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Landau damping in a collisionless dipolar Bose gas
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We present a theory for the Landau damping of low-energy quasiparticles in a collisionless, quasi-two-
dimensional dipolar Bose gas and produce expressions for the damping rate in uniform and nonuniform systems.
Using simple energy-momentum conservation arguments, we show that in the homogeneous system, the nature of
the low-energy dispersion in a dipolar Bose gas severely inhibits Landau damping of long wavelength excitations.
For a gas with contact and dipolar interactions, the damping rate for phonons tends to decrease with increasing
dipolar interactions; for strong dipole-dipole interactions, phonons are virtually undamped over a broad range of
temperature. The damping rate for maxon-roton excitations is found to be significantly larger than the damping
rate for phonons.
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I. INTRODUCTION

The trapping and cooling of highly magnetic atoms such
as 52Cr, 162Dy, 164Dy, and 168Er [1–4] has allowed experi-
mentalists to create Bose-Einstein condensates with strong
dipole-dipole interactions [5]. The long-range character of
these interactions leads to phenomena such as geometry
dependent mechanical stability [6], anisotropic superfluid
velocity [7], novel topological defects, and vortex lattice con-
figurations upon rotation [8,9]. A key ingredient responsible
for some of the new physics of dipolar Bose gases is the
low-energy excitation spectrum, which has a phonon-roton
character in reduced dimensions [10–12], resembling that
of superfluid He-4 [13–15]. Here we present a theory to
describe the damping of these excitations at finite temperature,
where the damping is provided by interactions between
low-lying excitations, mediated by the underlying Bose
condensate.

The dynamics of Bose condensed gases with short-
range interactions is well studied [16–28] at zero and finite
temperature, in homogeneous as well as trapped gases. In
the homogeneous case, there is a continuum of excitations
characterized by the familiar Bogoliubov dispersion, which
contains linearly dispersing phonons at energies smaller than
the chemical potential μ, and free-particle-like excitations at
energies larger than μ [29]. At low temperatures and low
densities, such as those realized in cold atomic gases, the
mean free path of the excitations is comparable to the system
size and the system enters the “collisionless” regime, where
the characteristic excitation frequency is much larger than the
typical relaxation rate due to collisions ωτ � 1. In this limit,
interactions between quasiparticles are primarily mediated by
the Bose condensate. A given excitation can decay into two
excitations with lower energy, a process known as Beliaev
damping [16], which dominates at low temperatures kBT � μ
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[30]. At higher temperatures, an excitation can also decay by
near resonant coupling to transitions between other elementary
excitations, a mechanism known as Landau damping. In the
context of the dilute Bose gas, Landau damping was first
discussed in the low temperature limit by Hohenberg and
Martin [31], and at higher temperatures by Szépfalusy and
Kondor [17]. A systematic theory of Landau damping in a
dilute Bose gas covering both temperature regimes was later
provided by Pitaevskii and Stringari [24]. In the opposite
limit, where the typical collision time is small, ωτ � 1, the
damping of collective excitations is governed by two-fluid
hydrodynamics [32].

In trapped systems, the spectrum of low-lying modes is
discrete, and the frequencies obtained experimentally match
theoretical predictions based on superfluid hydrodynamics
[33–36]. At higher energies and temperatures, the dynamics
are collision dominated, and the temperature dependence of
the excitation frequencies and the associated damping rates
has been studied in Refs. [18,26,27,37]. At lower energies, the
discretization of the collective modes forbids Beliaev damping
altogether, and the temperature dependence of the damping
rates observed experimentally [36,37] has been found to be
consistent with Landau damping [20,21,23,25].

In recent years, the focus has shifted to understanding
the properties of Bose condensed gases with long-range
interactions. At low temperatures, the dynamics of such a
condensate is well described by a nonlocal Gross-Pitaevskii
equation, which was successfully employed in describing the
anisotropic collapse of a dipolar 52Cr condensate [6]. The
spectrum of excitations in the dipolar gas has been established
in homogeneous and harmonically confined systems [10–
12,38–40].

In this work, we study the Landau damping of excitations
in a quasi-two-dimensional (quasi-2D) dipolar Bose gas. We
follow the time-dependent mean-field formalism developed by
Giorgini [19,20], which describes the coupled dynamics of the
condensed and noncondensed clouds interacting with short-
range interactions. Generalizing this formalism to include
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long-range interactions, we obtain the Landau damping rate
in a dipolar gas. We remark that the zero-temperature version
of this theory yields the Beliaev damping rate, which is studied
in detail in Refs. [41,42].

We find that the Landau damping of low-energy, long
wavelength excitations is exponentially suppressed at low
temperatures. This is in departure from the T 2 dependence
of the damping rate expected in 2D systems with short-
range interactions [22]. Surprisingly we find that the phonon
damping rate decreases with increasing dipolar interactions,
and for sufficiently large dipolar interactions, phonons are
virtually undamped at finite temperature. By contrast, the
damping rate for roton-maxon excitations is significantly
higher than the phonon damping rate.

This paper is organized as follows: In Sec. II we describe
the time-dependent mean-field scheme used to compute the
damping rates, and obtain formulas for the Landau damping
rate in homogeneous and trapped systems in the presence of
long-range interactions. In Sec. III, we specialize to the case of
a homogeneous, quasi-2D dipolar gas, and compute the Lan-
dau damping rate for phonons at low and high temperatures. To
highlight the role of the low-energy dispersion in determining
the damping rates, we compare the phonon damping rate for
a purely dipolar gas with that of a gas with purely contact
interactions. We then consider the case where both dipolar and
contact interactions are present. In Sec. IV we numerically
calculate the Landau damping rate at intermediate momenta,
where the low-energy dispersion relation develops a maxon-
roton feature. We discuss the experimental implications of our
work in Sec. V, and summarize our results in Sec. VI.

II. FORMALISM

The Hamiltonian for a Bose gas interacting with a potential
Vtot(r − r

′
) is given by

H =
∫

dr �†(r,t)
[
−�

2∇2

2m
− μ(r)

]
�(r,t)

+ 1

2

∫
dr dr′Vtot(r − r′)�†(r,t)�†(r′,t)�(r′,t)�(r,t),

(1)

where �(r,t) is the bosonic annihilation operator at position
r and time t , m is the mass, and μ(r) is the spatially varying
chemical potential. In the presence of a trapping potential
U (r), μ(r) = μ0 − U (r), where μ0 is the chemical potential
in the center of the trap. The interaction potential is assumed to
be a sum of two terms Vtot(r − r′) = gδ(r − r′) + Vlr(r − r′),
where g = 4π�

2a
m

parametrizes the contact (short-range) part of
the potential with a three-dimensional (3D) s-wave scattering
length a, and all the long-range terms are included in Vlr(r −
r′). Throughout we will assume that the potential satisfies
Vtot(r) = Vtot(−r). For dipolar bosons with dipole moments d,
which are oriented along the z axis [5],

Vlr(r − r′) = d2 1 − 3 cos2(θ )

|r − r′ |3 , (2)

where θ is the angle between the vector r − r′ and the z axis.

The equation of motion for � is obtained using the
Heisenberg prescription:

i�∂t�(r,t) =
[(

−�
2∇2

2m
− μ(r)

)

+
∫

dr′Vtot(r − r′)|�(r′,t)|2
]
�(r,t). (3)

At temperatures below the Bose-condensation temperature, the
bosonic annihilation operator can be decomposed as a sum of
two parts: �(r,t) = φ(r,t) + ψ(r,t) where φ(r,t) = 〈�(r,t)〉
is a complex order parameter representing the condensate,
and ψ(r,t) represents the noncondensed atoms, which by
definition have the property 〈ψ(r,t)〉 = 0. The averages here
in general denote nonequilibrium averages, as we allow
for fluctuations of the condensed and noncondensed atoms.
Equilibrium averages will be denoted by 〈· · · 〉0.

Decomposing the term proportional to �†�†� in Eq. (3)
into condensate and noncondensate contributions, the equation
of motion for the condensate field reads

i�∂tφ(r,t) = −
(

�
2∇2

2m
+ μ(r)

)
φ(r,t) +

∫
dr′Vtot(r − r′)

× [|φ(r′,t)|2φ(r,t) + φ(r′,t)n(r′,r,t)

+φ∗(r′,t)m(r′,r,t) + n(r′,t)φ(r,t)], (4)

where we have introduced normal and anomalous densities

n(r′,r,t) = 〈ψ†(r′,t)ψ(r,t)〉,
(5)

m(r′,r,t) = 〈ψ(r′,t)ψ(r,t)〉,

and we use the shorthand notation n(r,t) = 〈ψ†(r,t)ψ(r,t)〉
and m(r,t) = 〈ψ(r,t)ψ(r,t)〉. Setting n and m to zero in
Eq. (4), one obtains a nonlocal Gross-Pitaevskii equation
(GPE), which describes the dynamics of a Bose con-
densate at zero temperature interacting with long-range
interactions [5,6].

In general we are interested in small, time-dependent
fluctuations of the condensate about its equilibrium value,
which is obtained by solving the GPE in equilibrium. To
describe the fluctuations, we expand φ(r,t) = φ0(r) + δφ(r,t),
where φ0(r) is the equilibrium condensate density, which
we assume without any loss of generality to be real [43],
and δφ(r,t) corresponds to small, time-dependent fluctuations
about the stationary state. At finite temperature, the fluctu-
ations of the condensate are coupled to fluctuations of the
noncondensate densities, which can be written in the form
n(r,r′,t) = neq(r,r′) + δn(r,r′,t) and m(r,r′,t) = δm(r,r′,t).
Here we assume that the anomalous density of the thermal
cloud is zero in equilibrium [meq(r,t) = 〈ψ(r,t)ψ(r,t)〉0 = 0],
an approximation due to Popov [30]. As discussed by Giorgini
[19,20], this approximation yields an inadequate result for
the real part of the phonon frequency shift, but leaves the
imaginary part (which contributes to damping) unchanged.
A detailed description of the Popov approximation and its
implications can be found in Ref. [32].

Linearizing Eq. (4) in the Popov approximation, the
equation of motion for the fluctuations of the condensate
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reads

i∂t δφ(r,t) = L̂0δφ(r,t) +
∫

dr′Vtot(r − r′){φ0(r)φ0(r′)

× [δφ∗(r′,t) + δφ(r′,t)] + n0(r′,r)δφ(r′,t)

+φ0(r′)[δn(r′,r,t) + δm(r′,r,t)]

+φ0(r)δn(r′,t)}, (6)

where we define the operator

L̂0 ≡ −�
2∇2

2m
− μ(r) +

∫
dr′Vtot(r − r′)ntot(r′) (7)

and ntot(r) = |φ0(r)|2 + neq(r) is the total density. In general
we define ntot(r′,r) = φ0(r′)φ0(r) + neq(r′,r).

The corresponding Hamiltonian for the noncondensed
atoms can be decomposed into two parts:

Hnc = H0 + Hδ, (8)

where

H0 =
∫

dr dr′{ψ†(r,t)L̂0ψ(r,t) + Vtot(r − r′)ntot(r′,r)

× [ψ†(r′,t)ψ(r,t) + ψ†(r,t)ψ(r′,t)] + φ0(r)φ0(r′)

× [ψ†(r′,t)ψ†(r,t) + ψ(r,t)ψ(r′,t)]} (9)

in Popov approximation. The Hamiltonian H0 couples the
noncondensed atoms to the equilibrium condensate and non-
condensate densities, and does not contain any condensate
fluctuations.

The latter are described by the Hamiltonian Hδ , containing
terms linear in δφ:

Hδ = 1

2

∫
dr dr′Vtot(r − r′)[φ0(r){[δφ(r,t) + δφ∗(r,t)]

×ψ†(r′,t)ψ(r′,t) + δφ(r′,t)ψ†(r
′
,t)ψ(r,t)

+ δφ∗(r′,t)ψ†(r,t)ψ(r′,t) + δφ(r′,t)ψ†(r,t)ψ†(r′,t)

+ δφ∗(r′,t)ψ(r′,t)ψ(r,t)} + r ↔ r′], (10)

where r ↔ r′ above refers to interchanging r and r′ for every
term in the preceding curly brackets. In the weakly interacting
gas, the condensate density greatly exceeds the density of the
noncondensed atoms (|φ0|2 � neq). As a result, interactions
between the noncondensed atoms are mainly mediated by the
condensate, and therefore we have ignored terms involving
only noncondensed atoms (all terms in Hδ containing four
noncondensed field operators).

The Hamiltonian H0 given by Eq. (9) can be diagonalized
via the usual Bogoliubov transformation:

ψ(r,t) =
∑

i

ui(r)ai(t) + v∗
i (r)a†

i (t),

(11)
ψ†(r,t) =

∑
i

u∗
i (r)a†

i (t) + vi(r)ai(t),

where ai(t) denotes the bosonic quasiparticle annihilation
operator at time t , and satisfies the usual bosonic commu-
tation relations [29]. The complex functions ui and vi obey∫

dr dr′[u∗
i (r)uj (r′) − v∗

i (r)vj (r′)] = δij δ(r − r′), where δij

is the Kronecker delta symbol.

The resulting Hamiltonian describes a noninteracting gas
of Bogoliubov quasiparticles:

H0 =
∑

i

Eia
†
i ai, (12)

where Ei are the quasiparticle energies obtained by solving
the Bogoliubov equations:

Eiui(r) = L̂[ui(r)] + M̂[vi(r)],
(13)

−Eivi(r) = L̂[vi(r)] + M̂[ui(r)],

where we define

L̂[f (r)] = L̂0f (r) +
∫

dr′Vtot(r − r′)ntot(r′,r)f (r′),

(14)

M̂[f (r)] =
∫

dr′Vtot(r − r′)φ0(r)φ0(r′)f (r′).

A key difference between the Bogoliubov equations above
and those for a gas interacting with purely contact interactions
arises in the nonlocal term in the definition of L̂[f (r)]
and M̂[f (r)]. This term represents the “exchange” (Fock)
contribution to the interaction. For a gas with short-range
interactions, this term is identical to the “direct” (Hartree)
contribution, and together they give rise to a factor of 2 in the
interaction term. In the presence of long-range interactions,
these contributions must be treated separately, and the problem
of solving the Bogoliubov equations becomes computationally
intensive [44–46].

The equation for the fluctuations of the condensate, Eq. (6),
can be expressed in terms of the Bogoliubov operators ai and a

†
i

by expanding the normal and anomalous densities as follows:

n(r′,r,t) =
∑
ij

u∗
i (r′)uj (r)fij + vi(r′)v∗

j (r)fji

+u∗
i (r′)v∗

j (r)g∗
ij + vi(r′)uj (r)gij + vi(r′)v∗

j (r)

(15)

and

m(r′,r,t) =
∑
ij

ui(r′)v∗
j (r)fji + v∗

i (r′)uj (r)fij

+ui(r′)uj (r)gij + v∗
i (r′)v∗

j (r)g∗
ij + ui(r′)v∗

j (r),

(16)

where it is convenient to define the functions:

fij (t) ≡ 〈a†
i (t)aj (t)〉,

(17)
gij (t) ≡ 〈ai(t)aj (t)〉.

The equation for the fluctuations of the condensate [Eq. (6)]
is thus coupled to the dynamics of the noncondensed atoms
via fij and gij . Physically, fij corresponds to the creation and
annihilation of a quasiparticle with energies Ei and Ej , and
contributes to Landau damping, while gij (g∗

ij ) corresponds
to the annihilation (creation) of two quasiparticles with
energies Ei and Ej , and contributes to Beliaev damping [19].
Henceforth we focus on the dynamics of fij alone.
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The equation for the fluctuations of the condensate [Eq. (6)] can be written in terms of fij (t) as

i�∂t δφ(r,t) = L̂[δφ(r,t)] + M̂[δφ∗(r)] +
∑
ij

fij (t)
∫

dr′Vtot(r − r′)(φ0(r′)[u∗
i (r′)uj (r) + vj (r′)v∗

i (r)

+ v∗
i (r)uj (r′) + v∗

i (r′)uj (r)] + φ0(r)[u∗
i (r′)uj (r′) + vi(r′)v∗

j (r′)]) + · · · . (18)

The · · · at the end of Eq. (18) refers to the terms proportional to gij that give rise to Beliaev damping, which we do not study
here.

Using Heisenberg’s equation of motion, i�∂t 〈Ô〉 = 〈[O,Hnc]〉, the equation of motion for fij reads

i�∂tfij (t) = (εj − εi)fij (t) +
(
nth

i − nth
j

)
2

∫
dr dr′Vtot(r − r′)[2φ0(r)[δφ(r,t) + δφ∗(r,t)]{u∗

j (r′)ui(r′) + v∗
i (r′)vj (r′)}

+2[φ0(r)δφ(r′,t) + φ0(r′)δφ∗(r,t)]{u∗
j (r′)ui(r) + vj (r′)v∗

i (r)} + [φ0(r)δφ(r′,t) + φ0(r′)δφ(r,t)]

×{u∗
j (r)vi(r′) + vi(r)u∗

j (r′)} + [φ0(r)δφ∗(r′,t) + φ0(r′)δφ∗(r,t)]{ui(r)v∗
j (r′) + v∗

j (r)ui(r′)}] (19)

where we define the equilibrium density of the quasiparticles at temperature T , nth
i = 〈a†

i ai〉0 = 1
eβEi −1

, where β = 1/kBT .
Thus the fluctuations of the condensate are coupled to the fluctuations of the noncondensed atoms and vice versa. The full

self-consistent solution of this system of equations is highly nontrivial. In order to solve the coupled system of equations we
assume that the condensate fluctuates with frequency ω as δφ(r,t) = δφ1(r)e−iωt and δφ∗(r,t) = δφ2(r)e−iωt and take the Fourier
transform of Eq. (19) to get

fij (ω) =
(
nth

i − nth
j

)
2[�ω − (εj − εi)]

∫
dr dr′Vtot(r − r′)[2φ0(r)[δφ1(r) + δφ2(r)]{u∗

j (r′)ui(r′) + v∗
i (r′)vj (r′)}

+ 2[φ0(r)δφ1(r′) + φ0(r′)δφ2(r)]{u∗
j (r′)ui(r) + vj (r′)v∗

i (r)} + [φ0(r)δφ1(r′) + φ0(r′)δφ1(r)]

×{u∗
j (r)vi(r′) + vi(r)u∗

j (r′)} + [φ0(r)δφ2(r′) + φ0(r′)δφ2(r)]{ui(r)v∗
j (r′) + v∗

j (r)ui(r′)}]. (20)

In the absence of any coupling between the condensed
and noncondensed atoms, the fluctuations of the conden-
sate [Eq. (18)] obey the Bogoliubov equations with real
frequency ω0:

�ω0

(
δφ0

1(r)

δφ0
2(r)

)
=

(
L̂ M̂

−M̂∗ −L̂∗

) (
δφ0

1(r)

δφ0
2(r)

)
(21)

and satisfy the normalization criterion
∫

dr(|δφ0
1(r)|2 −

|δφ0
2(r)|2) = 1.
In the limit of small noncondensate density, we may treat

the condensate-noncondensed atom coupling as a perturbation,
and write δφ1,2 = δφ0

1,2 + δφ′
1,2, where the corrections to the

oscillation amplitude are chosen to be orthogonal to those in
the absence of condensate-noncondensate coupling:∫

dr
(
δφ0

1(r)δφ∗′
1 (r) − δφ0

2(r)δφ∗′
2 (r)

) = 0. (22)

Similarly, we write the perturbed eigenfrequency as ω =
ω0 + δω − iL, where δω is the correction to the real part of
the normal mode eigenfrequency and L denotes the Landau
damping coefficient.

To lowest order, the equation governing the fluctuations of
the condensate in the presence of coupling to the noncondensed
atoms reads

�ωδφ1(r) = L̂
[
δφ0

1(r)
] + M̂

[
δφ0

2(r)
] +

∑
ij

fij (ω0)Aij (r),

(23)
where we have replaced all the δφ and δφ∗ terms in the right-
hand side, including in the expression for fij [Eq. (20)] with

δφ0
1 and δφ0

2 , and ω with ω0. We also introduce the shorthand

Aij (r) =
∫

dr′Vtot(r − r′)(φ0(r′)[u∗
i (r′)uj (r) + vj (r′)v∗

i (r)

+ui(r′)v∗
j (r) + ui(r)v∗

j (r′)]

+φ0(r)[u∗
i (r′)uj (r′) + vi(r′)v∗

j (r′)]). (24)

To obtain the damping rate, we multiply Eq. (23) and the
corresponding equation for δφ2 by δφ∗

1 and δφ∗
2 , respectively,

take the difference of the equations, and integrate over space
to find [19]

�ω = �ω0 +
∑
ij

fij (ω0)
∫

dr(Aij (r)δφ∗
1 (r) + A∗

ji(r)δφ∗
2 (r)).

(25)
The damping rate, which is the focus of this work is given by
the imaginary part of ω:

L(ω0) = π

�

∑
ij

(
nth

i − nth
j

)
δ(�ω0 − (Ej − Ei))|Aij |2,

(26)

where we have used Eqs. (20), (24), and (25) to express fij in
terms of Aij , and we define the matrix element:

Aij =
∫

dr(Aij (r)δφ∗
1 (r) + A∗

ji(r)δφ∗
2 (r)). (27)

The formula for the Landau damping rate given by Eq. (26)
is the main result of this section. We remind the reader that
in deriving this result, we have not assumed any particular
form of the two-body interaction potential, only that it
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is symmetric with respect to the interchange of the two
particles. Furthermore, our equations are general and may be
applied to study the Landau damping of collective modes in
inhomogeneous systems, such as trapped atomic gases.

A. Landau damping in a homogeneous gas

In general, solving for the finite temperature damping rates
of a trapped gas is numerically intensive [23,26–28]. In the
presence of long-range interactions, this is further exacerbated
by the exchange interaction, which is nonlocal in nature. As
a result, calculating the Bogoliubov coefficients in a trapped
dipolar gas is extremely challenging, and practical only in
certain simple cases [38,44,46].

In the rest of this work, we focus instead on a homogeneous
dipolar gas. In a homogeneous system, the condensate density
φ0(r) = √

n0 is constant throughout space. Furthermore, in
order to obtain semianalytic results, we will neglect the
exchange contribution to the Bogoliubov equations of motion
arising from the noncondensed atoms, and retain only the
condensate contribution. In other words, we approximate
ntot(r′,r) ≈ φ0(r)φ0(r′) = φ2

0 . We expect this approximation
to be quantitatively accurate at temperatures kBT � μ, where
the condensate is not significantly depleted. In this limit, the
homogeneous Bogoliubov equations of motion can be readily
solved in Fourier space, and we will use the resulting solutions
in subsequent computations. For sufficiently large systems, our
calculation can be readily generalized to include the effects of
a trap via a local density approximation [20].

In the homogeneous geometry, the fluctuations of the
condensate take the plane-wave form: δφ(r) = 1√

V
e−ik·ruk

and δφ∗(r) = 1√
V

e−ik·rvk; up = 1√
V

upe
−ip·r and vp =

1√
V

vpe
−ip·r, where uk and vk are the Bogoliubov coherence

factors which read

uk =
√

1

2

(
εk + Vtot(k)

Ek
+ 1

)
,

(28)

vk = −sgn[Vtot(k)]

√
1

2

(
εk + Vtot(k)

Ek
− 1

)
,

where we denote Vtot(k) = ∫
dr e−ik·(r−r′)Vtot(r − r′) as the

Fourier transform of the two-body interaction potential. Here
εk = �

2k2/2m and the dispersion Ek = √
εk[εk + 2Vtot(k)n0].

Inserting the expressions for the fluctuations of the conden-
sate and the noncondensed atoms into Eqs. (24) and (26), and
integrating over space, the formula for the Landau damping
rate for a quasiparticle with momentum k and energy �ωk in a
homogeneous system reads

L(k) = −πn0

�

∑
pq

(
nth

q − nth
p

)
δ(�ωk − Eq + Ep)Ak

pqAk
qp,

(29)

where

Ak
pq = δk,q−p{uk[Vtot(p)(upuq + vpuq)

+Vtot(q)(vpuq + vpvq)] + vk[Vtot(q)(upuq + vqup)

+Vtot(p)(vpvq + upvq)] + (uk + vk)Vtot(k)

× (upuq + vpvq)}. (30)

We denote by p,q, the momenta of the outgoing quasiparticles,
which are determined by the constraints of energy-momentum
conservation, enforced by the δ functions in Eqs. (29) and
(30). Here nth

k = 1
eβEk −1 is the Bose occupation factor for a

mode with energy Ek.

B. Quasi-2D dipolar gas

A quasi-2D dipolar gas is created experimentally by
employing tight confinement along the axial (z) direction,
U (r) = 1

2m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2), where ωz � ωx,ωy . Here
we assume that the confining direction is the same as the
direction in which the dipoles are polarized, although our
results can be readily generalized to include an arbitrary
polarization angle. In the limit of tight confinement, μ � �ωz,
with no loss of generality, the density can be expressed as
n(r) = n2D(ρ)χ (z) = 1√

πl2
z

n2D(ρ)e−z2/l2
z , where ρ and z are

the radial and axial coordinates, respectively, and lz is a length
scale on the order of the harmonic oscillator wavelength in
the axial direction lz ∼ √

�/mωz [39]. Integrating out the
z direction, one obtains an effective quasi-two-dimensional
description, which depends on ρ alone. For the homoge-
neous case we consider here (ωx = ωy = 0), the Fourier
transform of the resulting quasi-2D interaction potential
reads [7,39]

V q2D(k) = gq2D + g
q2D
d F

(
klz√

2

)
, (31)

where we define a quasi-two-dimensional interaction param-
eter gq2D = g√

2πlz
, k =

√
k2
x + k2

y is the radial momentum,

g
q2D
d = 8π

3
√

2πlz
d2, and F (x) = 1 − 3

2

√
πx erfc(x)ex2

, where
erfc(x) is the complementary error function. When the dipoles
are aligned parallel to one another, the dipole-dipole interac-
tion only depends on the magnitude of the radial momentum.

The Landau damping rate can be computed in quasi-
2D simply by replacing Vtot(k) with V q2D(k) and n0

with n2D
0 in Eqs. (29) and (30). The integrals are

now performed over two-dimensional k space. The
Bogoliubov eigenfrequencies and coefficients are Ek =√

εk[εk + 2V q2D(k)n2D
0 ], uk =

√
1
2 ( εk+V q2D(k)n2D

0
Ek

+ 1) and vk =
−sgn[V q2D(k)]

√
1
2 ( εk+V q2D(k)n2D

0
Ek

− 1), respectively.
As discussed by Fischer [39], the quasi-2D dipolar Bose

gas is mechanically stable even in the absence of short-range
repulsive interactions (gq2D = 0). Below, we first consider
Landau damping of phonons, and derive an energetic criterion
for Landau damping in a purely dipolar gas. We contrast the
damping in a purely dipolar gas with analogous results in
a gas with contact interactions [17,19,21,22,24,25]. We then
calculate the Landau damping rate for a gas where both contact
and dipolar interactions are present, as is the case for current
experiments on dipolar 52Cr, 162Dy, 164Dy, and 168Er [1–4].
Finally, we discuss in detail the nature of Landau damping for
strong dipolar interactions, where the low-energy dispersion
acquires a roton-maxon character.
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III. LANDAU DAMPING OF PHONONS

A. Criterion for Landau damping

We first consider the Landau damping of a phonon with
wave vector k into two quasiparticles with wave vectors
p and q. As shown by Eq. (29), Landau damping is only
allowed provided the conditions for energy and momentum
conservation can be simultaneously satisfied. At low energies,
the dispersion of the incoming quasiparticle takes the form
Ek ≈ �ck, where c is the phonon velocity in the gas, which
will be defined subsequently.

Momentum conservation [enforced by the δ function in
Eq. (30)] implies that q = k + p, which can be expanded as
q = |q| ≈ p + k cos(θ ) in the long-wavelength limit �k �
mc. Here θ is the angle between the vectors p with k. Likewise,
Eq − Ep ≈ �vg(p)k cos(θ ), where vg(p) = 1/� ∂Ep/∂p is
the group velocity of the excitations [24]. Energetically,
Landau damping can occur only if

c

vg(p)
� 1, (32)

i.e., the velocity of the incoming quasiparticle has to be less
than the group velocity of the decaying excitations. We note
that this criterion is not limited to damping of phonons in Bose
condensates; rather it is completely general, and also applies
to Landau damping in Fermi liquids or plasmas [47].

At large values of �p � mc, the dispersion for both dipolar
and contact interactions becomes free-particle-like, Ep →
�

2p2/2m and thus vg(p) → �p/m. As p → ∞, Eq. (32) is
always satisfied, and Landau damping can occur.

However, at small quasiparticle wave vectors, the dispersion
of the dipolar gas is dramatically different from a gas
with contact interactions. For a gas with purely contact
interactions, the dispersion takes the form Ep/� ≈ cp + �

2p3

8m2c
,

where c =
√

gq2Dn2D
0 /m is the phonon velocity. Thus the

criterion for energy conservation as p/mc → 0 reads c/vg ∼
1 − O(p2) < 1 and Landau damping is allowed. By contrast,
the dipolar dispersion Ep is given by

Ep/� ≈ cdp − 3

4

√
π

2
lzcdp

2 + �
2p3

8m2cd

, (33)

where we have introduced a speed of sound associated with the
dipolar interaction cd =

√
g

q2D
d n2D

0 /m. As p → 0, cd/vg ∼
1 + O(p) > 1, and Landau damping is thus forbidden by
energy-momentum conservation.

Landau damping becomes possible when the cubic term in
the expansion of Eq. (33) dominates over the quadratic term.
Equating the quadratic and cubic terms in Eq. (33), we find
that Landau damping occurs only when p exceeds a critical
value:

p > pcrit = 2
√

2πlzm
2c2

d

�2
= 2

lz

Eint

Eho
, (34)

where Eint = g
q2D
d n2D

0 is the mean-field interaction energy and
Eho = �

2/ml2
z = �ωz is the axial harmonic oscillator energy.

In other words, a phonon with wave vector k can only Landau
damp into excitations with wave vectors p and p + k for p >

pcrit.

B. Temperature dependence of damping rate in a
purely dipolar gas

To obtain the temperature dependence of the phonon
damping rate, we expand Eq. (30) for small values of k. Intro-
ducing dimensionless quantities for the interaction strength,
momentum, and temperature—c̃d = √

Eint/Eho, k̃ = klz/
√

2,
and τ = kBT /Eho, respectively—the Landau damping rate
for a phonon with momentum k and energy Ek = �cdk in
a quasi-2D dipolar gas reads

�L

Ek

= c̃d

4πn2D
0 l2

z

I(τ ), (35)

where the integral I(τ ) is given by

I(τ ) = 1

τ

∫ ∞
√

2c̃2
d

dx x cot(θc)
1

(eu/2τ − e−u/2τ )2

×
(

x2 + c̃2
dF (x)

u
[1 + F (x)] − c̃2

d

u
F 2(x)sgn[F (x)]

+ c̃4
dF (x)

v(x)sgn[F (x)]

[−F (x)v(x) + u∂xF (x)

u

√
u2 + c̃4

dF (x)2

])2

,

(36)

where F (x) is defined in Eq. (31), u =
√

x2[x2 + 2c̃2
dF (x)],

v(x) = ∂u/∂x, and θc = √
2c̃d/v(x). For a gas with purely

contact interactions, we simply set F (x) = 1, and c̃d → c̃

where c̃ is similarly defined, and the integral over x runs from
0 to ∞.

In Fig. 1 we plot the integral I(τ ) obtained by numerically
integrating Eq. (36) at fixed c̃d . The corresponding damping
rate for a gas with purely contact interactions (c̃ = 1) is also
shown for comparison. The phonon damping rate in a purely
dipolar gas remains consistently lower than that for a gas with
contact interactions at all temperatures. At high temperature
(τ > 1), the damping rates appear to scale linearly with

0 0.4 0.8 1.2
0

1

2

Τ

Τ 0 0.1 0.2
0

0.06
0.12

Τ

Τ

FIG. 1. The integral I(τ ) [Eq. (36)] plotted as a function of the
reduced temperature τ = kBT /Eho in quasi-2D. The solid line is for
a purely dipolar gas, while the dashed line is for a gas with contact
interactions. We choose the dimensionless speed of sound for the
dipolar and contact interactions c̃d = c̃ = 1 to enable comparison
between the two cases. At high temperatures the damping rate scales
linearly with T in both cases, with the dipolar damping rate being
consistently smaller than that for a gas with contact interactions. Inset
is a zoom-in at low temperatures showing the dramatic suppression
of the dipolar damping rate compared to that in a gas with contact
interactions.
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temperature in both cases, while at low temperature (τ � 1),
the damping rate in a dipolar gas drops significantly faster
than the damping rate for a gas with contact interactions. In
particular, the dipolar damping rate is found to scale as e−1/τ

for τ � 1. This is in stark contrast with the corresponding
damping rate in a gas with purely contact interactions, which
scales as T 4 in 3D [17,19,24,25] and T 2 in 2D [22].

As discussed previously, for a dipolar gas, modes with
energy less than Ecrit = �

2p2
crit/2m do not contribute to Landau

damping. At low temperatures kBT � Ecrit, the occupation
of modes with energy E > Ecrit scales as nth

k>kcrit
∼ e−βEk ,

and subsequently the damping is suppressed. As shown in
the inset of Fig. 1, the low-temperature damping rate in a
purely dipolar gas grows much more slowly than the T 2

scaling for a gas with contact interactions [22]. Consequently,
phonons in a purely dipolar gas are virtually undamped at low
temperatures.

At high temperatures, kBT � Ecrit, the damping rate scales
linearly with temperature as in the purely contact case, however
the magnitude of the damping rate at fixed c̃d is smaller than
that of a gas with the purely contact interactions, as phonons
cannot damp into excitations with momentum less than pcrit.

C. Landau damping with contact and dipolar interactions

In Fig. 2 we show the temperature dependence of the
Landau damping rate for phonons in a gas with contact and
dipolar interactions. Once again the damping rate can be

0 0.4 0.8 1.2
0

1

2

3

k units of 2 lz

E
k
E k
in

0 0.4 0.8 1.2
0

0.5

1

1.5

Τ

f
Τ

FIG. 2. Top: Temperature dependence of the phonon damping
rate plotted versus reduced temperature τ = kBT /Eho in a quasi-
2D gas with dipolar and contact interactions present. The contact
interaction is held fixed (c̃ = 1) in all the curves and the dimensionless
ratio g̃ = g

q2D
d /gq2D is varied. From top to bottom: (thin, dashed)

g̃ = 0.1, (thick, solid) g̃ = 1, (thick, dashed) g̃ = 2.5, (thick, dotted)
g̃ = 5. Bottom: The energy momentum dispersion corresponding to
the same values of g̃ and c̃ as in the top figure.

expressed as �L

Ek
= c̃

4πn2D
0 l2

z

If (τ ), where c̃ =
√

gq2Dn2D
0 /Eho

parametrizes the contact part of the interaction, Ek = �ck,
and the integrand If (τ ) contains the temperature dependence.
The full expression for If (τ ) is rather cumbersome, and
is not shown here. We also introduce a dimensionless ratio
g̃ = g

q2D
d /gq2D, which parametrizes the relative strength of

the dipole-dipole and the contact interaction.
In Fig. 2, c̃ is held fixed and we vary g̃. The corresponding

energy-momentum dispersion, normalized to Eho, is shown
on the bottom. Somewhat counterintuitively, we find that at
fixed temperature, increasing the dipolar interaction decreases
the phonon damping rate. As the dipolar interaction strength
is increased, pcrit increases, and the number of available
modes for Landau damping decreases. When the interactions
become large enough such that Ecrit = �

2p2
crit/2m � kBT ,

the damping rate is strongly suppressed as the available
modes for Landau damping are largely unoccupied. For strong
dipole-dipole interactions, phonons are virtually undamped at
low temperatures. At higher temperatures τ ∼ 1, the damping
rate again scales linearly with T .

Before discussing the damping of the roton-maxon exci-
tations, we briefly comment on the validity of the results
presented in this section. Strictly speaking, the quasi-2D ansatz
we employ here is only valid provided that η = m(gq2D +
g

q2D
d )/4π�

2 � 1. As the interaction strength is increased,
the Gaussian ansatz for the axial wave-function needs to be
modified, for example by replacing the width of the Gaussian
lz with a variational parameter that depends on the interaction
strength [48]. While this will quantitatively change our results,
it will not affect the qualitative physics. We also expect
our results to hold as long as the temperature T � μ. At
higher temperatures and strong interactions, the condensate
becomes significantly depleted, our starting point of treating
the coupling between the condensed and non-condensate
atoms as a weak perturbation to Bogoliubov theory is no longer
valid. Moreover, exchange interactions between noncondensed
atoms alter the Bogoliubov equations of motion. A systematic
understanding of how these effects modify the physics of the
dipolar gas is currently being developed [49].

IV. LANDAU DAMPING IN THE MAXON-ROTON REGIME

Thus far we have focused on the damping of low-energy
phonons in a quasi-2D dipolar gas. One of the novel features
of a dipolar gas is that for sufficiently strong dipole-dipole
interactions, the dispersion develops a roton-maxon character
[10,39,50] at intermediate momenta. We now discuss the
Landau damping of these excitations.

In Fig. 3 we plot the Landau damping rate at intermediate
momenta for strong dipole-dipole interactions. The damping
rate is normalized to �0 = √

2/πEhoc̃
2(a/lz). The curves are

obtained by numerically integrating Eq. (29) using Eq. (30).
As before, we fix the contact part of the interaction (c̃ = 1) and
vary the ratio g̃. The corresponding phonon damping rate for
the same value of g̃ is shown for comparison. At the value of g̃

chosen here, the critical momentum at which Landau damping
of phonons is allowed is pcrit ∼ 2�

√
2/lz [Eq. (34)]. Phonon

damping is therefore highly suppressed at strong dipole-dipole
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FIG. 3. Top: Temperature dependence of the Landau damping
rate at three different momenta corresponding to the phonon (dotted),
maxon (dashed), and roton (solid) for a quasi-2D gas with contact
and dipolar interactions. The damping rate is normalized to �0 =√

2/πEhoc̃
2(a/lz). The contact interaction parametrized by c̃ =√

gq2Dn2D
0 /Eho = 1 and the dimensionless ratio g̃ = g

q2D
d /gq2D =

7.2. Bottom: The dispersion for c̃ = 1 and g̃ = 7.2 plotted versus
k. The solid, dashed, and dotted circles correspond to the values of
the momenta used in the top plot.

interactions as virtually none of the modes that are available
for Landau damping are thermally occupied.

To understand the damping rate at intermediate momenta,
first we show that rotons cannot scatter off of phonons. To see
this, consider an incoming roton with momentum k, scattering
off of a phonon with momentum p. The criterion for Landau
damping now reads c/vr

g(k) � 1, where vr
g(k) is the group

velocity of the rotons. Near the roton minimum, the excitations
are free-particle-like with a small gap, and the group velocity
scales as |k − kr |, where kr corresponds to the momentum at
the roton minimum. As k → kr , vr

g → 0, and Landau damping
is thus forbidden.

Solving the energy conservation criterion numerically, we
find that Landau damping of rotons turns on at intermediate
momenta, pr

crit � 0.5
√

2�/lz, which is consistent with the
location of the maxon peak in the excitation spectrum. This
critical momentum is considerably smaller than pcrit for
phonon damping, and as a result, at any given temperature,
a larger number of modes contribute to the Landau damping
of rotons. Hence, the roton damping rate is significantly higher
than the damping rate for phonons. The damping rate for the
maxon mode lies between the damping rates for the phonon
and roton modes.

Finally, in Fig. 4, we compare the damping rate at fixed
momentum for a gas with strong and weak dipole-dipole
interactions. Recall that in the long-wavelength limit, we found
that the damping rate decreases with increasing dipole-dipole

0 0.1 0.2 0.3 0.4 0.5
0
1
2
3
4
5

Τ

L
Τ

0

FIG. 4. Temperature dependence of the Landau damping rate at
g̃ = 7.2 and k = 1.45 (corresponding to the roton minimum on the
plot in Fig. 3 [normalized to �0 = √

2/πEhoc̃
2(a/lz)] for a quasi-2D

gas with contact and dipolar interactions. The dashed curve shows the
damping rate for the same value of momentum, but with no dipolar
interactions g̃ = 0. For our parameters, the roton instability (where
the roton minimum is at zero energy) occurs at g̃ = 7.5.

interactions over the temperature range 0 < τ � 1 (see Fig. 2).
By contrast, here we find that the damping rate at intermediate
momenta increases with increasing dipolar interactions, except
at very low temperatures. At very low temperatures, modes
with energies ∼Epr

crit
are unoccupied, and the rotons are

undamped. At intermediate temperatures, the damping rate
grows linearly with T but the slope is much larger for the
rotons (solid curve) than for the excitations in a nondipolar
gas at the same momentum (dashed curve).

The softening of the roton mode Ekr → 0 is associated
with a divergence of the Bogoliubov amplitudes uk and vk . As
the damping rate is directly proportional to the Bogoliubov
amplitudes, via the matrix elements Akq in Eq. (30), the
damping rate also increases near the roton minimum for
strong dipole-dipole interactions. We note, however, that
our approach breaks down well before the roton instability
is reached, as the diverging Bogoliubov amplitudes imply
significant condensate depletion, and our assumption of ntot ∼
φ2

0 becomes invalid.
Boudgemaa and Shlyapnikov [51] argue that for low tem-

peratures T � �r, where �r is the roton gap, the Bogoliubov
approach is valid as long as η � 1. At higher temperatures
or stronger interactions where the roton gap is small T �
�r, thermal effects begin to dominate. For the interaction
parameters of Fig. 3, the roton gap �r ∼ 0.65Ekin (see bottom
panel in Fig. 2). Somewhat surprisingly, the damping rate for
the roton mode is large even at temperatures smaller than �r

suggesting that roton excitations may be short lived at finite
temperatures.

V. EXPERIMENTAL SIGNIFICANCE

We now briefly discuss the possibility of observing the
physics described above in experiments. Experimentalists
can create a single 2D pancake trap by confining atoms in
an optical dipole trap with frequencies ωr ∼ 2π × 10 Hz
and ωz ∼ 2π × 103 Hz [52]. For bosonic 164Dy, which was
recently Bose condensed by Lu and co-workers [2], this yields
a transverse confinement length lz = √

�/mωz = 0.1 μm.
Experiments typically operate at temperatures T ∼ 10 nK,

063638-8



LANDAU DAMPING IN A COLLISIONLESS DIPOLAR . . . PHYSICAL REVIEW A 88, 063638 (2013)

which yields a τ = kBT /Eho ∼ 0.1, and corresponding 2D
densities of n2D

0 ∼ 1014 m−2 [52]. This implies that c̃ =√
gq2Dn2D

0 /Eho ∼ 1 can be achieved for scattering lengths
a/lz ∼ 0.02 � 1 [51]. Choosing a typical scattering length
of a ∼ 100aB , �0 ∼ 1–10 Hz.

Damping of excitations in the nondipolar gas was observed
by Katz et al. [53] who used Bragg spectroscopy to study
the momentum dependence of the Beliaev damping rate of
phonons. By tuning the energy difference and the angle
between the Bragg beams, experimentalists excited quasipar-
ticles at different energies and momenta. After a short time
of flight, a halo of scattered atoms was observed at momenta
intermediate between the condensate and the momentum of the
atoms excited initially. By measuring the ratio of the number
of scattered atoms to the initial cloud of atoms excited by the
probe beams, as a function of energy and momentum, Katz
and co-workers were able to extract the damping rate [53]. A
similar technique may be used to detect Landau damping in
the dipolar gas.

The energy resolution achieved in the experiment was
∼kHz, and the momentum resolution was ∼2π/ζ , where
ζ ∼ 0.25 μm is the coherence length of the Bose condensate.
The roton mode is located at klz ∼ 1.5, and hence lies above
the typical momentum resolution in experiments. In addition
to spectroscopic probes, Landau damping also influences the
decay of collective excitations in trapped gases [35,37,54,55].

VI. SUMMARY AND CONCLUSIONS

In summary, we have developed a theory of damping of
low-energy excitations in a Bose gas interacting with long-
range interactions, generalizing previous works on Bose gases
interacting with short-range forces [19,22]. We work in the
collisionless limit, where the damping is provided by scattering
of a quasiparticle with other excitations, mediated by the
Bose condensate. Following the time-dependent mean-field
approach of Giorgini [19], we derive a coupled system of

equations describing the dynamics of the condensed and
noncondensed atoms, within the Popov approximation. We
then solve these equations perturbatively in the interaction
strength, to obtain the expression for the Landau damping rate
in a Bose gas with long-range interactions.

Focusing on the homogeneous gas and neglecting exchange
interactions between noncondensed atoms, we find that the
nature of the low-energy quasi-2D dipolar dispersion forbids
a phonon from decaying into modes with momenta lower
than a certain threshold. This leads to a dramatic suppres-
sion of Landau damping at low temperatures. For stronger
dipole-dipole interactions, we find that phonons are virtually
undamped over a large temperature regime. By contrast, at
intermediate momenta and strong interactions, where the
dispersion develops a roton-maxon feature, we find much
higher damping rates.

Finally, we remark that experiments on collective modes
in trapped gases typically also measure the temperature
dependence of the frequency shift of the collective modes, in
addition to the damping rates [35,37]. These frequency shifts
are related to many-body effects which go beyond the Popov
approximation [15,18,20,26,27]. A systematic study of these
effects and how they affect the frequencies of the collective
excitations in the dipolar gas has not yet been performed, and
is a promising direction for future study [56].
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