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Singular analysis of Fano resonances in plasmonic nanostructures
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The scattering properties of plasmonic nanostructures arranged in two-dimensional periodic arrays are analyzed
by expanding their response into perfectly emitting and absorbing modes. It is shown that the frequencies of
these modes determine the shape of the reflection and transmission spectra in the same way that the positions of
point-like charges determine the electric field around them. This helps to develop a visual interpretation of many
resonant effects which occur due to overlapping resonances, and the Fano interference effect is considered as a
basic example. This approach works naturally in the domain of complex frequencies and provides a systematic
tool to analyze, optimize, and engineer the resonant properties of nanostructures for various applications.

DOI: 10.1103/PhysRevA.88.063805 PACS number(s): 42.25.Bs, 78.67.Pt, 42.25.Fx, 11.55.Bq

I. INTRODUCTION

Plasmonic nanostructures and metamaterials offer unique
abilities to engineer optical properties at subwavelength scales
[1,2]. Arrays of split-ring resonators and fishnet structures
provide strong magnetic resonances at optical frequencies [3].
Dolmen-like structures and oligomers enable tuning of the op-
tical resonances [4–6] and observation of electromagnetically
induced transparency [7] or absorption [8]. Arrays of holes in
a metal film demonstrate strong Fano resonances which are
very useful for filtering and sensing applications [9,10].

Numerical methods such as finite element [11,12], bound-
ary element [13,14], and Fourier modal [15,16] are particularly
efficient for modeling the aforementioned complex plasmonic
metamaterials. However, interpreting the numerical results
is not always straightforward because of the many different
effects that appear simultaneously. Thus, it is desirable to
have a semianalytical framework which can be built on the
numerical data and can explain the results of the computations
in a clear and systematic way. The existing approaches are
often limited to the interplay of just two modes, commonly
referred to as bright (radiative) and dark (nonradiative) modes
[17–20]. Another difficulty is that these approaches rely on a
large number of fitting parameters which cannot be extracted
directly from the physical properties of the systems [21–23].

Here we provide a widely applicable framework to analyze,
optimize, and engineer the resonant properties of nanostruc-
tures. It is based on the ability to expand the frequency
response of nanostructures into a set of perfectly emitting
and absorbing modes. These modes exist in the domain of
complex frequencies, and we studied their properties by using
the particles of spherical shape in our earlier paper [24]. Now
we develop a special decomposition technique which allows us
to remove many limitations of the previous theory and to apply
it for arrays of nonspherical scatterers. Moreover, we show that
the singularities created in the domain of complex frequencies
by the perfectly emitting and absorbing modes have exactly the
same type as the singularities created by positive and negative
electric charges in two-dimensional (2D) space. This helps
to build a useful analogy with electrostatics and to develop
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a visual interpretation for many resonant effects which occur
due to overlapping resonances.

II. DECOMPOSITION OF SCATTERING MATRIX

As a typical example of plasmonic metamaterial bearing
Fano resonance features, we consider a planar array of dolmen-
like metamaterial (Fig. 1). The periods of the elementary cell
are made smaller than the wavelength of light to assure that the
diffraction effects are suppressed for the plane-wave incidence.
The reflected and transmitted waves of the zero order can be
observed far from the structure, while all diffracted waves
of higher orders are turned into evanescent waves which
contribute only to the near field. In overall, this system can
be considered as a black box with two input-output ports, or
scattering channels.

When the structure has a mirror symmetry in the yz plane
(or a similar one), incident waves with the electric or magnetic
field directed along the y axis do not change their polarization
after the scattering. The two independent polarizations can
be considered separately, and in each case the system can be
described by a scattering matrix S. It has the dimensions 2 × 2
and links the amplitudes of the ingoing (u+, v+) and outgoing
(u−, v−) plane waves as

(
u−
v−

)
= S

(
u+
v+

)
. (1)

The components of the S matrix give the reflection Rp and
transmission Tp coefficients for waves launched from the port
p (“U” or “V”):

S =
[

RU TV
TU RV

]
. (2)

The S matrix can be simplified further if the structure has
a mirror symmetry in the xy plane, which is true for a large
number of planar plasmonic structures including the dolmen-
like structure shown in Fig. 1. The symmetry still allows an
arbitrary profile of the scatterers in the xy plane and leaves
enough flexibility for the design of resonant properties. As a
consequence of the mirror symmetry, all modes of the structure
can be divided into two groups [25]: even modes for which
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FIG. 1. (Color online) Schematic of a 2D grating composed
of dolmen-like structures. The boundaries of elementary cells are
highlighted in white, and the semitransparent box around the cell
in the middle shows the abstract scattering channels. The periods
of the grating are ax = ay = 500 nm. Each cell contains three
bars of gold with dimensions d1 = 300 nm × d2 = 80 nm and
thickness dz = 40 nm. The gaps between bars in the same cell are
gx = 160 nm and gy = 30 nm. The structure is surrounded by air,
and the permittivity of the bars is described by the Drude model
ε(ω) = 1 − ω2

p/(ω2 + i�ω) with the parameters h̄ωp = 9.0 eV and
� = 0.009ωp [7,17].

Eq. (1) can be rewritten as

S
(

1

1

)
= Se

(
1

1

)
(3)

and odd modes which satisfy

S
(

1

−1

)
= −So

(
1

−1

)
. (4)

The eigenvalues Se and So can be considered reflection
coefficients for standing waves of even and odd symmetry [26].

The two solutions (3) and (4) are sufficient to perform
the eigenvalue decomposition [27] of the S matrix at any
frequency,

S = CSDC−1, (5)

where SD is a diagonal matrix,

SD =
[

Se 0

0 −So

]
, (6)

and C is a conversion matrix built from the even and odd
eigenvectors in Eqs. (3) and (4),

C = 1√
2

[
1 1

1 −1

]
. (7)

The reflection and transmission coefficients can be expressed
in terms of the even and odd modes as

R = (Se − So)/2, (8)

T = (Se + So)/2, (9)

which can be obtained by writing Eq. (5) in the explicit form
and comparing it with Eq. (2).

III. EMITTING AND ABSORBING MODES

Regardless of the even-odd symmetry, all modes of the
structure can be of two types: perfectly emitting or perfectly
absorbing [24]. They form a complete basis and satisfy the
outgoing (u+ = v+ = 0) or ingoing (u− = v− = 0) boundary
conditions, respectively. Since the input and output from the
system are related by Eq. (1), such boundary conditions imply
that the S matrix should be singular, with the determinants
|S−1(ω−

r )| = 0 and |S(ω+
r )| = 0 at the resonant frequencies of

perfectly emitting ω−
r and absorbing ω+

r modes, respectively.
The singularities of the S matrix can be linked to the singu-

larities of its diagonal components by using the decomposition,
(5)–(7), which gives det S = −SeSo. Therefore, the resonant
frequencies ω±

r correspond to the poles and zeros of either
Se(ω) or So(ω). It is known, however, that the poles and zeros
of some function are fully sufficient to restore it anywhere
in the complex plane. This follows from the Weierstrass
factorization theorem [28], which can be written, for any
diagonal component n (“e” or “o”), as

Sn(ω) = An exp(iBnω)
∏
r∈Sn

ω − ω+
r

ω − ω−
r

. (10)

In this formula, An and Bn are constants, and the product is
taken over all resonances which match the symmetry of Sn.
The diagonal components have a number of properties which
follow from the general physical requirements. For example,
it can be proved that the constants An and Bn are real and that
there are several symmetry relations between poles and zeros
(see Appendixes A and B). Substitution of this formula into
Eqs. (8) and (9) immediately gives the analytical formulas for
the reflection and transmission spectra.

This approach deals directly with the resonances of the
structure and does not require any fitting parameters, which
simplifies the analysis of the spectra significantly. The dolmen-
like structures shown in Fig. 1 can be considered as a typical
example. The reflection spectrum for the normal incidence
can be computed with the finite-element method and is
given in Fig. 2. All frequencies are specified in normalized
units so that ω0 = 2πc/λ0 corresponds to the wavelength
λ0 = 1 μm and the energy of the photons h̄ω0 = 1.24 eV. By
solving an eigenvalue problem first with the outgoing boundary
conditions and then with the ingoing ones, it is possible to
extract the emitting and absorbing modes of the structure [24].

It turns out that there are only even modes in the
frequency range of interest. Their resonant frequencies are
ω+

1 = (0.8485 + 0.0048i)ω0, ω
+
2 = (1.0276 + 0.0744i)ω0,

ω−
1 = (0.8490 − 0.0297i)ω0, and ω−

2 = (1.0258 − 0.1036i)ω0.
The field distributions of these modes reveal a quadrupolar
(ω±

1 ) and dipolar (ω±
2 ) pattern (Fig. 2). The imaginary part of

the resonant frequencies serves as a measure of the radiative
or absorptive efficiency, and it is much smaller for the modes
of quadrupolar pattern.

The constant Ae can be found by using the fact that in
the limit of long wavelengths Se(0) = 1. Substitution of the
extracted resonances in Eq. (10) then gives Ae = 1.0041.
The remaining constant Be can be found by solving Eq. (10)
with respect to Be for any frequency in the middle of the
spectra. The value of Se at this intermediate point can be found
directly from the reflection and transmission coefficients as
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FIG. 2. (Color online) Reflection spectrum of the structure in
Fig. 1. The normal incidence is considered, with the electric field
polarized along the x axis. The results of the finite-element method
are plotted as filled circles, while the results of the analytical formulas,
(8) and (10), are shown as the solid line. Dashed lines indicate the
positions of the emitting modes ω−

1 and ω−
2 . Their contributions to

the spectrum are shown by contours in the background. Insets (top):
Mode profiles in the plane z = 0.

Se = R + T according to Eqs. (8) and (9). This gives Be =
0.3350/ω0. Similar calculations for odd modes show that
Ao = 1.0000 and Bo = −0.0126/ω0. As such, the odd modes
do not exist in the frequency range of interest, but there can be
some tail created by the odd modes at higher frequencies, and
it can be described as So = Ao exp(iBoω).

Since all parameters for formulas (8) and (10) are known,
they can be used to reconstruct the shape of the reflection
spectrum. The agreement with the numerical data is very
good over a broad range of frequencies (Fig. 2). Moreover,
this approach works naturally in the domain of complex
frequencies, and the analysis of the scattering spectra in the
complex plane offers several benefits. It turns out that the
interplay among different resonances can be explained in
the same way as the interplay among point-like charges in
electrostatics.

The analogy is due to the fact that the electrostatic field in
the 2D case can be described by the complex potential of the
form �(z) = −2

∑
m qm ln(z − zm), where the sum is taken

over all charges qm located at points zm = xm + iym [29]. If
all charges differ only in their sign q±

m = ±q0, and the positive
(negative) ones are located at the points z+

m (z−
m), the complex

potential can be rewritten as

�(z) = −2q0 ln
∏
m

z − z+
m

z − z−
m

, (11)

which strongly resembles the factorization theorem, (10).
Therefore, the poles and zeros can be viewed as point-like
charges of positive and negative sign, and it is possible to apply
the well-developed formalism of electrostatics to analyze the
scattering spectra.

FIG. 3. (Color online) Se(ω) component as a function of complex
frequency for the structure in Fig. 1. The positions of poles ω−

r and
zeros ω+

r are labeled. Contours of blue and green shades show the
absolute value of Se on a logarithmic scale. White contour lines give
the phase of Se in steps of π for thick lines and π/10 for thin lines.

First, this means that the scattering spectra Sn(ω) =
|Sn| exp(iϕn) can be visualized in terms of the equipotential
contours (amplitude contours, |Sn| = const) and electric-field
lines (phase lines, ϕn = const). An example of such visual-
ization is given in Fig. 3, and it shows explicitly how the
positions of poles and zeros affect the shape of the spectra
for real frequencies. The density of the phase lines describes
the steepness of the resonances in the reflection spectrum. For
example, it can be noted that the pair of pole and zero ω±

1 is
situated closer to the real axis than ω±

2 , and it produces sharper
variations in the reflection spectrum (Fig. 2). It can be proved
that the density of the phase lines dϕn/dω (the number of
phase lines crossing a given interval of frequencies) is actually
proportional to the photonic density of states, and it tends to
infinity near the poles and zeros [30,31].

IV. FANO RESONANCES

A large number of resonant effects (electromagnetically
induced transparency, absorption, etc.) can be explained just
as a result of different superpositions created by multiple point-
like singularities. The simplest and most important example of
such effects is the Fano interference, which creates resonances
of an asymmetric shape [5,6]. The use of perfectly emitting
and absorbing modes helps to develop a novel interpretation
of this effect. In fact, each isolated pair of pole ωr and zero ω∗

r

can produce a Fano shape in the spectrum. If this pair belongs
to even modes, Eq. (10) can be simplified and the diagonal
components of the S matrix can be approximated as

Se(ω) ≈ exp(iϕe)
ω − ω∗

r

ω − ωr

, (12)

So(ω) ≈ exp(iϕo), (13)

where ϕe and ϕo are constants which represent a combined
phase created in the vicinity of the selected pair by all
other poles and zeros. These smoothly varying phases play
the same role as the continuum states in the classical Fano
theory, and the discrete state corresponds to the pole-zero
term. By introducing the normalized frequency detuning ξ =
[Re(ωr ) − ω]/Im(ωr ) and the phase mismatch 
ϕ = ϕe − ϕo,
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the reflection coefficient, (8), can be represented as

|R|2 = 1

4

∣∣∣∣ei
ϕ ξ − i

ξ + i
− 1

∣∣∣∣
2

= |Im[ei
ϕ/2(ξ − i)]|2
ξ 2 + 1

. (14)

The latter expression leads to the formula

|R|2 = [ξ sin(
ϕ/2) − cos(
ϕ/2)]2

ξ 2 + 1
, (15)

which coincides with the classical formula derived by Fano
[32] for the scattering cross section σ (ξ ):

σ (ξ ) = (ξ + q)2

ξ 2 + 1
. (16)

The asymmetry parameter q controls the shape of the spec-
trum, and comparison of Eqs. (15) and (16) gives an explicit
formula for it in terms of interference effects between even
and odd modes, q = − cot(
ϕ/2). Moreover, it is possible to
develop a graphical interpretation for the Fano effect (Fig. 4]),
and the analysis of the simplified example provides many clues
for interpreting more complex cases as in Fig. 3. In fact, the
resonances ω±

1 in Fig. 3 can be considered as an isolated
pole-zero pair, and the phase mismatch can be estimated as

ϕ = 0.3 π . The same value was used in the model in Fig. 4,
so that it can reproduce a part of the reflection spectrum around
ω±

1 in Fig. 2.

FIG. 4. (Color online) Contour map of the scattering term S =
(ξ − i)/(ξ + i) created by an isolated pair of pole and zero. The use
of normalized units assures that every two contours of constant phase
arg(S) = C and arg(S) = C + π form a circle which always passes
through the pole and zero. The positions of the dip and peak in the
reflection spectrum |R|2 = |(Sei
ϕ − 1)/2|2 can be predicted as the
intersection points of the circle C = −
ϕ with the real axis. One such
circle, for 
ϕ = 0.3π , is shown with a greater thickness. When the
phase mismatch between even and odd modes disappears, 
ϕ = 0,
the spectrum acquires a Lorentzian shape.

The contour maps in Fig. 4 clearly show that the positions
of the dip ξd and peak ξp in the spectrum are related to
each other. They can be predicted as the intersection points
of the real axis with a circle passing through the pole and
zero. The distance between the peak and the dip ξp − ξd =
q + q−1 = −2/ sin 
ϕ coincides with the diameter of the
circle. Therefore, the minimal possible separation between
them is |ξp − ξd | = 2. It occurs when 
ϕ = ±π/2 and puts the
upper limit on the steepness of the Fano profiles. The conver-
sion to normal frequencies gives the formula for the distance
between peak and dip ωp − ωd = −Re(ωr )/(Qr sin 
ϕ),
where Qr = Re(ωr )/[2 Im(ωr )] is the quality factor of the
resonance at ωr . The sign of 
ϕ determines the order in
which the dip and peak appear in the spectrum and, as a
consequence, the type of dispersion: normal and anomalous.
The Lorenzian shape of the spectrum is obtained when 
ϕ = 0
and corresponds to the situation when the dip is shifted to
infinity so that the spectrum acquires a symmetric shape with
the peak in the center. If 
ϕ = π , the positions of the dip and
peak can be inverted, and in this case the shape of the spectrum
becomes complementary to the Lorentzian one.

V. CONCLUSIONS

To summarize, we developed a semianalytical approach to
explain the scattering spectra of plasmonic nanostructures. Our
approach takes full advantage of the spectral decomposition
over an orthogonal basis formed by the eigenmodes of the pho-
tonic structure. We demonstrate that the frequencies of these
modes fully determine the complex features of the reflection
and transmission spectra over an arbitrarily broad range of
frequencies, and we show explicitly how the interplay between
the resonant frequencies produces different resonant effects.
Importantly, our approach considers the photonic device as an
ensemble and is no longer limited by the number of fitting
parameters that must be taken into account. This offers a new
point of view regarding the resonant properties of nanostruc-
tures and significantly simplifies the analysis of their spectra.
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APPENDIX A: TIME-REVERSAL SYMMETRY

All physical structures have the important property that the
response to an excitation described by a real function must be a
real function as well. This also applies to the Green’s function
G(t), which is defined as the response to an infinitely short
excitation. Since the diagonal components of the S matrix
can be expressed as the Fourier transform of a diagonalized
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Green’s function,

S(ω) =
∫ +∞

−∞
G(t) exp(−iωt)dt, (A1)

and the Green’s function is real G(t) = [G(t)]∗, Eq. (A1) can
be transformed as

[S(ω)]∗ =
∫ +∞

−∞
G(t) exp(iω∗t)dt. (A2)

Comparison of Eqs. (A1) and (A2) leads to the relation

S(ω) = [S(−ω∗)]∗. (A3)

This is known as the time-reversal symmetry and is valid for
both lossless and lossy structures [33,34]. Note that Eq. (A3) is
often simplified to S(ω) = [S(−ω)]∗, which is less general and
can be used only for real frequencies and lossless structures.

Substitution of the Weierstrass factorization theorem,

S(ω) = A exp(iBω)
∏

r

ω − ω+
r

ω − ω−
r

, (A4)

into the right-hand side of Eq. (A3) gives

S(ω) = A∗ exp(iB∗ω)
∏

r

ω + (ω+
r )∗

ω + (ω−
r )∗

. (A5)

Similarly to the expansions into Taylor series, the Weierstrass
factorization is unique so that a term-by-term comparison
of Eqs. (A4) and (A5) can be performed. This proves that
the parameters A and B are real. Moreover, it also follows
from the comparison that the poles and zeros exist in pairs
{ω±

r , −(ω±
r )∗} which are mirror symmetric with respect to the

imaginary axis.

APPENDIX B: ENERGY CONSERVATION

If a structure is lossless, the scattered waves carry the
same amount of energy as the incident ones. This leads to
the unitarity of the S matrix for all real frequencies [33,34]
and can be written as

[S(ω)]†S(ω) = I. (B1)

If the S matrix is diagonal, Eq. (B1) applies for each scattering
channel independently, which gives

|S(ω)|2 = 1 (B2)

and, after analytical continuation to the entire complex plane,

S(ω)[S(ω∗)]∗ = 1. (B3)

Since S(ω) = aout/ain, Eq. (B2) simply states that the ampli-
tudes of the outgoing aout and incoming ain waves are equal.

It is convenient to rewrite the energy conservation, (B3), in
the form

S(ω) = 1/[S(ω∗)]∗. (B4)

The substitution of the Weierstrass factorization theorem,
(A4), into the right-hand side of Eq. (B4) gives

S(ω) = exp(iB∗ω)

A∗
∏

r

ω − (ω−
r )∗

ω − (ω+
r )∗

. (B5)

A term-by-term comparison of Eqs. (A4) and (B5) then shows
that |A|2 = 1 and B = B∗. Moreover, it also follows from the
comparison that the poles and zeros are not independent and
can be related to each other as ω+

r = (ω−
r )∗. Therefore, each

pole and zero form a pair which is mirror symmetric with
respect to the real axis.

When the structure is lossy but remains passive (without
gain), Eq. (B2) should be modified to

|S(ω)|2 < 1, (B6)

because the amplitude of the outgoing wave must be lower
than the amplitude of the incoming one. For mirror-symmetric
structures, the reflection R and transmission T spectra can be
described in terms of the even Se and odd So modes as

R = (Se − So)/2, (B7)

T = (Se + So)/2. (B8)

It can be checked that

|R|2 + |T |2 = (|Se|2 + |So|2)/2 < 1. (B9)

Therefore, the energy conservation for the even and odd
scattering channels ensures energy conservation for plane-
wave incidence.
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