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Threshold for creating excitations in a stirred superfluid ring
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We have measured the threshold for creating long-lived excitations when a toroidal Bose-Einstein condensate
is stirred by a rotating (optical) barrier of variable height. When the barrier height is on the order of or greater
than half of the chemical potential, the critical barrier velocity at which we observe a change in the circulation
state is much less than the speed for sound to propagate around the ring. In this regime we primarily observe
discrete jumps (phase slips) from the noncirculating initial state to a simple, well-defined, persistent current state.
For lower barrier heights, the critical barrier velocity at which we observe a change in the circulation state is
higher, and approaches the effective sound speed for vanishing barrier height. The response of the condensate in
this small-barrier regime is more complex, with vortex cores appearing in the bulk of the condensate. We find
that the variation of the excitation threshold with barrier height is in qualitative agreement with the predictions
of an effective one-dimensional hydrodynamic model.
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The critical flow velocity of a superfluid is intimately
connected with the spectrum of allowed excitations for a
quantum fluid, and can provide insight into the mechanisms
which produce and sustain superfluidity in that system. This
connection between the excitation spectrum and the critical
velocity of a superfluid was first identified by Landau [1],
who showed that there is a minimum velocity above which it
becomes energetically possible to create excitations. In an in-
finite, homogeneous dilute Bose-condensed gas, the excitation
spectrum is given by the Bogoliubov dispersion relation, the
elementary excitations are phonons, and the critical velocity
for a pointlike defect is the Bogoliubov speed of sound [2,3].

In any real superfluid system, the critical velocity can
be modified by the finite system size, including reduced
dimensionality, and by various inhomogeneities, e.g., surface
roughness, inhomogeneous confining potentials, and the size
and shape of any moving defects [3–12]. Such effects can
give rise to dissipation through the creation (and subsequent
motion) of elementary excitations such as solitons and vortices
[4–12], in addition to phonons. In general, coupling to these
other modes of excitation causes the critical velocity for
a moving disturbance to be lower than the sound speed.
Inhomogeneity and the details of the geometry thus play an
important role in the onset of dissipation in a superfluid.

Historically, most experimental studies of the superfluid
critical velocity were conducted with liquid helium [13–16],
including a variety of increasingly sensitive experiments
conducted in an annular geometry [17–25]. More recently,
degenerate quantum gases of neutral atoms have provided
new possibilities for studying the superfluid state [26]. The
earliest experiments reporting a critical velocity in an ultracold
atomic gas were conducted in simply connected Bose-Einstein
condensates, where a perturbing potential was moved through
the condensate, and the onset of dissipation was detected as
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heating of the condensate [27–29]. In related experiments, a
threshold for the nucleation of vortices and solitons was ob-
served when a condensate was perturbed by a moving potential
defect [30–32]. Additionally, a critical rotation frequency was
observed in experiments where a simply connected condensate
was stirred with a rotating potential [33–35]. Critical velocity
measurements have also been undertaken with an ultracold
Fermi gas across the BEC-BCS crossover [36], and with a
two-dimensional (2D) trapped Bose gas [37].

Recent experimental successes in creating atomic gases in
an annular geometry [39–47] have provided a new opportunity
for further studies of the properties of the superfluid state. We
previously reported measurement of a critical flow velocity in
a superfluid ring [42] by observing the decay of a persistent
current flowing past a stationary optical barrier as we varied the
barrier height. In Ref. [45], we observed discrete phase slips
in a ring geometry perturbed by a moving barrier. In that work,
the barrier was moving at an angular velocity much less than
the velocity of sound propagating around the ring. Here, we
study the creation of excitations and therefore dissipation over
a wider range of conditions using a variable-height barrier with
an angular velocity ranging from zero up to the speed of sound.
Because our superfluid ring supports long-lived persistent cur-
rents, we are able to detect the threshold at which excitations
occur with a high degree of sensitivity by measuring changes in
the circulation state [42–45]. This experiment was conducted
by creating a ring-shaped condensate in a noncirculating state,
then stirring it for one second with a small (diameter less
than the width of the annulus) repulsive potential (created
by a focused blue-detuned laser beam) moving azimuthally
at a fixed angular velocity (Fig. 1). Repeating this procedure
many times for various combinations of potential barrier height
and angular velocity, we have determined how the threshold
for creation of such long-lived excitations depends on these
experimental parameters.

In Sec. I of this paper, we describe the experiment in
detail, and report our observations of the threshold for creating
excitations in the ring. In Sec. II we present a one-dimensional
(1D) hydrodynamic model of our ring condensate, which
incorporates elements from the work of Watanabe et al. [48],
and Fedichev and Shlyapnikov [12]. In Sec. III we then
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FIG. 1. (Color online) (a) in situ absorption image of the ring
condensate without a barrier, viewed from above. (b) Schematic
showing the orientation of the blue-detuned (λ = 532 nm) “barrier”
beam used to create a barrier in the ring condensate. The arrow
indicates the azimuthal movement of the barrier around the ring axis.
(c) in situ absorption image showing the effect of the barrier beam
on the ring condensate. The peak barrier height in (c) is ≈40% of the
chemical potential. (a) and (c) are the average of five partial-transfer
absorption images [38] of different condensates, with a 96×96 μm
field of view.

compare our data to the model’s prediction of the critical
barrier height for a given barrier velocity.

I. EXPERIMENTAL PROCEDURE AND RESULTS

The superfluid ring in our experiments was a Bose-Einstein
condensate of 7.6(20) × 105 23Na atoms in the 3 2S1/2|F =
1,mF = −1〉 state [49], at a temperature of <40 nK. The
toroidal optical dipole trap for the atoms was created in the
same manner as reported by us previously [42,45], using
a horizontally propagating “sheet” beam, and a vertically
propagating Laguerre-Gauss (LG1

0) “ring” beam generated
using a phase hologram [50]. The wavelength of both beams
was λ = 1030 nm, far red detuned from the 23Na D2 resonance
at λ = 589 nm. Together, these two beams created an attractive
dipole trap described (in the harmonic approximation) by

Utrap(ρ,z) = 1
2m

[
ω2

zz
2 + ω2

ρ(ρ − R)2
]
, (1)

where m is the atomic mass, ωz (ωρ) is the trap frequency
in the vertical (radial) direction, and R is the radius of the
ring. In this experiment the trap parameters were measured
to be ωr/2π = 134(6) Hz, ωz/2π = 550(20) Hz, and
R = 22.6(2.3) μm. The measured Thomas-Fermi width of
the condensate in the ρ (radial) direction was 22(2) μm. Using
the Thomas-Fermi approximation we calculate the chemical
potential to be μ0/h = 2.1(2) kHz [51]. With this chemical
potential and the measured vertical trap frequency we calculate
that the maximum vertical thickness (Thomas-Fermi) of the
ring should be 5.0(1) μm. This is roughly consistent with what
we observe, given the ≈4-μm resolution limit of the horizontal
imaging system.

The repulsive barrier potential used to “stir” the condensate
was created by a blue-detuned (λ = 532 nm) laser beam
focused to a circular spot 9(1) μm in diameter [full width at half
maximum (FWHM)], which is smaller than the width of the
annulus. The intensity and position of the beam were controlled
by a two-axis acousto-optic deflector (AOD). Stirring beam
powers of up to ≈70 μW were used in the experiment, resulting
in a peak barrier potential height of Ub/h = 1.30(13) kHz.
The barrier height was calibrated by measuring the density
depletion of the condensate in situ as a function of laser power

and position. The stated 10% uncertainty in the barrier height
reflects the uncertainty in measuring the density depletion of
the condensate at the location of the barrier [52]. The height of
the barrier also varied systematically with position around the
ring by ≈10% due to the angle-dependent diffraction efficiency
of the AOD and angle-dependent losses in the imaging system.

Because of the azimuthal variation of the barrier height
and the variation in condensate density around the ring, the
experiment was designed so that the barrier always made
at least one full revolution around the ring during the one
second stirring procedure. We expect that the creation of
excitations primarily occurred at the weakest point, i.e., where
the fractional height of the barrier was largest compared to the
local maximum value of the interaction energy (the 3 o’clock
position in Fig. 1). The comparison of our experimental results
to the theory in Sec. II assumes that this is the case.

Prior to stirring the condensate, we ramped on the (station-
ary) barrier beam in 100 ms to a height sufficient to stop any
spuriously formed persistent currents [53], then ramped the
intensity back to zero in another 100 ms. With the condensate
in this noncirculating state, we then stirred it with the moving
barrier at constant angular velocity � for a total duration of
1 s. The barrier height was ramped up (while rotating) from
zero to a value Ub in 100 ms, held at that height for 800 ms,
then ramped off in another 100 ms.

After this stirring procedure, we detected the presence of
excitations in the condensate using a time-of-flight (TOF)
imaging procedure. The evolution of the ring condensate after
release is not trivial [54], but can be used to determine the
circulation state of the condensate prior to release [43,45]. In
the absence of any circulation the expansion of the condensate
causes the central hole to close, after which the density
profile typically exhibits a central peak surrounded by a broad
pedestal [Figs. 2(a) and 2(d)] when imaged along the (vertical)
symmetry axis of the trap. In contrast, when a condensate with
some form of circulation is released, the density profile after
TOF expansion shows one or more holes due to the presence of
phase singularities (vortices) in the condensate wave function
[Figs. 2(b), 2(c), 2(e), and 2(f)].

A central hole in the density profile after TOF expansion
signifies the presence of a persistent current flowing around
the ring. The size of the central hole depends on the phase
winding number of the persistent current and the velocity of
the mean-field-driven inward expansion. If we release our ring
condensate by suddenly and simultaneously turning off both of
the trapping beams, the hole is too small to be resolved by our
imaging system for experimentally accessible TOFs (<15 ms).
As in our previously reported work [42,45], we make the
signature of circulation visible earlier by first adiabatically
reducing the ring beam intensity by 90% over 100 ms, then
releasing the condensate suddenly into ballistic expansion.
We used this procedure, followed by 10-ms TOF and partial-
transfer [38] absorption imaging, to detect excitation of the
superfluid ring for all the data presented here. When we follow
this procedure we find that the radius of the central hole in
TOF increases roughly linearly with the winding number of
the persistent current [54].

In addition to the central hole, which signifies a persistent
current, in some cases we also observed off-axis holes in the
density profile after TOF [Figs. 2(e) and 2(f)], indicating the
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FIG. 2. Time-of-flight (TOF) absorption images showing vertical
column density profiles observed after 1 s of stirring, adiabatic
relaxation of the radial trap confinement (see text), and 10 ms of
expansion. The upper row (a)–(c) shows representative results for
stirring at low speeds �/2π < 5 Hz, while the lower row shows
results for high speeds �/2π > 5 Hz. For sufficiently small barrier
height Ub (a) and (d), the condensate remains in the noncirculating
state, and the density profile is peaked in the center after TOF
expansion, with no evidence of vortices. For higher Ub the ring can
be excited to a persistent current state [(b), (c), (e), and (f)], causing
a central hole to appear in the TOF density profile. The size of the
central hole increases with the phase winding number l: in (b) l = 1,
in (c) l = 2, and in (e) l = 3. At high �, the stirring may produce
off-axis vortices, as seen in (e) and (f). At high � and sufficiently
high Ub (f), many vortices appear and the central hole associated
with the persistent current may be distorted. The stirring conditions
(�/2π , Ub/h) for each image are as follows: (a) 1 Hz, 1080 Hz;
(b) 2 Hz, 930 Hz; (c) 2 Hz, 1010 Hz; (d) 30 Hz, 40 Hz; (e) 8 Hz,
370 Hz; (f) 25 Hz, 60 Hz. The field of view for each TOF image is
220 by 220 μm.

presence of vortex excitations in the annulus. While we note
that there was a higher probability of observing such off-axis
excitations with a barrier moving at higher angular velocities,
we did not separately analyze and quantify the probability of
observing them. For this experiment, the appearance of one
or more “holes” in the density profile of the condensate after
TOF was construed as evidence that the threshold for creating
excitations had been exceeded.

Using this criterion, we determined the probability of
excitation for 10 values of �, with �/2π ranging from 1 to
30 Hz. For each �, the probability of excitation was found for
a wide range of Ub by conducting the experiment repeatedly at
each specific value of � and Ub, then varying Ub until we had
mapped out a range over which the probability of excitation
changed from nearly zero to nearly unity, as shown in Fig. 3.
The highest value of �/2π (30 Hz) is close to the angular
velocity at which sound is expected to propagate around the
ring (see Sec. II).

In analyzing the data, the fraction of excitations observed
in repeated experiments at each value of Ub and � was
used as an estimate of the true probability of excitation. In
order to estimate uncertainties, we assume that the prob-
ability distribution for excitation is binomial, and use the
beta distribution as an approximation to the discrete binomial
distribution, following the approach of Ref. [55]. The error
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FIG. 3. Fraction of experimental runs where an excitation was
observed, as a function of the peak height of the potential barrier
Ub, with the barrier moving at an angular velocity �/2π = 1 Hz.
The experiment was repeated six to eight times for each value of Ub

(black dots). The vertical error bars are the statistical uncertainty in
the measured excitation fraction for each barrier height Ub. The black
curve is a least-squares fit of a sigmoidal function [Eq. (2)] to the data
points. The gray region is a 68% confidence band for the sigmoidal
fit (see text).

bars shown in Figs. 3 and 4 are the 68% confidence interval,
as estimated from the beta distribution. We took the critical
barrier height Uc for a given angular velocity � to be the
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FIG. 4. Comparison of data for each of the selected values of �

used in the experiment, as plotted in Fig. 3, with barrier height Ub

on the horizontal axis. The value of �/2π in Hertz for each plot is
shown on the left. The black dots are the observed excitation fraction
(ranging from zero to one for each subplot) for a given value of Ub and
�, each dot representing six to eight repetitions. The vertical error
bars are the statistical uncertainty in the measured excitation fraction
for each barrier height Ub. The black curves are least-squares fits of
a sigmoidal function [Eq. (2)] to the black dots. The gray regions are
68% confidence bands for the sigmoidal fits (see text).
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value of Ub at which there is a 50% probability of observing
an excitation in the ring condensate after the experimental
stirring procedure. These values were determined from the
data for each � by a least-squares fit of the sigmoidal
function,

P (Ub) = 1/(1 + e(Uc−Ub)/δU ), (2)

to the measured probability of excitation at each Ub (Fig. 3),
where each point was weighted by the number of samples (δU
is the width of the sigmoidal fit). To estimate the statistical
uncertainty in this fit, we employed a parametric bootstrapping
[56] method. The observed probability of excitation and
number of samples at each point were used to specify beta-
distributed random variables associated with those points.
Samples were then drawn from these distributions, using the
same sample sizes as in the original data set. These simulated
data were then fit using Eq. (2). This procedure was repeated
1000 times for each value of �, and the set of all simulated fits
was used to estimate the 1σ uncertainty in the measurement
of the critical barrier height for each �. The confidence bands
displayed in Figs. 3 and 4 are the 15.9 (lower) and 84.1 (upper)
percentiles of the excitation probabilities calculated from the
set of all fits to simulated data for a given �. We note that the
parameters Uc and δU for each set of simulated fits were not
always normally distributed.

Figure 4 displays the data for each of the selected values of
� used in the experiment, showing the character of the data
and the sigmoidal fit for each value of �. As expected, for low
angular velocities, the barrier height must be a large fraction of
the chemical potential before excitations occur, and this critical
barrier height decreases as the angular velocity increases. For
low �, the excitations generally occur as simple phase slips
from the noncirculating state to a persistent current state with
a phase winding number l = 1, with no indication of vortices
within the annulus [Fig. 2(b)]. As we showed previously [45],
in this regime the weak link created by the rotating barrier
can act like a Josephson junction, in that it allows quantized
jumps in the persistent current state of the superfluid in the
ring. While we note that the widths of our fits to the data vary
as a function of �, we believe that more data sampling and
better control of experimental conditions would be required to
draw any detailed conclusions about these widths.

At higher � the response of the condensate can become
more complex. Excitations appear for much smaller barrier
heights, but in this case we more frequently observe vortices
within the annulus [Figs. 2(e) and 2(f)] that have survived to be
observed in TOF [57]. When phase slips to different persistent
current states did occur, it was almost always to states with
winding number l = 1 or 2, even when the angular velocity was
much higher than the rotation rate associated with one quantum
of circulation in the ring �0/2π ≈ �/mR2 = 0.86 Hz.
Transitions to higher circulation states (l > 2) [Fig. 2(e)]
typically only occurred when the barrier height was well above
the critical barrier height. When the first excitation occurs, the
fact that the system does not necessarily relax to the global state
of lowest energy (in the rotating frame), but instead typically
settles into the first energy minimum where the flow velocity
through the barrier is less than the critical velocity may indicate
that the phase slip dynamics in this system are strongly damped
[58].
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FIG. 5. (Color online) Critical barrier height Uc as a function
of angular velocity of the rotating potential barrier. The black
circles are the values of Uc extracted from fits to the data sets
of Fig. 4 at each angular speed �. The error bars are the
combined statistical uncertainty of the fits and the calibration of
the barrier height. The dashed (red) line is the prediction for
harmonic confinement in the transverse direction, using Eq. (16). The
normalized theory curve was calculated using μ∞ = gn∞ = 1.98(25)
kHz, which assumes excitations were created at the least
dense azimuth around the ring. This value of μ∞ gives c∗

∞ =√
gn∞/2m = 4.24(24) m/s, which corresponds to an angular velocity

c∗
∞/2πR = 30.0(1.7) Hz.

Extracting the value of Uc from each of these fits gives
us information about the critical behavior of the system. In
Fig. 5 we plot Uc as a function of �, and compare it to the
predictions of an effective 1D theoretical model presented in
the next section.

II. THEORETICAL MODEL

While a detailed understanding of the dynamics in our
experimental system may require a full three-dimensional (3D)
model [59,60], the basic features of our data can be described
by an effective 1D model of the system. To create this model,
we treat flow around the ring as if in a (locally) straight
channel with a single potential energy barrier of height Ub, and
neglect the periodic boundary conditions. We assume that in
our experiment the temperature (T < 40 nK) is close enough
to zero that the condensate can be described accurately by
the Gross-Pitaevskii equation [61]. Furthermore, the smallest
features of the trapping potential in our experiment are large
compared to the condensate healing length (ξ ≈ 0.3 μm),
allowing us to make the local density approximation, and treat
the condensate as locally homogeneous.

The condensate in our experiments interacts with a
smoothly varying (not hard-walled) optical dipole potential
that we approximate as

U (�r,t) = Utrap(ρ,z) + Ub(θ,t), (3)

where Utrap(ρ,z) is given by Eq. (1), and Ub(θ,t) is a barrier
potential with a maximum Ub at an angle θb, and which moves
at a constant angular velocity �. We assume for simplicity
in the model that the barrier height is independent of the
transverse coordinates ρ and z. The real barrier potential is
ρ dependent, and we note that averaging over the transverse
degrees of freedom in this way is less accurate for large barrier
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heights, at which the radial profile is significantly modified.
In the model the trap potential has no dependence on θ ,
and we can remove the time dependence in the problem by
switching to a reference frame co-rotating with the barrier at
an angular velocity �. From here forward all expressions are
time independent and the rotating frame is implicit.

To formulate a description of the steady-state behavior
of the condensate, we first note that in the local density
approximation, the interaction energy μ(�r) in a 3D Bose
gas is μ(�r) = gn(�r) [61], where n(�r) is the density, and
g = 4πas�

2/m is the strength of the contact interactions
between the atoms (as is the atomic s-wave scattering length).
In the Thomas-Fermi limit, with no flow, the density profile
n(�r) of the condensate is

n(�r) =
(

μ0 − m

2

[
ω2

zz
2 + ω2

ρ(ρ − R)2
] − Ub(θ )

)/
g. (4)

If there is nonzero flow in the condensate, conservation
of energy requires that the velocity field and density profile
satisfy a Bernoulli equation at each point �r ,

μI = 1
2mv2(�r) + gn(�r) + U (�r), (5)

where μI is the chemical potential for steady-state current flow
I through the channel. The current is related to the velocity
field and density profile by the continuity condition,

I =
∫

v(�r) n(�r) dA⊥, (6)

where the integral is over the channel cross section A⊥.
To make it possible to analytically determine the critical

barrier height for a given barrier velocity, we reduce Eqs. (5)
and (6) to an effective 1D form. To simplify Eq. (5),
consider the form of the equation when we set ρ = R and
z = 0:

μI = 1
2mv2(θ ) + gn(θ ) + Ub(θ ), (7)

where n(θ ), v(θ ), and Ub(θ ) are the values of these quantities
along the center of the channel. If the azimuthal size of the
barrier potential is small compared to the ring circumference,
μI is independent of Ub(θ ), and the flow velocity and density
far from the barrier (v∞,n∞) are related to the flow velocity
and density at the barrier peak (vb, nb) by

m

2
v2

∞ + gn∞ = m

2
v2

b + gnb + Ub, (8)

where Ub is the peak height of the barrier potential, and all
quantities are taken to be at the center of the channel. In
the limit that we can neglect the effect of periodic boundary
conditions on flow around the ring, v∞ is simply identified as
the velocity of the barrier along the channel.

Applying the Landau criterion, we may expect that the flow
will become dissipative if the superfluid velocity exceeds the
local sound speed at the barrier [62], since the density and
sound speed are at their lowest there, and the flow velocity is
highest. Therefore we wish to determine from Eq. (8) the value
of v∞ = �R [63] for which vb equals the speed of sound. The
speed of sound in a uniform superfluid fluid at T ≈ 0 is c =√

gn/m, however, the superfluid flow in our channel has an
inhomogenous (2D parabolic) density profile. Hydrodynamic
calculations [64–66] predict that the effective speed of sound in

a 2D harmonic channel is reduced by a factor of
√

2 compared
to the sound speed calculated using the density at the center of
the channel. This can be understood quite simply as the result
of the average density in the channel being 1/2 the value at
the center of the channel. For our condensate the sound speed
at a position θ is

c∗(θ ) = c(θ )√
2

=
√

gn(θ )

2m
. (9)

We can thus define the critical barrier velocity vc and barrier
height Uc to be the values of v∞ and Ub at which

vb = c∗
b =

√
gnb

2m
. (10)

This criterion can be used to eliminate vb from (8), yielding a
relation between vc and Uc:

m

2
v2

c + gn∞ = 5

4
gnb + Uc. (11)

To eliminate nb from Eq (11), we use Eq. (6) to relate n

and v at the barrier and far from it. To simplify Eq. (6) we
can approximate v(�r) with its value along the center of the
channel, v(θ ), and evaluate the integral over the density profile
to give

I = v(θ )
∫

n(�r) dA⊥ = v(θ )η(θ ). (12)

Where the 1D density η(θ ) is related to the density along the
center of the channel n(θ ) by

η(θ ) = πg

mωρωz

n2(θ ). (13)

In the steady state, I is constant everywhere, and we therefore
have the relation,

n2
bvb = n2

∞vc. (14)

Combining Eq. (14) with Eq. (10) allows us to derive an
expression for nb in terms of n∞ and vc:

nb = n∞

(
2mv2

c

gn∞

)1/5

= n∞

(
vc

c∗∞

)1/5

, (15)

where c∗
∞ = √

gn∞/2m is the effective sound speed far from
the barrier. Substituting (15) into (11) gives a relation between
the critical barrier height Uc and the critical barrier velocity
vc for the condensate under conditions of 2D harmonic
confinement,

Uc

μ∞
= 1 + 1

4

(
vc

c∗∞

)2

− 5

4

(
vc

c∗∞

)2/5

, (16)

where μ∞ = gn∞. The dashed (red) line in Fig. 5 shows this
result plotted against the experimental data. In this plot we have
converted barrier velocity along the channel to angular velocity
around the ring using � = v/R, and used μ∞ = 1.98(25) kHz
and c∗

∞/2πR = 30.0(1.7) Hz, which are the interaction energy
and effective sound speed at the least dense azimuth of the
superfluid ring.
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III. DISCUSSION

It is clear from Fig. 5 that the data agree qualitatively
with the model (there are no adjustable parameters), but the
agreement is not perfect. The data generally falls below the
theory for low values of �, and is slightly above the theory
for sufficiently high values of �. Equation (16) predicts that
for vanishing barrier height the critical (angular) velocity of
the barrier should asymptotically approach that of the effective
sound speed around the ring, c∗

∞/2πR = 30.0(1.7) Hz. Our
data appear to approach a value slightly larger than this,
but lower than c∞/2πR = 42.5 Hz. In this regard the data
do roughly support the prediction in Refs. [64–66] that the
propagation speed of long-wavelength sound in a superfluid
channel is reduced in proportion to the average density of the
condensate over its cross section.

There are a variety of possible explanations for remaining
discrepancies between the model and our data. We expect some
inaccuracy in the model due to our neglect of the transverse
variation of the barrier potential, especially at large Ub (small
�). The fact that the data in general lie below the theory curve
may also indicate a critical flow velocity that is smaller than
the effective sound speed we assumed in Eq. (9). It is possible
that the actual critical flow velocity for certain excitations,
such as vortices, may be less than the sound speed [4,67]. A
numerical analysis of the normal modes of a condensate in a
2D harmonic channel by Fedichev and Shlyapnikov [12] has
predicted that for clouds with large Thomas-Fermi parameter
(μ0/ωtrap), the critical flow velocity should be even lower than
the effective sound speed used in our derivation of Eq. (16).
Factors such as these may account for part of the discrepancy
between the data and our model.

In the high-velocity (low-barrier) regime, the data appear
to be somewhat above the value predicted by the model, with
a slightly flatter slope. In this regime, the rotating barrier
may couple most effectively to radial excitations such as
surface waves localized to the inner and outer edges of the
ring. Excitation of these modes is not accounted for in our
model. The existence of a distinct “surface” critical velocity
is well established by experiments with condensates in simply

connected geometries [33,35,68–70]. Recent theoretical work
has begun to explore the role of surface wave excitations in
a toroidal geometry, and indicates that surface waves do play
an important role in determining the stability of flow in a
superfluid ring [71,72]. Finally, the difference between the
experiment and theory in this regime could also be due to the
fact that we only detect long-lived topological excitations such
as vortices and persistent currents, and are not sensitive to other
dissipative excitations such as surface waves. Complementary
detection techniques such as temperature measurements after
the stirring process [37], or in situ detection of surface waves
and phononic excitations [46] may help to distinguish between
the role of these different dynamical mechanisms.

IV. SUMMARY

We have measured the critical barrier velocity and barrier
height for creating excitations when a potential barrier is
rotated around a superfluid ring. The experimental data are
in qualitative agreement with a 1D hydrodynamic model of
flow in the ring. The discrepancies may be due to several
causes as discussed above. Thermal fluctuations may also
play an important role in lowering the critical barrier velocity
below the value predicted by zero-temperature theory [73].
Finally, we have treated our ring geometry as if it were
a straight channel, as was done in Ref. [48]. This omits
features such as periodic boundary conditions, quantization
of circulation, and curvature of the channel. These present
interesting opportunities for further investigation, and may
shed further light on the mechanisms that produce and sustain
the superfluid state
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