively. However, in the
time interval �t there will be order ε−1 jumps; hence, the
free evolution and measurement induced dynamics will be of
comparable order.

Next, we consider the set of all possible photocounts
{(C+,C−)} and the probabilities of their detection over the
interval �t . The density matrix will be acted on by jumps Ĵ±
interspersed by unitary evolution due to Eq. (20). Because we
do not have access to the microscopic details of photon arrival
order nor photon arrival times, we must sum (integrate) over
the final density matrices for all possible arrival orders (times)
consistent with a particular photocount for the interval �t . For
a particular pair, this computation takes the form

ρ̂(t + �t ; C+,C−)

=
∑

σ

∫
· · ·

∫
Û (t1)Ĵσ1 · · · Û (tC)ĴσC

ρ̂(t)

× Ĵ †
σC

Û †(tC) · · · Ĵ †
σ1

Û †(t1)δ(�t −
C∑

i=1

ti)dt1 · · · dtC,

(24)

where C = C+ + C−, σ is summed over all permutations of
click orders on the upper and lower arms of the Mach-Zehnder
so that σi ∈ {+,−}, ti are the times of the clicks, and U (t) =
exp(−igLμB �B · �̂F t).1

The calculation is simplified greatly by the fact that
[Ĵ±,Û (ti)] is of order ε3 or smaller (though there are order
ε−1 such commutators, making their total effect of order ε2).
We can therefore separate the jump operators (which commute
with each other) from the unitary evolution operators. Because
of the δ function, the product of U (t1) . . . U (tC) = U (�t)
and the integral over all ti gives 1/C!. The sum over all
permutations merely counts them, thereby giving a factor ( C

C+ ).
Thus, to order ε,

ρ̂(t + �t ; C+,C−) = 1

C+!C−!
U (�t)JC+

+ J
C−
− ρ̂(t)

×J
†C−
− J

†C+
+ U †(�t). (25)

The trace of the conditional density matrix Eq. (25) gives the
relative probability of obtaining the associated photon count;
we can use this probability distribution to determine the mean
and variance of the photon counts. These are independent
Gaussian distributions (to next-to-leading order), with

〈C±〉 = V± = f �t

2
(1 ± 〈G · N̂〉); (26)

that is, the mean equals the variance in the counts. The
covariance between C+ and C− vanishes to this order. Also, we
note that the means reproduce the signal seen in Eq. (14). We
are thus able to define the photoelectron counts as independent
Gaussian processes with moments given by Eq. (26):

C± = f

2
(1 ± 〈G · N̂〉)�t +

√
f

2
(1 ± 〈G · N̂〉)�W±, (27)

where �W± are independent Wiener increments, with

〈�W 2
±〉E = �t,

(28)
〈�W+�W−〉E = 0.

Here the subscript E refers to the ensemble average (that
is, over many experimental runs) rather than the usual
expectation value. These Wiener increments are Gaussian
random variables of zero mean that are functions of time. In
the continuum limit, � → d, these equalities are exact without
ensemble averaging.

Equation (27) is crucial to the derivation of the complete
stochastic master equation. We find that, to order ε, the
products of jump operators appearing in Eq. (25) are given
by

J
C+
+ J

C−
− =1 − i

2
G · N̂(f �t −

√
f �V+) + 1

2

√
f �V−, (29)

where �V are related to �W by

�V± = �W+ ± �W−√
2

. (30)

1Here we assume that the external magnetic field varies slowly in
the interval �t .
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All that remains is to substitute Eq. (29) into Eq. (25); divide
ρ̂(t + �t) by its trace to normalize it, which cancels out the
factors C+!C−!; and then take the continuum limit. When
carrying out these steps, care must be taken to keep terms up
to dV 2

± because of the Itô rules [see Eq. (28)]. These last few
steps yield

dρ̂

dt
= i

h̄
[ρ̂,H ′] +

√
f

2
(G · N̂ρ̂ + ρ̂G · N̂ − 2〈G · N̂〉ρ̂)ξ−(t),

(31)

where the modified Hamiltonian H ′ is

H ′ = h̄

{
gLμB �B · �̂F + 1

2
G · N[f +

√
f ξ+(t)]

}
, (32)

and

ξ±(t) = dV±
dt

are uncorrelated Gaussian white-noise functions given by the
continuum limit of Eq. (30).

Equations (31) and (32) succinctly encapsulate the full
effects of the measurement scheme on the atoms. First, the
Hamiltonian is modified by a steady, effective interaction
resulting from Eq. (10), with the photon number operator
replaced by a classical coherent flux. Shot noise in the photon
flux leads to an additional random, but unitary, evolution.
Finally, the second term in Eq. (31) is the nonunitary evolution
induced by the measurement of G · N̂.

The validity of this master equation depends on the
separation of scales in Eq. (21) remaining valid; in particular, if
the photon flux becomes too large, the various commutators in
the derivation are no longer negligible and must be accounted
for. This situation is far more complex; however, as we see in
the next section, such a situation will be far into a parameter
region where the measurement rapidly causes dephasing of the
spins.

V. EXAMPLES

We first examine a very simple application of this master
equation to illustrate its salient features in an analytically
closed form before moving on to the more experimentally
relevant case of the measurement of a magnetic field. Namely,
we will assume that there is no external field, �B = 0, and
coupling coefficients G+ = −G− = G, with G0 = 0. This
means that the setup will measure only F̂z, i.e.,

G · N̂ = GF̂z, (33)

and the total Hamiltonian is quantum nondemolition (QND)
for the observable F̂z.

We can derive equations of motion for the observables
of the system by multiplying Eq. (31) by the corresponding
operators and taking the trace. Because of the large number
of atoms involved, we assume that the Gaussian state ansatz
will be valid; thus, only equations for the observables, their
variances, and their covariances are needed. The chain rule
of Itô calculus [resulting from Eq. (28)] must be used when
considering the derivatives of the (co)variances, as they are
nonlinear functions of the other variables. We obtain, for
example, d〈F̂z〉/dt = G

√
f ξ−(t)vz, where vz is the variance

of 〈F̂z〉, and v̇z = −f G2v2
z , which quickly integrates to

vz(t) = (vz(0)−1 + f G2t)−1. (34)

Note that determination of the mean value depends on the
experimental record through ξ−(t), whereas the variance
always decreases as the measurement continues. This should
be unsurprising—continuous observation of F̂z leads to greater
certainty in its value. Over long times, the uncertainty can drop
to a point where spin squeezing is achieved.

For the next example we include a dc magnetic field to
be measured. We measure it by continuously observing the
spin in a transverse direction: the atoms’ Larmor precession
frequency then reveals the field strength. We present the results
of a numerical integration of the master equation over a single
simulated experimental run. For concreteness we assume a
condensate of 104 atoms confined within a transverse spatial
extent of 15 μm in an ambient magnetic field of 1 mG in
the y direction, and we apply an additional magnetic field
Gf/(2gLμB) in the negative z direction. Since G and f

are well-controlled experimental parameters this should be
possible to a high degree of accuracy. This additional field
cancels out the classical portion of the light-matter interaction,
though the photon shot-noise fluctuations in Eq. (32) are still
present. The probe is detuned by 2π× 150 MHz below the
F = 1 → F ′ = 2 (D1) transition of 87Rb and interacts with
the condensate for a total measurement time of 100 ms.
The evolution of the condensate spin is shown for probe
fluxes of f = 2 × 1013 s−1 (Fig. 2) and f = 2 × 1015 s−1

(Fig. 3). The measurement strength can best be characterized
by the dimensionless ratio Gf/νL, where νL is the Larmor
frequency. For the parameters listed, this ratio is 0.1 and
10, respectively. In the former case, the free evolution of the
atoms is not noticeably perturbed, yet the photocurrent signal
unambiguously oscillates at the Larmor frequency. This will
allow an accurate determination of the applied field. On the
other hand, as the probe intensity is increased and the ratio

FIG. 2. The evolution of the condensate’s mean spin along each
axis for f = 2 × 1013 s−1, normalized by atom number, for a single
simulated experimental run. The optical detection of Larmor preces-
sion has very little effect on the free dynamics. Inset: The normalized
photocurrent difference oscillating at the correct frequency.
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FIG. 3. The evolution of the condensate’s mean spin projected
along each axis for f = 2 × 1015 s−1 for a single run. This stronger
measurement causes rapid decay of the condensate’s spin.

of the measurement strength to the Larmor frequency exceeds
unity, the backaction-induced stochastic evolution overwhelms
the free Larmor precession, resulting in a rapid decay of
the transverse magnetization of the condensate in only a few
oscillations. This crossover in behavior could be anticipated, as
the light-atom interaction even in the absence of measurement
dominates the precession of the atoms in the background field
for such high measurement strengths.

VI. SUMMARY AND OUTLOOK

We have provided a theoretical treatment of the quantum
backaction due to the dispersive interaction between a spinor
Bose-Einstein condensate and an off-resonant light field. In
addition to being the basis for optical magnetometry using a
Bose-Einstein condensate, this interaction has also been shown
to be a versatile quantum interface for quantum information
processing and state engineering [17].

Our treatment begins with a fairly general off-resonant
light-atom interaction. The phase shift imprinted on the light
provides information about the spin state of the atoms. We
first derived the effects of measuring this phase shift on a
condensate of identical spins. Next, we found a quantum jump
operator characterizing the effects of measuring the passage
of a single photon through the atomic ensemble. By then
aggregating many such jumps along with evolution induced
by a magnetic field, we found a master equation that governs
the conditional evolution of the atomic spins under continuous
measurement by light. This master equation reveals that, for
sufficiently intense probe light, the spin state is significantly
altered by measurement backaction.

Future additions to our model will include a description
of spatially inhomogeneous spin textures in the condensate as
well as an extension of the atomic manifold to include more
varied systems such as multicomponent BECs. We also plan
to include time dependence both of the magnetic field and of
the optical measurement strength, e.g., stroboscopic measure-
ments. In addition to understanding the potential sensitivity of
condensate-based magnetic-field sensing, our formalism can
also be applied to quantum-limited nondestructive imaging of
magnetic textures in spinor condensates and the creation of
novel many-body states via quantum nondemolition (QND)
measurement [18].
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APPENDIX: DETAILS OF A SPECIFIC LIGHT-MATTER
INTERACTION HAMILTONIAN

As a concrete example of a light-matter Hamiltonian of the
type in Eq. (10), we examine the case of circularly polarized
light incident on a condensate of 87Rb atoms. We consider
only contributions from the D1 virtual transitions between
the ground-state S1/2 and excited P1/2 manifolds but add the
effects of the virtual transitions from the F = 1 to both the
F ′ = 1 and 2 submanifolds. We find in the rotating wave
approximation, and after adiabatically eliminating the excited
atomic states,

HI = h̄�2

48�2
[6N̂+ + (3 + δ)N̂0 + (1 + δ)N̂−]b̂†b̂. (A1)

Here the spin basis is in the direction of light propagation,
� is the single-photon Rabi frequency, �2 is the detuning
(possibly negative) for the F = 1 → F ′ = 2 transition, �1 =
�2 + 814.5 MHz is the F = 1 → F ′ = 1 detuning, and δ is
the experimentally adjustable ratio given by

δ = �2

�1
. (A2)

This parameter adds an element of tunability to the coupling
strengths g, thereby allowing us to change the relative
magnitudes of the different components of the signal given
in Eq. (14).
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