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Photonic simulation of system-environment interaction:
Non-Markovian processes and dynamical decoupling
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The system-environment interaction is simulated by light propagating in coupled photonic waveguides. The
profile of the electromagnetic field provides intuitive physical insight to study the Markovian and non-Markovian
dynamics. The transition from non-Markovian to Markovian process is demonstrated by increasing the size of
the environment, as the energy evolution changes from oscillation to exponential decay and the revival period
increases. Moreover, the dynamical decoupling with a sequence of phase modulations is introduced to such a
photonic system to form a band structure in the time dimension, where the energy dissipation can be significantly
accelerated or inhibited. It opens the possibility to tune the dissipation in a photonic system, similar to the
dynamic decoupling of spins.
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I. INTRODUCTION

Quantum systems always inevitably interact with envi-
ronments, which can change the quantum states and lead
to energy dissipation and decoherence of the systems [1,2].
For a deep understanding and broad applications of quantum
effects, great efforts have been made to study the system-
environment (SE) interaction. Lots of interesting phenomena
of open quantum systems have been studied, such as the Zeno
and anti-Zeno effects [3,4], and transition between quantum
Markovian and non-Markovian processes [5,6]. Advanced
quantum techniques related to the environment have been
developed and remarkable progresses have been achieved in
experiments, such as the dissipation engineering to prepare
and control quantum states with the help of the environment
[7–10], and dynamical decoupling to preserve the quantum
coherence from the environmental noise [11–13]. However, it
is still difficult to fully control various environments, which
highly limits the understanding, control, and application of
this SE interaction.

Recently, increasing theoretical and experimental efforts
were focused on quantum simulations [14–16], which was
inspired by Feynman’s seminal idea [17]. Various complex
and important physical phenomena can be studied by quantum
simulators with high efficiency, such as quantum decoherence
[18], many-body physics, the mechanism of superconducting,
and general relativity [15]. Such quantum simulations can
provide different views to study subtle physical processes and
reveal new phenomena. And more importantly, people can also
learn new ideas from the complementary interdiscipline and
exploit quantum physics to design new devices for quantum
technology and practical applications. For example, the pho-
tonic simulation of electron spins can be used for topological
protected delay [19], and the simulation of adiabatic passage
in a waveguide can be applied to a high-efficiency optical
coupler [20,21] and polarization rotator [22].

In this paper, we simulate the quantum open system
by photons in an integrated photonic chip. The underlying
physics of the SE interaction is revealed intuitively by simply
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observing the electromagnetic field transmission, spreading in
the environment, reflection at the boundary of the environment,
and reflowing back to the system. Non-Markovian and Marko-
vian processes of this photonic system are studied by varying
the size of the environment. Due to the memory effect of a
finite environment (the energy in the environment is reflected
back by the boundary of environment), the dynamics of the
system is non-Markovian which shows nonexponential decay
and revival, whereas for the environment with infinite size,
the system shows Markovian exponential decay. Furthermore,
the system decay can be controlled by dynamical decoupling
with external phase modulations, where the dissipation to
the environment can be accelerated or inhibited. Our study
provides an intuitive understanding of the SE interaction, and
the results can also be used to analyze and reduce the leakage
losses of photonic structures.

II. MODEL

As illustrated by the inset of Fig. 1(a), the proposed photonic
simulation of the SE interaction is composed of two separated
waveguides. Light is loaded at system waveguide (SW) and
travels along it (z axis). The system is open because its energy
can dissipate to the nearby environment waveguide (EW). The
light in a single isolated waveguide can be described by the
Helmholtz equation as [23]

∇2ψ(−→r ) + V (−→r )ψ(−→r ) = Eψ(−→r ), (1)

where V (−→r ) = [ε(−→r ) − 1]k2 and E = −k2, with dielectric
relative permittivity ε(−→r ) and wave number k = 2π/λ. The
waveguides are uniform along the z axis. Therefore, the
ith propagating eigenmode’s wave function is expressed as
ψi(

−→
r ) = ϕi(x,y)e−ini kz, where ϕi(x,y) is the field distribution

at the cross section of a waveguide, and ni is the effective mode
index which can be solved from the characteristic equation
(Appendix A). For coupled SW and EW, we can decompose
any field distribution perturbatively as

ψ(−→r ) =
Ns∑
i=1

cs
i (z)ψs

i (−→r ) +
Ne∑
j=1

ce
j (z)ψe

j (−→r ), (2)
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FIG. 1. (Color online) (a) The normalized coupling strength
g2we between system and environment against effect mode index
ne for different environment size we. Inset: schematic illustration
of the coupled photonic waveguides simulating the SE interaction.
(b) Typical dynamics of energy in SW against the interaction length
z for different we, where solid and dashed lines are analytical and
numerical results, respectively. (c)–(e) False-color profiles of electric
field intensity in SW and EW, with light loaded in the SW at z = 0
and wavelength λ = 1550 nm, d = 0.15 μm and we = 0.23, 5, and
10 μm, respectively.

where s and e denote SW and EW, respectively; Ns(e) is
the number of modes in the SW (EW); and ψ

s(e)
i(j ) (−→r ) are

eigenmodes of SW (EW) with the corresponding coefficients
c
s(e)
i(j )(z). Substituting V (−→r ) = V s(−→r ) + V e(−→r ) and ψ(−→r )

into Eq. (1), we can obtain the dynamics of the modes in each
waveguide approximately as (Appendix B)

i
∂c

s(e)
i

∂z
=

Ns(e)∑
l=1

m
s(e)
il ei(ns(e)

i −n
s(e)
l )kzc

s(e)
l

+
Ne(s)∑
j=1

g
s(e)
ij ei(ns(e)

i −n
e(s)
j )kzc

e(s)
j , (3)

where coefficients m
s(e)
il =

∫∫
(ϕs(e)

i )∗V s(e)ϕ
s(e)
l dxdy

2n
s(e)
i k

and g
s(e)
ij =∫∫

(ϕs(e)
i )∗V s(e)ϕ

e(s)
j dxdy

2n
s(e)
i k

, with all wave functions normalized by∫∫ |ϕs(e)
i |2dxdy = 1.

Here, we consider a thin single-mode SW (Ns = 1) inter-
acting with multimode EW, with Ne � 1 depending on its
width we. Denoting the system and environment fields by

a = cs
1e

−ins
1kz and bj =

√
gs

1j /g
e
1j c

e
j e

−ine
j kz, and replacing the

space coordinate z by time t , we can obtain the Hamiltonian
which governs the dynamics of this photonic simulation of the
SE interaction as (h̄ = 1)

H = β0a
†a +

∑
j

βjb
†
j bj +

∑
j

gj (a†bj + ab
†
j ), (4)

where β0 = (ns
1 + ms

11)k = n0k and βj = (ne
j + me

jj )k = njk

are propagation constants, and gj =
√

gs
1j g

e
1j is the coupling

coefficient. Since the direct coupling between environment
modes is much smaller than other terms, me

i,j (i �= j ) is
neglected in the following studies.

III. NON-MARKOVIAN AND MARKOVIAN PROCESSES

The Hamiltonian of Eq. (4) resembles an open system in
which a harmonic oscillator (a) couples to a collection of
oscillators in the environment (bj ). Here, both the coupling
coefficients and the size of the environment can be well
controlled in the coupling waveguides, which is very promising
to simulate the SE interaction. With two-dimensional approxi-
mation, βj and gj can be solved analytically (Appendix C). In
the following, we studied the model with photonic waveguides
made of silicon (nd = 3.5), which have been extensively
studied in practical experiments. The working wavelength (λ)
is 1550 nm, and the width of SW is fixed to ws = 0.23 μm in
the single-mode regime.

The normalized coupling strength (g2we) between system
and environment against mode index ne = βj/k is shown
in Fig. 1(a). The continuum of the finite size environment
is quantized to discrete modes, whose density and number
Ne increases with we. When we approaches infinity, g2we

converges to a line described by an analytical formula
[see Eq. (D12) in Appendix D]. With these parameters,
the dynamics of SE interaction can be solved according
to Eq. (4). In Fig. 1(b), the evolutions of energy in the
SW against z for different we are calculated, with light
loaded in the SW at z = 0. For comparison, the fields in
the SW are also simulated by solving the Maxwell equations
numerically with the finite element method. The results of our
SE interaction model agree very well with numerical results,
with small discrepancies originating from the slowly varying
and weak-coupling approximations used in our analytical
expressions. For small environment (we = 0.23 and 5 μm),
the dynamics of energy in the SW shows periodic oscillation.
When the environment size increases, the energy in the
SW shows exponential decay at first and revives after a
distance.

A direct view of the dynamics of the coupled SE can be
obtained from Figs. 1(c)–1(e). When we is comparable with
λ, only a few modes in the EW can be involved to interact
with the system. As a result, the coherent coupling leads to a
sinusoidal oscillation of energy in the SW [Fig. 1(c)]. For larger
we, more modes in the EW interact with the SW, giving rise to
complex dynamics. The cooperation of environmental modes
shows a classical ray trajectory with spreading, as indicated
by the dashed line in Fig. 1(d), with an incident angle χ =
arcsin(β0/ndk) with respect to the x axis. When we � 10 μm,
the energy in the SW exponentially decays with z and can
almost completely leak into the environment [Fig. 1(e)]. After
a certain distance, the leakage will be reflected and reflow back
into the SW, causing the revival.

Some important properties of SE interaction and intuitive
understanding of the underlying physics can be easily obtained
from those figures. The formal solution to the system dynamics
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is derived in the interaction picture

HI (z) =
∑

j

h̄gj (a†bj e
i(β0−βj )z + ab

†
j e

−i(β0−βj )z). (5)

By employing the formal solution

bj (z) = −igj

∫ z

0
a(τ )e−i(β0−βj )τ dτ, (6)

the dynamics of system reads

∂

∂z
a(z) = −

∫ z

0
a(τ )K(τ − z)dτ, (7)

with the memory kernel function K(τ ) = ∑
j g2

j e
−i(β0−βj )τ

[1]. For small we, the beating of multiple modes in the EW
gives rise to the oscillation behavior of K(τ ) [Fig. 2(a)]. The
nonzero memory effect leads to non-Markovian dynamics
with nonexponential decay and the revival phenomenon in
the SW, as shown in Fig. 2(b). Since the period of K(τ )
is determined by the environmental mode density ρ(n) ≈
kwe

π
n√

n2
d−n2

(Appendix D), the non-Markovian revival period

linearly depends on we, which can be observed in Fig. 2(b)
where the revival period (R) is larger for larger we. We can also
deduce the revival period R = 2we tan χ + R0 with intuitive
understanding of revival as a beam reflection at the boundary
of the environment. The revival period extracted from the
dynamics of the system is well fitted by this formula, as shown
in Fig. 2(c). The constant R0 comes from an extra distance
required for tunneling [24] and Goos-Hänchen shift [25] of
light reflection at the environmental boundary.

Figure 2(a) shows that the oscillation of K(τ ) is suppressed
for very large environment size. As a great many environmental
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FIG. 2. (Color online) (a) The memory kernel function K(z) for
different environment sizes, with d = 0.15 μm. (b) The dynamics
of energy in SW for different we and d . (c) The revival period R

against we, with d = 0.15 μm. The circles are obtained from the
SE interaction model, which is fitted by the beam reflection formula
(solid line). (d) The decay length of energy in SW against d , where the
circles are obtained from the SE interaction model and the solid line
is from the analytical formula for we = ∞. Inset: the decay length
against we.

modes are involved when we → ∞, the memory kernel func-
tion can be approximately written in the form of integration,

K(τ ) =
∫

g2(n)e−i(β0−nk)τ ρ(n)dn, (8)

where the coupling strength g(n) is a function of mode index
n [Fig. 1(a)]. Then, K(τ ) ≈ J (n0)δ(τ ), where δ(τ ) is the
Dirac δ function, n0 = β0/k, and

J (n) = g2(n)we

n√
n2

d − n2
(9)

is the spectrum density function of the reservoir. Substituting
the memory function K(τ ) = J (n0)δ(τ ) into Eq. (7), we
obtain that the energy in the SW decays exponentially as
a(z) = e−z/2L, where the decay length is (Appendix D)

L ≈ L0e
2
√

n2
0−1kd , (10)

with

L0 = 1

k

n0
(
n2

d − 1
)2(

kws + 2/

√
n2

0 − 1
)

8
(
n2

0 − 1
)(

n2
d − n2

0

)3/2 . (11)

In Fig. 2(d), the analytical decay length is compared to
the results extracted from the dynamics of the system with
logarithmic fitting. Our prediction is consistent with the
data. The slight discrepancy is due to nonflat noise spectrum
density. It is surprising that the formula of L in the continuum
limit works for small we, as shown in the inset of Fig. 2(d).
The oscillation is due to the variation of the mode index of
discrete modes in a finite environment.

IV. DYNAMICAL DECOUPLING

It is well known that external modulation to an open quan-
tum system can modify the energy decay and decoherence, and
the so-called dynamical decoupling technique has been widely
adopted to keep the coherence of electron spins [11–13].
Similarly, for the photonic simulation of SE interaction, a
dynamical modulation of the SW can also alter the energy
decay. Here, a sequence of modulations (N ) with equal interval
is applied to the SW, where each modulation corresponds to an
abrupt change of phase φ. Figure 3(a) shows the evolution of
the SW changing with different modulations. The dissipation
of the system can be enhanced or inhibited significantly
depending on φ and N . Figures 3(c) and 3(d) show the energy
in the SW at z = 50 μm against the modulation phase φ with
different we and N .

There is an intuitive way to understand the modified decay:
the modulations add extra phase to the propagating light, which
is equivalent to the increase or decrease of the effective index
ñ, as the phase of a propagating photon is proportional to ñ. As
shown in Fig. 3(b), the spectrum of the dynamics of the system
is shifted by the modulations. According to the spectrum
density of reservoir [Fig. 1(a)], the shifting of ñ corresponds
to changing of the SE coupling strength; thus, it gives rise
to acceleration or deceleration of energy dissipation in the
SW. When ñ is larger than the cutoff index nd , the dissipation
of energy in the SW to the EW is forbidden. From another
point of view, the waveguide with periodic modulations is
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FIG. 3. (Color online) (a) The evolution of energy in the SW and
(b) corresponding spectrum when a sequence of N modulations of
phase φ is applied to the SW, with we = 50 μm and d = 0.15 μm.
(c), (d) Energy in the SW at z = 50 μm against φ for different we

and N , with d = 0.15 μm.

similar to a photonic crystal or grating structure, which will
induce a band structure to light. By this means, noise in an
environment can be prevented from propagating in the system.
These provide physical insight to the dynamical decoupling in
the time dimension where a sequence of modulations in the
time axis is applied: the effective frequency of the system shifts
to a higher value than the cutoff frequency of the bath. Or, we
can imagine a crystal or band structure in the time dimension,
where only a signal with certain frequencies can enter and be
kept in the system while most of the broadband noise in the
environment is blocked.

One way to realize such a phase modulation sequence is
shown in Fig. 4(a), with whispering gallery mode (WGM)
microdisks coupling to the SW [26]. The microdisk with
radius r = 1 μm has an intrinsic quality factor higher than

(a)

(b)

FIG. 4. (Color online) (a) The fields of system and environment
waveguides when microdisks are added to the waveguide to induce
a phase modulation. (b) The dynamics against the detuning of input
light to the whispering gallery modes.

1 × 106. When the microdisk is placed close to the SW with
a gap (0.15 μm), the loaded quality factor of the WGM is
only about 2000. That means that the WGM works in the
strong overcoupling regime with κe 	 κi , where κi(e) is the
intrinsic (external) loss. When the light in the system passes
the overcoupled WGM resonator, the change of transmitted
light is

T (�) = −1 − i�/(κe − κi)

1 + i�/(κe + κi)
≈ −1 − i�/κe

1 + i�/κe

, (12)

where � is the frequency detuning to the resonance. As
|T (�)| ≈ 1, the system acquires a modulation of phase
φ(�) = arg[T (�)]. Numerical simulation of the dynamical
decoupling with N = 10 for we = 10 μm is performed.
Comparing the mode profile of Fig. 4(a) with Fig. 1(e),
the evolutions are significantly changed by modulations. In
Fig. 4(b), a strong modification of the transmitted energy in
the SW at z = 50 μm is shown around the resonance with
φ ≈ π , which is consistent with the prediction in Fig. 3(c).

V. CONCLUSION

The Markovian and non-Markovian processes and dynamic
decoupling of open quantum systems are studied in a photonic
simulation of SE interaction. Intuitive physical insight and
understanding of these phenomena can be gained from the
direct view of the electromagnetic field profiles. Our study
also opens the possibility to tune the dissipation in a photonic
system, similar to the dynamic decoupling of spins. It also
bridges the well-studied electronic and optical systems, which
may bring new ideas from each other.
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APPENDIX A: EIDENMODES IN WAVEGUIDE

For a single waveguide with width w and refractive index
nd , we have the eigenmode wave function in the form

ψi(
−→
r ) = ϕi(x,y)e−ini kz, (A1)

where ϕi(x,y) is the field distribution at the cross section of
a waveguide, and ni is the effective mode index. In a two-
dimensional waveguide (x-z plane), the mode wave function
ϕi(x) and ni can be solved analytically. For the even symmetry
mode, the wave function at the cross section of the waveguide
has the form

ϕ(x) =

⎧⎪⎨⎪⎩
cos αw

2 eγ (x+w/2), x < −w
2

cos αx, −w
2 < x < w

2

cos αw
2 e−γ (x−w/2), x > w

2 ,

(A2)
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and for the odd symmetry mode,

ϕ(x) =

⎧⎪⎨⎪⎩
− sin αw

2 eγ (x+w/2), x < −w
2

sin αx, −w
2 < x < w

2

sin αw
2 e−γ (x−w/2), x > w

2 ,

(A3)

where α = k

√
n2

d − n2
eff, γ = k

√
n2

eff − 1. Here, each wave
function is normalized by the maximum field amplitude. Ac-
cording to the boundary condition that ∂ϕ(x)/∂x is continuous
for transverse magnetic modes, we can obtain the characteristic
equations for the even symmetry mode,

tan
αw

2
= γ

α
, (A4)

and for the odd symmetry mode,

tan
αw

2
= −α

γ
. (A5)

All eigenmodes can be solved by the characteristic equations,
and the number of modes depends on the waveguide width w.

APPENDIX B: COUPLED MODE THEORY

For coupled waveguides, the Helmholtz equation becomes

∇2ψ(−→r ) + [V s(−→r ) + V e(−→r )]ψ(−→r ) = Eψ(−→r ). (B1)

Substituting the perturbative expansion of the wave function
[Eq. (2)] to Eq. (B1), we obtain∑

i

cs
i (z)

{∇2ψs
i (−→r ) + [V s(−→r ) + V e(−→r ) − E]ψs

i (−→r )
}

+
∑

j

ce
j (z)

{∇2ψe
j (−→r ) + [V s(−→r ) + V e(−→r ) − E]ψe

j (−→r )
}

+
∑

i

2
∂

∂z
ψs

i (−→r )
∂

∂z
cs
i (z) +

∑
j

2
∂

∂z
ψe

j (−→r )
∂

∂z
ce
j (z)

+
∑

i

ψs
i (−→r )

∂2

∂z2
cs
i (z) +

∑
j

ψe
j (−→r )

∂2

∂z2
ce
j (z) = 0.

(B2)

Under the slowly varying approximation

∂2

∂z2
c
s(e)
i (z) 
 ∂2

∂z2
ψ

s(e)
i (−→r ), (B3)

the last two terms can be neglected. In addition, the wave
function in the SW (EW) satisfies the Helmholtz equation

∇2ψ
s(e)
i (−→r ) = [E − V s(e)(−→r )]ψs

i (−→r ). (B4)

Thus, Eq. (B2) is simplified as∑
i

cs
i (z)V e(−→r )ψs

i (−→r ) +
∑

j

ce
j (z)V s(−→r )ψe

j (−→r )

+
∑

i

2
∂

∂z
ψs

i (−→r )
∂

∂z
cs
i (z) +

∑
j

2
∂

∂z
ψe

j (−→r )
∂

∂z
ce
j (z) = 0

(B5)

Multiplying Eq. (B5) by (ψs
i )∗ and integrating the result over

the cross section of the waveguide, we obtain

2ins
i k

∂

∂z
cs
i (z)

∫∫ ∣∣ϕs
i

∣∣2
dxdy

≈
∑

l

cs
l (z)ei(ns

i −ns
l )kz

∫∫ (
ϕs

i

)∗
V e(−→r )ϕs

l dxdy

+
∑

j

ce
j (z)ei(ns

i −ne
j )kz

∫∫ (
ϕs

i

)∗
V s(−→r )ϕe

jdxdy. (B6)

Here, the orthogonal relation∫∫ (
ψ

s(e)
i

)∗
ψ

s(e)
j dxdy = 0 if i �= j, (B7)

and the approximation∫∫ (
ψ

e(s)
i

)∗
ψ

s(e)
j dxdy ≈ 0 (B8)

are employed.
Finally, we arrive at the simplified coupled mode equations

[Eq. (3)].

APPENDIX C: ANALYTICAL RESULTS

1. Wave-function normalization

In the expressions of coupling coefficients, there is an
integration term

∫∫ |ϕi |2dxdy in the denominator as a nor-
malization of wave functions. The integration corresponds to
the total energy of the modes. From the symmetry, we have

1

2

∫
|ϕ|2dx =

[
f

(
αw

2

)]2 ∫ ∞

w/2
e−2γ (x−w/2)dx

+
∫ w/2

0
[f (αx)]2dx. (C1)

Here f (x) = cos x for even modes and f (x) = sin x for odd
modes. For even modes,

1

2

∫
|ϕ|2dx = w

4
+ sin αw

4α
+ cos2 αw

2

1

2γ
. (C2)

Applying the characteristic equation tan αw
2 = γ

α
, we have

sin αw
2 cos αw

2
2α

= sin2 αw
2

2α tan αw
2

= sin2 αw
2

2γ
; then∫

|ϕ|2dx = w

2
+ 1

γ
. (C3)

Following the same procedure, we obtain the same expression
[Eq. (C3)] for odd modes.

2. Coupling coefficient

To calculate m
e(s)
il and g

e(s)
ij in Eq. (3), we should integrate

the overlap between eigenmodes in different waveguides.
Without loss of generality, we consider waveguide 1 with
width w1 centered at x = 0, and waveguide 2 with width
w2 centered at (w1 + w2)/2 + d; i.e., the gap between the
waveguides is d. The effective mode index in waveguide 1 (2)

is n1(2), and α1(2) = k

√
n2

d − n2
1(2), γ1(2) = k

√
n2

1(2) − 1. The
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coupling between waveguides 1 and 2 is

g12 =
(
n2

d − 1
)
k

∫ w1/2
−w1/2 f1(α1x)f2

(
α2w2

2

)
eγ2(x−w1/2−d)dx

2n1

√(
w1
2 + 1

γ1

)(
w2
2 + 1

γ2

) ,

(C4)

with fi(x) = cos x (sin x) for the even (odd) mode in the ith
waveguide (i = 1,2). Since∫ w1/2

−w1/2
eiα1xeγ2xdx = e(γ2+iα1)w1/2 − e−(γ2+iα1)w1/2

(γ2 + iα1)
, (C5)

we have∫ w1/2

−w1/2
fi(α1x)eγ2xdx

= fi

(
α1w1

2

)
eγ2w1/2

γ 2
2 + α2

1

[(γ1 + γ2) + e−γ2w1 (γ1 − γ2)].

(C6)

Therefore,

g12 =
(
n2

d − 1
)
kf1

(
α1w1

2

)
f2

(
α2w2

2

)
2n1

√(
w1
2 + 1

γ1

)(
w2
2 + 1

γ2

)
× e−γ2d [(γ1 + γ2) + e−γ2w1 (γ1 − γ2)]

γ 2
2 + α2

1

, (C7)

and

g21 =
(
n2

d − 1
)
kf1

(
α1w1

2

)
f2

(
α2w2

2

)
2n2

√(
w1
2 + 1

γ1

)(
w2
2 + 1

γ2

)
× e−γ1d [(γ1 + γ2) + e−γ1w2 (γ2 − γ1)]

γ 2
1 + α2

2

. (C8)

So, the effective coupling coefficient between the SW and
EW is

gij =
√

gs
ij g

e
ij

=
(
n2

d − 1
)
kfs

(
αsws

2

)
fe

(
αewe

2

)
2
√(

ws

2 + 1
γs

)(
we

2 + 1
γe

) 1√
nsne

e−(γe+γs )d/2

√
[(γs + γe) + e−γews (γs − γe)][(γs + γe) + e−γswe (γe − γs)](

γ 2
e + α2

s

)(
γ 2

s + α2
e

) . (C9)

APPENDIX D: APPROXIMATION FOR VERY LARGE
ENVIRONMENT

1. Mode density

The characteristic equation for all eigenmodes in the
waveguide can be written as(

tan
αw

2
− γ

α

)(
tan

αw

2
− α

γ

)
= 0. (D1)

Since α = k

√
n2

d − n2
eff, γ = k

√
n2

eff − 1, then α2 + γ 2 =
(n2

d − 1)k2. This characteristic equation can be simplified as

sin αw = 2αγ(
n2

d − 1
)
k2

. (D2)

When w 	 λ, the mode interval between two adjacent
modes satisfies �α ≈ π/w; i.e.,√

n2
d − n2

effk −
√

n2
d − (neff + δ)2k ≈ π

w
. (D3)

Therefore, the mode index interval around neff is

δ(neff) ≈ π

kw

√
n2

d − n2
eff

neff
. (D4)

Then, we obtain the mode density

ρ(neff) = 1

δ(neff)
= kw

π

neff√
n2

d − n2
eff

. (D5)

2. The normalized coupling coefficient

When we 	 λ, we can make the approximations
we

2
+ 1

γe

≈ we

2
, (D6)

e−γswe ≈ 0. (D7)

Then the normalized coupling coefficient g2we can be approx-
imated by

g2we ≈ A2Be−(γe+γs )d , (D8)

where

A =
(
n2

d − 1
)
fs

(
αsws

2

)
fe

(
αewe

2

)√
ws + 2

γs

1√
nsne

, (D9)

B =
(√

n2
s − 1 + √

n2
e − 1

)2 + e−γews
(
n2

s − n2
e

)(
n2

d − 1
)2 − (

n2
s − n2

e

)2 . (D10)

As the characteristic function can also be written as

f

(
αw

2

)2

= n2
d − n2

eff

n2
d − 1

, (D11)

we finally obtain the normalized coupling coefficient for the
large environment approximation,

g2we ≈
(
n2

d − n2
s

)(
n2

d − n2
e

)
nsne

(
ws + 2

γs

)
×

(√
n2

s − 1 + √
n2

e − 1
)2 + e−γews

(
n2

s − n2
e

)(
n2

d − 1
)2 − (

n2
s − n2

e

)2

× e−(γe+γs )d . (D12)
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3. Decay length

Under the near-resonant condition ne ≈ ns = n0, the nor-
malized coupling coefficient becomes

g2we ≈ k
(
n2

d − n2
0

)2

n2
0

(
kws + 2√

n2
0−1

) 4
(
n2

0 − 1
)(

n2
d − 1

)2 e−2
√

n2
0−1kd . (D13)

Substituting it into the spectrum density function [Eq. (9)], we
have

J (n0) ≈ k
(
n2

d − n2
0

)3/2

n0
(
kws + 2√

n2
0−1

) 4
(
n2

0 − 1
)(

n2
d − 1

)2 e−2
√

n2
0−1kd . (D14)

From Eq. (7), the Dirac δ function K(τ ) ≈ J (n0)δ(τ ) leads
to an exponential decay of energy in the system waveguide,

a(z) = e−J (n0)z = e−z/2L. (D15)

So, we can solve the decay length L for a mode in the SW with
mode index n0 as

L = 1

2J (n0)

= 1

k

n0
(
n2

d − 1
)2(

kws + 2/

√
n2

0 − 1
)

8
(
n2

0 − 1
)(

n2
d − n2

0

)3/2 e2
√

n2
0−1kd . (D16)
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