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We study two-dimensional (2D) solitons in the mean-field models of ultracold gases with long-range
quadrupole-quadrupole interaction (QQI) between particles. The condensate is loaded into a deep optical-lattice
(OL) potential, therefore the model is based on the 2D discrete nonlinear Schrödinger equation with contact
on site and long-range intersite interactions, which represent the QQI. The quadrupoles are built as pairs of
electric dipoles and antidipoles orientated perpendicular to the 2D plane to which the gas is confined. Because
the quadrupoles interact with the local gradient of the external field, they are polarized by an inhomogeneous dc
electric field that may be supplied by a tapered capacitor. Shapes, stability, mobility, and collisions of fundamental
discrete solitons are studied by means of systematic simulations. In particular, threshold values of the norm, which
are necessary for the existence of the solitons, are found and anisotropy of their static and dynamical properties is
explored. As concerns the mobility and collisions, we analyze such properties for discrete solitons on 2D lattices
with long-range intersite interactions. Estimates demonstrate that the setting can be realized under experimentally
available conditions, predicting solitons built of ∼10 000 particles.
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I. INTRODUCTION

Interactions between particles play a crucial role in the
dynamics of Bose-Einstein condensates (BECs). Ubiquitous
are short-range contact interactions, which are described by the
single parameter: the s-wave scattering length as [1–3]. More
specific are isotropic long-range Van der Waals interactions
between Rydberg atoms in ultracold bosonic gases [4,5], and
anisotropic long-range dipole-dipole interactions (DDIs) in
dipolar condensates [6–11]. DDIs occur in gases formed by
magnetic atoms, such as Cr, Dy, Er [12–14], or gases of
molecules carrying electric dipole moments—for instance,
CO, ND, and OH [15–17]. Using external dc magnetic or elec-
tric fields polarizing permanent atomic or molecular moments,
plenty of controllable structures, including solitons, have been
predicted and demonstrated in dipolar condensates [7,9,11,18–
65]. Many such structures are supported by optical lattices
(OLs). In the limit of deep OL potentials, the description of the
dipolar BEC is provided by discrete models with long-range
intersite interactions [27,28,32,36,37,41,43,51,59]. Moreover,
it was predicted [60,61] and demonstrated experimentally [62]
that the interaction of particles carrying permanent electric
dipole moments with a singular dc field created by a charged
wire or a point-like charge may give rise both to the specific
collapse mechanism and to its suppression by interparticle
interactions. In addition, the repulsive DDIs between moments
induced by nonuniform dc fields in a gas of nondipolar
polarizable particles may give rise to bright solitons of a
completely different type [63].

In this work, we propose the possibility of formation
of two-dimensional (2D) matter-wave solitons in nondipolar
molecular ultracold gas, loaded into a deep OL potential,
with long-range quadrupole-quadrupole interactions (QQIs)
between particles. Experimental methods for the measurement
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of molecular quadrupole moments are well elaborated [66].
It has been reported that some simple molecules, such as
acetylene [67], have relatively large quadrupole moments
(�6 D Å). Still larger moments were measured in long-lived
metastable states of alkaline-earth-metal [68,69] and ytterbium
[70] atoms (�20 D Å), and in alkaline diatoms [71] (up to
�50 D Å). As recently shown for fermions, such sizes for
quadrupole moments are sufficient to generate new phases in
quantum gases trapped in the OL [72]. Furthermore, it has been
predicted that the QQI can be strongly amplified by means of
optical vortices [73].

There are two straightforward settings, for electric and
magnetic quadrupoles, which can feature QQIs in a 2D
geometry. One relies upon electric quadrupoles, built as tightly
bound pairs of dipoles and antidipoles, which are directed
perpendicular to the system’s plane (x,y), i.e., along axis
z. Because the quadrupole interacts with the gradient of the
external field, rather than with the field itself, in this setting the
quadrupoles may be aligned (polarized) by an external electric
field which is also directed along z, and whose strength is a
linearly growing function of x. Such an electric field can be
imposed, in turn, by a tapered capacitor; see Fig. 1(a).

Quadrupoles (both electric and magnetic) are described
by a symmetric traceless tensor Qαβ (α,β = x,y,z) with∑

α Qαα ≡ 0 [74]. In this notation, the electric quadrupole
defined above [in Fig. 1(a)] has the following components:

Qxy = Qyx ≡ Q, Qzz = Qzx = Qzx = Qyz = 0, (1)

where the quadrupole moment per se is defined as

Q = 3dε, (2)

with ±d and ε being, respectively, the dipolar moments of the
bound dipoles and antidipole and the distance between them.

The potential of the interaction between two quadrupoles
of the present type in the planar configuration considered here
can be derived from the general formula for the QQI potential
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FIG. 1. (Color online) (a) Electric quadrupoles, built as tightly bound pairs of dipole and antidipoles directed perpendicular to the (x,y)
plane. They are polarized by the dc electric field which is also directed along z and whose strength is a linear function of x. As shown here,
the field can be imposed by a tapered capacitor. (b) Magnetic quadrupoles, built as tightly bound dipole-antidipole pairs directed along axis
x.They can be aligned by means of the dc magnetic field directed along x, whose strength is a linear function of x. The magnetic field can be
created by the tapered solenoid, as shown in panel (b).

[75], the result being

U
(electr)
QQ (r,θ ) = 4

3Q2r−5(1 − 5 cos2 θ ), (3)

where r is the distance between the quadrupoles, and θ is the
angle between the vector connecting the quadrupoles and the
line connecting the dipole and antidipole inside the quadrupole
(the latter direction is here defined as axis x).

On the other hand, it is possible to introduce magnetic
quadrupoles, built as tightly bound pairs of dipoles and
antidipoles directed in plane, along axis x. Because these
quadrupoles also interact with the gradient of the external field,
they may be aligned by means of the magnetic field directed
along x, whose strength grows linearly with x. This field may
be applied by a tapered oblate solenoid; see Fig. 1(b). The
respective quadrupole tensor is

Qyy = Qzz = − 1
2Qxx, Qxy = Qzx = Qyz = 0. (4)

The potential of the interaction between the quadrupoles of
the present type can also be derived from the general formula
[75], yielding

U
(magn)
QQ (r,θ ) = 4

3Q2r−5(3 − 30 cos2 θ + 35 cos4 θ ). (5)

Averaging potentials (3) and (5) over the entire angular
range 0 � θ < 2π yields mean values which correspond to
attraction and repulsion, respectively:

1

2π

∫ 2π

0
U

(electr)
QQ (R,θ )dθ = −2Q2r−5 < 0, (6)

1

2π

∫ 2π

0
U

(magn)
QQ (R,θ )dθ = 3

2
Q2r−5 > 0. (7)

Hence potential (3) has a chance to create 2D solitons, while
for potential (5) this is not plausible. Indeed, numerical tests
with interaction kernel (5) have not revealed soliton modes.
Therefore, in what follows below we consider the model with
the QQI defined as per Eq. (3) and Fig. 1(a).

For the sake of comparison, it is relevant to compare
expression (3) and (5) with the commonly known potential
of the DDI for a pair of in-plane-oriented parallel dipoles with
moment D:

UDD(r,θ ) = 1
3D2r−3(1 − 3 cos2 θ ). (8)

Note that this potential is attractive, on average:

1

2π

∫ 2π

0
UDD(R,θ )dθ = −1

6
D2r−3 < 0. (9)

Accordingly, the existence of stable anisotropic 2D solitons in
this setting was first demonstrated in Ref. [9].

The objective of this work is to study shapes, stability,
mobility, and collisions of 2D matter-wave solitons in BECs
formed by quadrupole particles trapped in a deep optical lattice
(OL). The discrete model describing the present setting is
derived in Sec. II, where we also present estimates of physical
parameters of the setting and of the expected soliton states.
Results of systematic numerical studies of static 2D solitons
in the model are reported in Sec. III, and their dynamical
properties; namely, mobility and collisions, are presented in
Section IV. It is relevant to stress that mobility and collisions of
2D discrete solitons were not previously studied in any lattice
system with long-range interactions. The paper is concluded
by Sec. V.

II. THE MODEL EQUATION

The underlying 3D Gross-Pitaevskii equation (GPE) [1],
which takes into regard both the contact isotropic nonlinearity
and the long-range QQI corresponding to potential (3), can be
reduced to the normalized 2D equation,

0 = i
∂ψ

∂t
+ 1

2

(
∂2

∂x2
+ ∂2

∂y2

)
ψ − g|ψ |2ψ − U (x,y)ψ

−Gψ(r)
∫

|ψ(r′)|2(1 − 5 cos2 θ )
dr′

|r − r′|5 , (10)

where r ≡ {x,y}, angle θ has the same meaning as in Eq. (3),
and U (x,y) represents the OL potential. The derivation of
Eq. (10) assumes the factorization of the three-dimensional
(3D) mean-field wave function 	 under the action of the tight
trapping potential imposed in the transverse direction:

	(X,Y,Z,T )

= (
√

πa3
⊥)−1/2 exp

(
− i�

2ma2
⊥

t − 1

2
z2

)
ψ(x,y,t), (11)
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where the scaled coordinates and time are related to the phys-
ical ones X,Y,Z,T as follows: {X,Y,Z} ≡ a⊥{x,y,z}, T ≡
(ma2

⊥/�)t, a⊥ is the transverse localization length, and m is
the mass of the particle. As it follows from the factorized
ansatz (11), the total number of particles in the condensate is
given by

Ptotal =
∫∫

|ψ(x,y)|2dxdy. (12)

The rescaling implied above gives rise to expressions for
dimensionless coefficients of the contact and long-range
interactions in Eq. (10) in terms of the scattering length as

and quadrupole moment:

g = 2
√

2π
as

a⊥
, G = 4mQ2

3�2a3
⊥

. (13)

Equation (10) belongs to the class of nonlocal nonlin-
ear Schrödinger (NLS) equations which, unlike their local
counterpart with the self-attractive cubic term, are free of
collapse in the 2D geometry [76,77], therefore 2D solitons
are stable in such models, contrary to the commonly known
instability of Townes solitons in the local 2D NLS equation
[78]. Furthermore, the nonlocality affects the character of the
interaction between 2D solitons. In particular, interactions
between dark solitons and between out-of-phase bright modes
can be made attractive, in contrast with the repulsion in local
models; see a brief review [77] for nonlocal NLS equations in
models of nonlinear optics.

The next step is to replace the continuous equation (10)
by its discrete counterpart, corresponding to the condensate
fragmented by a deep OL potential. To this end, the continuous
wave function is decomposed over a set of modes strongly
localized in vicinity of each OL site (Wannier functions),

ψ(x,y,t) =
∑
m,n

ψmn(t)
mn(x,y), (14)

where m,n are discrete coordinates on the lattice, as was done
in the course of the derivation of the one-dimensional (1D)
[27] and 2D [36] discrete models for the dipolar BEC trapped
in deep OL potentials. The result is the following rescaled
discrete version of Eq. (10), i.e., a 2D discrete NLS equation
with long-range interactions:

∂tψmn = −1

2
(ψm+1,n + ψm−1,n + ψm,n+1 + ψm,n−1 − 4ψmn)

+ σ |ψmn|2ψmn

+ψmn

∑
{m′,n′}�={m,n}

fQQ(m − m′,n − n′)|ψm′n′ |2,

(15)

with the discrete QQI kernel,

fQQ(m − m′,n − n′) = (n − n′)2 − 4(m − m′)2

[(m − m′)2 + (n − n′)2]7/2
. (16)

The rescaling is performed here in the same way as was done
in Ref. [36]; namely, by using coefficients which are expressed
in the form of normalization and overlapping integrals built of
the Wannier functions. Note that the coefficient in front of the
QQI terms is scaled here to be 1, while σ is the relative strength

of the contact interactions. Obviously, Eq. (15) conserves the
norm of the discrete wave function, which is the discrete
counterpart of the norm (12):

P =
∑
m,n

|ψmn|2. (17)

It is well known that the discretization of the NLS equation
is another general mechanism helping to suppress the collapse
and ensuing instability of solitons in the 2D NLS equation
[79]. Likewise, the discreteness readily stabilizes 2D discrete
solitons with embedded vorticity [80]. Furthermore, it was
demonstrated both theoretically and experimentally that stable
2D gap solitons are supported by a system modeled by the
discrete NLS equation with long-range intersite interactions
[81]. It is relevant to mention too that, in addition to its
realizations in optics and BECs, the discrete NLS equation
with long-range intersite interactions models the so-called
Scheibe aggregates of closely packed molecules, in which
soliton solutions are known as well [82].

The analysis reported below is based on Eq. (15). Note that
the discrete equation which was derived in Refs. [36,37] for
the dipolar BEC trapped in the deep OL potential differs by the
form of the interaction kernel, which is the discrete counterpart
of the DDI kernel (8):

fDD(m − m′,n − n′) = (n − n′)2 − 2(m − m′)2

[(m − m′)2 + (n − n′)2]5/2
. (18)

It is also relevant to mention that Eq. (15) with σ = 0 applies
as well to fermion lattice gases with the long-range interaction;
cf. Ref. [72].

Finally, to estimate the range of physical parameters allow-
ing the implementation of the present model, the magnitude of
the quadrupole moment can be estimated for a complex built
as a square with charges (+e,−e,+e,−e) set at its vertices,
with linear size ε (e is the electron’s charge). According to
Eq. (2), the corresponding quadrupole momentum is

Q = 3eε2. (19)

Then, adopting typical values as � 5 nm, a⊥ � 1 μm, and
m � 100 proton masses, Eqs. (10), (13), and (3) can be used
to estimate the linear size of the quadrupole, ε, which is
necessary to make the strength of the QQI comparable to that
of the contact interactions. The result is ε ∼ 1 nm, which is
quite realistic for small molecules. Furthermore, typical scaled
characteristics of solitons reported below, if translated back
into physical units, lead to an estimate ∼30 μm for the linear
size of 2D solitons built of ∼10 000 particles.

III. NUMERICAL RESULTS

A. Shape and stability of the solitons

Stationary solutions to Eq. (15) with real chemical potential
μ were looked for in the usual form

ψmn(t) = φmne
−iμt . (20)

Stationary profiles φmn were found in a finite domain of
size N × N by means of the well-known imaginary-time
propagation method [83–85]. The stability of the so-found
solitons was then tested by simulations of their evolution in
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FIG. 2. (Color online) Side (a) and top (b) views of a stable
discrete soliton supported by the long-range quadrupole interactions.
The soliton was found as a stationary solution of Eq. (15) with σ = 0
(no contact interactions) and norm P = 1.2, on the lattice of size
32 × 32. In this case, Pcr = 0.86; see Fig. 3(b).

real time, adding random perturbations to the initial conditions.
It is instructive to present the results for solitons maintained
by the QQI, comparing them to those obtained in the model
with the DDI kernel (8) in Refs. [36,37].

For both models QQI and DDI, the numerical results reveal
a critical value of the norm, Pcr, below which discrete wave
packets do not self-trap into 2D solitons but rather spread out
into almost flat states via the delocalization transition, which
is a generic feature of 2D systems [86]. In fact, Pcr originates
from the norm of the Townes soliton, which is the single value
at which the degenerate family of solitons exist in the uniform
2D medium with the self-attractive local cubic nonlinearity
[87], and which is stretched into a finite existence interval
under the stabilizing action of the OL potential [88]. We have
found that all the solitons existing at P > Pcr are stable.

A typical example of a discrete soliton maintained by the
QQI nonlinearity is displayed in Fig. 2. As expected, the
soliton’s shape is anisotropic, being prolate in the m direction,
in accordance with the fact that the QQI kernel (16) is attractive
along m and repulsive in the perpendicular direction.

As shown in Figs. 3(a)–3(c) for different fixed values of
strength σ of the contact nonlinearity in Eq. (15), Pcr depends
on the size of the solution domain, N , because in the case
of relatively small N only strongly self-trapped solitons, with
sufficiently large P , may be narrow enough to fit into the
domain. The threshold for the formation of the 2D solitons,
i.e., the absolute minimum of Pcr, can be identified as Pth =
Pcr(N → ∞). Fitting formulas displayed in Figs. 3(a)–3(c)
help to identify the respective values of Pth.

The overall dependence of Pth on σ is displayed in
Fig. 3(d). The increase of Pth with σ is naturally explained
by the competition between the long-range self-attraction and
contact self-repulsion at σ > 0 (or insufficient self-attraction
at σ < 0).

The results summarized in Fig. 3 demonstrate that the QQI
offers an advantage in comparison with the DDI for the forma-
tion of solitons, as the respective scaled formation threshold
is considerably lower (roughly, by a factor of two) and, in
addition to that, in the case of QQI the threshold is weakly
affected by the competition with the contact nonlinearity,
unlike the DDI model, where it is an important issue [6,8].

To further quantify the solitons, we define their effective
area Aeff and structural anisotropy A between the horizontal

(a) (b)

(c) (d)

FIG. 3. (Color online) The minimum norm necessary for the
formation of 2D discrete solitons, Pcr, under the action of the
dipole-dipole (DDI) or quadrupole-quadrupole (QQI) interactions, as
a function of the size of the solution domain N , for (a) σ = −1, the
attractive-contact nonlinearity; (b) σ = 0, zero-contact nonlinearity;
(c) σ = 1, repulsive-contact nonlinearity. Formulas written in the
panels represent empiric fits of the plots to simple analytical
expressions. (d) The threshold value of the norm, which corresponds
to Pcr at N → ∞, versus the strength of the contact nonlinearity.

(“hor”) and vertical (“vert”) directions as follows:

Aeff =
(∑

m,n |φmn|2
)2

∑
m,n |φmn|4 , (21)

A = |Dhor − Dvert|
|Dhor + Dvert| , Dhor ≡

(∑
m |φm,0|2

)2

∑
m |φm,0|4 ,

Dvert ≡
( ∑

n |φ0,n|2
)2

∑
n |φ0,n|4 , (22)

where it is assumed that the soliton’s center is fixed at site
m = n = 0. In Figs. 4 and 5, Aeff and A are plotted, along
with the solitons’ chemical potential, versus the rescaled norm,
which is defined as

P res ≡ P/P
(QQ,DD)
th , (23)

where P
(QQ,DD)
th is taken, severally, from Fig. 3(d) as

as the respective threshold value for the QQI and DDI
models.

Figures 4 and 5 demonstrate that the increase of the norm
makes the solitons more tightly localized and more anisotropic,
hence the long-range interactions QQI or DDI become domi-
nant over the isotropic local interaction for “heavier” solitons.
Furthermore, it is worth noting that μ(P ) dependencies in
Fig. 6 satisfy the Vakhitov–Kolokolov criterion, dμ/dP <

0, which is a well-known necessary stability condition for
modes supported by self-attractive nonlinearities [87,89]. In
particular, this is true in the case of σ = +1, when the attractive
long-range interactions clearly beat the contact self-repulsion.
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(a) (b) (c)

FIG. 4. (Color online) Effective area Aeff [see Eq. (21)] versus the rescaled norm [see Eq. (23)] for the solitons supported by the QQI and
DDI in the combination with (a) σ = −1, (b) σ = 0, and (c) σ = 1, i.e., the attractive-, zero-, or repulsive-contact interactions. The numerical
domain here is 64 × 64.

(a) (b) (c)

FIG. 5. (Color online) Same as in Fig. 4, but for anisotropy A; see Eq. (22).

(a) (b) (c)

FIG. 6. (Color online) The same as in Figs. 4 and 5, but for chemical potential μ; see Eq. (20). The formulas present analytical fits for
quasilinear portions of the μ(P ) dependencies.

π

(a) (b) (c)

FIG. 7. (Color online) (a) Minimum size of kick necessary to set a soliton in motion in the horizontal and vertical directions (η(m)
c and η(n)

c ,
respectively), as a function of the soliton’s norm P . (b) Velocity of the soliton moving in the horizontal direction versus the strength of the kick
(at η > η(m)

c ) for different fixed values of the norm. (c) Velocity of the soliton moving in the horizontal (m) and vertical (n) directions versus P

for a fixed kick’s strength, η = 0.3 > η(m,n)
c .
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FIG. 8. (Color online) Evolution of a soliton with norm P = 1.2 kicked with strength η = 0.4π in the (a) m (horizontal) direction and (b) n

(vertical) direction. The evolution is displayed in cross sections (n = 0) and (m = 0), respectively. (c) Destruction of soliton by the staggering
kick η = π applied in either direction.

IV. MOBILITY AND COLLISIONS OF
THE DISCRETE SOLITONS

A. Setting the solitons in motion

Mobility of discrete solitons is a basic issue in the theory
of nonlinear dynamical lattices [90]. In 2D lattices with the
on-site (contact) nonlinearity, the mobility crucially depends
of the type of the nonlinearity. The cubic on-site term, which
corresponds to the critical collapse in the 2D continuum limit
[87], gives rise to immobile discrete solitons strongly pinned to
the underlying lattice. On the other hand, subcritical nonlinear
terms, such as saturable [91] or quadratic [92], can readily
create mobile 2D lattice solitons. In the 1D setting, it has been
demonstrated that the DDI helps to enhance the mobility of
discrete solitons [27,28]. The mobility and its consequences,
such as collisions, were not studied previously on 2D lattices
with long-range intersite interactions.

Here we focus on the mobility of 2D discrete solitons built
solely by the long-range interactions (QQI), setting σ = 0 in
Eq. (15). Because the system is anisotropic, we separately
consider the initiation of the soliton motion by kicks applied
in the horizontal and vertical directions:

ψ (hor)
mn (t = 0) = φmne

iηm, ψ (vert)
mn (t = 0) = φmne

iηn, (24)

where η is the strength of the kick and φmn is the stationary
soliton solution [recall it is prolate in the horizontal (m)
direction; see Fig. 2].

Simulations demonstrate that, to set the solitons in the state
of persistent motion, the kick must exceed a finite threshold
value ηc. The kick with η < ηc may only shift the soliton from
the initial position by a finite distance (i.e., the soliton starts to
move but then comes to a halt). Figure 7(a) shows the threshold
as a function of of the soliton’s norm P . It is seen that the
dependence is strongly anisotropic: the horizontal threshold
η(m)

c is very small and almost does not depend on P , while
its vertical counterpart η(n)

c is much larger and grows roughly
linearly with P .

Obviously, the size of the kick in Eq. (24) is limited to
η � π . In the limit case of η = π , the kick makes the soliton
staggered, rather than moving, which results in destruction of
the kicked soliton. Typical examples of the evolution of the
kicked solitons are displayed in Fig. 8. In Fig. 8(a), the soliton
moving in the horizontal direction is robust, while in Fig. 8(b)
the same soliton, kicked with the same η but vertically, is
moving in a strongly perturbed oscillatory state. The trend

to the destruction of the kicked soliton becomes apparent at
η > π/2. The destruction in the case of η = π is shown in
Fig. 8(c).

Dependencies of the velocity of the moving soliton on
the kick’s strength (η) and direction (m or n: horizontal or
vertical), and on the soliton’s power (P ), are presented in
Figs. 7(b) and 7(c). The former figure shows that, similar to
the usual properties of nonlinear-Schrödinger solitons in a
continuous medium, the velocity of the horizontally kicked
soliton increases as a linear function of η (with an offset
at V = 0 corresponding to the threshold value η(m)

c ) and
practically does not depend on the norm. On the other hand,
Fig. 7(c) demonstrates that velocity of the established motion
in the vertical direction strongly depends on the soliton’s norm;
the heavier solitons being much less motile. Thus, the mobility
of 2D solitons maintained by the QQI is strongly anisotropic.

B. Collision between moving solitons

The robust mobility of the 2D discrete solitons in the
horizontal direction suggests studying collisions between them
[93–95]. To this end, we simulated Eq. (15) with the input

FIG. 9. (a) Plane of (η,�ϕ) (with η ∈ [0.1π,0.4π ]) for outcomes
of collisions between lighter solitons, with P = 1.3. The merger and
rebound occur in the white and light-gray areas, respectively (the
symmetric merger is observed along the dashed lines). The colliding
solitons destroy each other in the dark-gray area. Points A (η,�ϕ) =
(0.35,1.7)π , B (η,�ϕ) = (0.35,0.7)π , C (η,�ϕ) = (0.35,0.25)π ,
and D (η,�ϕ) = (0.35,0)π represent typical examples of the full
rebound, destruction, symmetric merger, and asymmetric merger,
respectively. (b) The same plane for collisions between heavier
solitons, with P = 1.8. The white and light-gray areas have the same
meaning as in panel (a). Quasi-elastic collisions occur in the black
regions.
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FIG. 10. (Color online) (a)–(d) Typical examples of collisions between solitons with norms P = 1.3 (shown in the cross section n = 0),
corresponding to points A–D in Fig. 9(a). (e) An example of the quasi-elastic collision between heavier solitons, with P = 1.8, and (η,�ϕ) =
(0.35,0.95)π . (f) An example of the multiple-rebound collision ending up with merger for P = 1.8 and (η,�ϕ) = (0.35,1.58)π .

composed of two solitons separated by distance 2m0, i.e., with
their centers placed at sites (∓m0,0), and phase shift �ϕ,
which is another control parameter of the collision, in addition
to the relative velocity determined by kicks ±η [93–96]:

ψmn(t = 0) = φ−m0,0e
iηm + φm0,0e

−iηm+�ϕ. (25)

In the simulations, the size of the domain was 64 × 64, with
m0 = 16. The norm of each soliton was P = 1.3 or 1.8, to
explore the collision of relatively light and heavy solitons,
respectively.

For P = 1.3, the moving solitons feature three major types
of collisions in the plane of (η,�ϕ), as shown in Fig. 9(a):
rebound, destruction, and merger. Particular examples of
the rebound, destruction, symmetric merger, and asymmetric
merger are displayed in Figs. 10(a)–10(d), which corre-
spond, respectively, to sample points marked in Fig. 9(a): A
(η,�ϕ) = (0.35,1.7)π , B (η,�ϕ) = (0.35,0.7)π , C (η,�ϕ) =
(0.35,0.25)π , and D (η,�ϕ) = (0.35,0)π . Results of the direct
simulations are displayed in cross section n = 0.

At larger values of the norm (here, at P = 1.8), the moving
solitons are more robust with respect to collisions. Namely,
in this case destruction is not observed in the considered
interval of the values of the kick, η ∈ [0.1π,0.4π ], while a

new outcome occurs, in the form of quasi-elastic collisions [see
Fig. 10(e)]. Parametric regions of three types of outcomes of
collisions between heavier solitons; viz., the merger, rebound,
and quasi-elastic interaction, are shown in Fig. 9(b), in the
same plane as in Fig. 9(a). Because the merger and the rebound
are quite similar to what was shown above for P = 1.3,
here, in Fig. 10(e), we display only a typical example of
the quasi-elastic collision. It is also worth noting that, in a
parametric area close to the rebound [i.e., in the light-gray area
in Fig. 9(b)], colliding solitons merge after multiple rebounds;
see a typical example in Fig. 10(f).

Imbalance between powers (norms) of the colliding soli-
tons, P1 �= P2, also affects outcomes of the collisions; cf.
Ref. [97]. For instance, the asymmetric merger of two solitons
with equal powers, P1 = P2 = 1.3, which collide under the
action of kicks η = ±0.35π with zero phase shift �ϕ = 0
displayed in Fig. 10(d) is replaced by mutual destruction for
unequal powers P1 = 1.0, P2 = 1.5 (chosen so that the net
power P1 + P2 remains nearly the same as before), for nearly
the same values of the kicks, η = ±0.40π , and again with
�ϕ = 0; see Fig. 11(a). However, the reduction of the kick
to η = ±0.20π switches the outcome of the collision for the
same power-imbalance soliton pair from the destruction to

FIG. 11. (Color online) Outcomes of collisions between solitons with unequal total powers, P1 = 1.0 and P2 = 1.5: (a) destruction, for
kicks η = ±0.40π and phase shift �ϕ = 0; (b) merger, for η = 0.20π and �ϕ = 0; (c) also merger, for η = 0.20π and �ϕ = 1.42π .
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merger into a single moving soliton, as shown in Fig. 11(b),
which is quite similar to the merger observed in Fig. 10(d). On
the other hand, the symmetric collision leading to the merger
of the solitons with P1 = P2 = 1.3 into a single standing
soliton, for η = ±0.35 and �ϕ = 0.20π in Fig. 10(c) extends,
for P1 = 1.0, P2 = 1.5 and η = ±0.20π,�ϕ = 1.42π , into a
similar merger, although this time the emerging single soliton
is moving; see Fig. 11(c).

V. CONCLUSIONS

The objective of this work is to study 2D matter-wave soli-
tons in ultracold gas trapped in a deep an OL (optical-lattice)
potential, with quadrupole-quadrupole interactions (QQIs)
between particles. The quadrupoles are introduced as tight
bound states of dipoles and antidipoles, whose polarizations
are orientated in the z direction, i.e., perpendicular to the
2D plane in which the gas is trapped. The polarization of
the quadrupoles is imposed by the dc electric field, which is
also directed along z, but with the strength linearly growing
along the x direction. Such a field configuration, which may
be created by means of a tapered capacitor, is necessary
because the quadrupoles interact locally with the gradient
of the external field. The setting is described by the discrete
(lattice) Gross-Pitaevskii equation, due to the fragmentation of
the condensate by the strong OL. Together with the long-range
QQI between lattice sites, the contact interaction, which may
be either attractive or repulsive, is taken into account as the
on-site nonlinearity in the resulting lattice model.

The shapes, stability, mobility, and collisions of 2D fun-
damental lattice solitons were studied by means of numerical
simulations. It was found that stable solitons exist above a
threshold value of the norm, which is lower than for matter-
wave solitons in dipolar lattice-trapped gases. The threshold
is much more weakly affected by the contact interactions than
in the case of the DDI (dipole-dipole long-range interaction).
The shape of the solitons features anisotropy, which is stronger
for heavier solitons. The mobility of the discrete solitons on
2D lattices with long-range intersite interactions is studied
here for the first time, also exhibiting strong anisotropy.
Collision between mobile solitons were explored too. Col-
lisions between lighter solitons may lead to their merger,
rebound, and destruction. Heavier solitons are not destroyed
by collisions. Estimates of physical parameters demonstrate
that the proposed setting may be experimentally implemented
in gases of small molecules, metastable alkaline-earth-metals,
or alkaline diatoms.

A natural extension of the work may be to construct bound
states of 2D lattice solitons. A challenging possibility is to
look for topological 2D solitons, such as lattice vortices, in
this discrete anisotropic system.
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[43] A. Bühler and H. P. Büchler, Phys. Rev. A 84, 023607 (2011).
[44] S. Müller, J. Billy, E. A. L. Henn, H. Kadau, A. Griesmaier, M.

Jona-Lasinio, L. Santos, and T. Pfau, Phys. Rev. A 84, 053601
(2011).

[45] R. Eichler, J. Main, and G. Wunner, Phys. Rev. A 83, 053604
(2011).

[46] K. T. Xi, J. Li, and D. N. Shi, Phys. Rev. A 84, 013619
(2011).

[47] S. Rojas-Rojas, R. A. Vicencio, M. I. Molina, and F. Kh.
Abdullaev, Phys. Rev. A 84, 033621 (2011).

[48] M. Abad, M. Guilleumas, R. Mayol, M. Pi, and D. M. Jezek,
Phys. Rev. A 84, 035601 (2011).

[49] L. E. Young-S, P. Muruganandam, and S. K. Adhikari, J. Phys.
B 44, 101001 (2011).

[50] P. Muruganandam and S. K. Adhikari, J. Phys. B 44, 121001
(2011).
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[77] W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller,
J. J. Rasmussen, and D. Edmundson, J. Opt. B: Quantum
Semiclassical Opt. 6, S288 (2004).

[78] S. Skupin, O. Bang, D. Edmundson, and W. Królikowski, Phys.
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