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Competition of spin and charge excitations in the one-dimensional Hubbard model
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Motivated by recent experiments with ultracold fermionic atoms in optical lattices, we study finite temperature
magnetic correlations, as singlet and triplet correlations, and the double occupancy in the one-dimensional
Hubbard model. We point out that for intermediate interaction strengths the double occupancy has an intriguing
doubly nonmonotonic temperature dependence due to the competition between spin and charge modes, related to
the Pomeranchuk effect. Furthermore, we determine properties of magnetic correlations in the temperature
regimes relevant for current cold atom experiments and discuss effects of the trap on spatially integrated
observables. We estimate the entropy and the temperature reached in the experiment by Greif, Uehlinger,
Jotzu, Tarruell, and Esslinger [Science 340, 1307 (2013)].
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I. INTRODUCTION

Understanding the effects of strong correlations is one
of the most challenging problems in quantum physics. Such
effects have, in addition to intrinsic fundamental interest, far
reaching consequences on material science and condensed-
matter physics, since in many materials strong correlations
occur. Among the strongly correlated materials some typical
examples include many oxides and Mott insulators [1],
nanotubes [2], organic materials [3], and most likely the
high-temperature superconductors [4].

The effects of strong correlations can best be studied using
simplified models. The simplest model for fermionic particles,
which includes the competition of a tight-binding kinetic term
of amplitude t and a local on-site interaction with amplitude
U , is the so-called Hubbard model [5]. It is widely used as
a simplified model in order to describe interacting electrons
in solids, and more recently a very clean realization has been
obtained by cold fermionic gases in optical lattices.

Despite important efforts, many properties of the Hubbard
model are not yet fully understood even in one and infinite
dimensions, where in principle it can be solved exactly [6,7].
Especially in two dimensions its solution is still largely elusive.
For a filling of one particle per site however, it is well known
that there are insulating phases dominated by interactions
(Mott insulators) and antiferromagnetic phases, due to the
existence of the superexchange mechanism [8]. Away from
half filling, it is typically very difficult to tackle this model
analytically or numerically.

Recently, cold atoms have provided a very nice realization
of the Hubbard model and thus offered the possibility to act
as quantum simulators to study the physics of this problem.
The Hubbard model is realized with fermionic neutral atoms
trapped in an optical lattice [9]. Different internal states of the
atoms are used to represent the spin degrees of freedom. The
interaction between these different states, the van der Waals
interaction, is short ranged and can be tuned via a Feshbach
resonance. The whole setup allows remarkable control on
the various physical parameters. The realizations of the
Hubbard-like models in optical lattices allowed for the direct
observation of a Mott insulating phase for bosonic [10] and

fermionic atoms [11,12] for repulsive interaction. At attractive
interaction the importance of the coupling between the spin and
density degrees of freedom for thermodynamics quantities has
been demonstrated [13]. Observing more complex quantum
phases as the antiferromagnetic order or even unconventional
superconducting phases has proven quite difficult given the
high temperatures present in the atomic gases of the order of
0.1EF , where EF is the Fermi energy. It is therefore one of the
challenges to observe quantum magnetism in such systems.
Coherent magnetism has previously been observed in bosonic
systems, for a two site problem [14] and for hard-core bosons
mimicking an XY model [15] or bosons in a tilted lattice
mimicking a transverse field Ising model [16]. The coherent
propagation of magnetic excitations has been measured in
an experimental realization of the ferromagnetic Heisenberg
model [17], but the antiferromagnetism was still out of reach.
A first step in the direction of the observation of short-range
antiferromagnetism in fermionic systems has been taken in
the Hubbard model using the modulation spectroscopy of the
optical lattice [18] as proposed in [19]. Very recently, evidence
for short-range antiferromagnetism has been provided, in
anisotropic fermionic Hubbard structures [20]. The nearest-
neighbor singlet and triplet correlations were found to have
significant imbalance, showing that the temperature was low
enough to sustain detectable short-range antiferromagnetic
correlations.

Motivated by the possibility to observe the short-range spin
correlations, we study here these correlations for the case of
the one-dimensional Hubbard model, as a function of the
interaction and the temperature. We compute in particular
the nearest-neighbor magnetic correlations such as the ratio
between singlet and triplet excitations using both a numerical
procedure, i.e., time dependent density-matrix renormalization
group (DMRG), and analytical arguments. We determine the
optimal regimes of parameters to observe antiferromagnetic
correlations and discuss the consequences of such an order
in terms of Pomeranchuk effect. We also take into account
the presence of the trap as well as the doping of the
system. We additionally show that the difference of singlet
and triplet occupation can be used as a thermometer at low
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temperatures, and we estimate the temperature present in the
experiments [20].

The plan of the paper is as follows. The model and its
magnetic properties are introduced in Sec. II, as well as the
different methods that we use. The nonmonotonic temperature
dependence of double occupancy is described in Sec. III A. We
then introduce a phenomenological model for the low-energy
modes in Sec. III B and use it to explain the origin of the
double nonmonotonicity as a competition between charge and
spin degrees of freedom. We then analyze the singlet and triplet
correlations as a function of temperature and interactions in
Sec. III C. The effect of the trap is discussed in Sec. IV A. In
the regimes that we study, the local-density approximation is
still valid, as seen in Sec. IV B. Finally, we extract the entropy
and temperature reached in the experiment [20] in Sec. V.
Conclusions and perspectives are presented in Sec. VI.

II. HUBBARD MODEL

We consider here cold fermions confined to one-
dimensional tubes along which a lattice potential is applied.
This system is well described over a wide range of parameters
by the single band Hubbard model:

Ĥ = −t
∑

i,σ=↑,↓
(ĉ†i,σ ĉi+1,σ + H.c.) + U

∑
i

n̂i,↑n̂i,↓, (1)

where ĉ
†
i,σ ,ĉi,σ are the fermionic creation and annihilation

operators and n̂i,σ = ĉ
†
i,σ ĉi,σ is the density operator. The

different spin states represent typically different hyperfine
states of the fermionic atoms. t is the tunneling amplitude and
U > 0 is the repulsive on-site interaction between different
spin species and in many setups can be tuned experimentally
using a Feshbach resonances.

This model comprises a lot of interesting physics such as
Mott insulating and liquid phases [6,21,22]. A particularity
of the one-dimensional model is that a low-energy single-
particle excitation separates rapidly into charge and spin mode
[6,21,23]. In the following, the charge density is defined as
the total atom density operator n̂↑ + n̂↓, whereas the spin-
density operator is the difference of the different spin states
Ŝz = (n̂↑ − n̂↓)/2.

Away from half filling both modes are gapless, leading
to a liquid ground state. In contrast, at half filling, any finite
repulsive interaction U > 0 causes a charge gap and the ground
state is a Mott insulator. For small U/t � 1, the charge gap
is exponentially small ∝e−t/U , whereas in the large U/t limit
it is approximately proportional to U . Due to the presence
of the gap, charge fluctuations are strongly suppressed below
temperatures of about a tenth of the gap [24,25].

As for the low-energy magnetic properties, in the regime
of large interactions U � t , the model can be mapped onto
a Heisenberg chain [8]. The important parameter is the
antiferromagnetic exchange coupling Jex = 4t2/U . Intuitively
this is explained by a gain in energy due to a virtual hopping
process when neighboring sites are occupied by different spin
species. The resulting antiferromagnetic coupling leads to
enhanced antiferromagnetic spin correlations below kBT <

Jex at large interaction strength. At zero temperature, the
correlations algebraically decay and their asymptotics can be
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FIG. 1. (Color online) Nearest-neighbor spin correlations
〈Ŝz

i Ŝ
z
i+1〉 as a function of U/t and kBT /t , from DMRG. One can

notice that the spin correlations are stronger within the intermediate
U/t region at finite temperatures. For large U/t , the spin correlations
decay on the scale of the antiferromagnetic exchange Jex = 4t2/U .

well described within the Tomonaga-Luttinger (TL) liquid
description [6], in which the low-energy spin modes have a
gapless linear dispersion.

The temperature dependences of nearest-neighbor spin
correlations 〈Ŝz

i Ŝ
z
i+1〉 are shown in Figs. 1 and 2. Even

for these short-range correlations, the lines of constant cor-
relations of Fig. 1 have the typical domelike structure at
low temperatures, known from the three-dimensional phase
diagram. The nonmonotonicity along the fixed-T lines can be
understood considering the different limits. In the strongly
interacting regime U � t , the system is characterized by
the spin-exchange coupling Jex = 4t2/U , which leads to a
decrease of spin correlations while increasing U . In contrast,
at low interaction strength charge fluctuations are also present
and lead to a destruction of the spin correlations above the
charge gap. Thus spin correlations are maximally robust
against thermal fluctuations in the regime of intermediate
interactions. In Fig. 2, we show that the spin correlations
extracted from the mapping to a Heisenberg chain of coupling
Jex = 4t2/U are in good agreement with the spin correlations
for U/t � 20. The spin correlations at finite temperature in
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Ŝ

z i+
1
〉

FIG. 2. (Color online) Nearest-neighbor spin correlations
〈Ŝz

i Ŝ
z
i+1〉 vs kBT /t . Full lines: DMRG result for U/t =

1,2,3,5,7,10,20 from top to bottom increasing U/t (for low kBT /t).
Dashed lines: exact correlations for the Heisenberg chain of coupling
Jex = 4t2/U for U/t = 10,20. For large interactions U/t � 10, the
spin correlations decay on the scale of the antiferromagnetic exchange
Jex = 4t2/U . The agreement with correlations in the Heisenberg
chain is excellent for U/t � 20.
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the Heisenberg chain have been obtained by using the Bethe
ansatz method [26–31].

Whereas many different methods have been applied in order
to investigate the thermodynamic and ground-state properties,
the calculation of correlation functions at finite temperature is
more involved. For example, within the Bethe ansatz [22],
the free energy can be derived from the thermodynamic
Bethe ansatz [32] or the quantum transfer matrix [33], but
correlation functions are much more difficult to extract. In
addition the presence of the charge gap makes it hard to employ
field-theoretic analysis straightforwardly. This motivates us
to use a variety of methods which complement each other
well: the finite temperature DMRG on the numerical side and
a phenomenological approach which combines bosonization
and Bethe ansatz on the analytical side. In the DMRG
simulation, a matrix product representation [34] of the
finite temperature density matrix ρ̂ = e−βĤ /Z is obtained
by evolving the trivial infinite temperature state in imaginary
time [34–37]. Our implementation conserves the commutator
of total magnetization and charge with the density matrix [38],
and the number of particles is fixed by a chemical potential.

For the imaginary time evolution we use a fifth-order
Suzuki-Trotter decomposition with a typical step of �β ≈
10−3t . The convergence with respect to the number of retained
states M has been checked, with M � 516 states. We use the
periodic matrix product representation for the thermodynamic
limit [39], which is orthogonalized [40,41] before evaluation of
observables. For trapped systems we use the finite-size matrix
product representation [34].

III. PROPERTIES AT HALF FILLING

Here we analyze in detail the charge and spin fluctuations
which occur at half filling in the low-temperature regime
and their experimental signatures. With this aim, we mainly
focus on experimentally measurable quantities as the num-
ber of double occupied sites and the nearest-neighbor spin
singlet and triplet correlations. We find that the competition
between charge and spin fluctuations is most interesting in
the intermediate regime of interaction strength, where the
energy scales are comparable. The competition causes a double
Pomeranchuk effect, i.e., a double nonmonotonicity in the
behavior of the double occupancy versus temperature.

A. Double occupancy

The double occupancy nd = 〈n̂i,↑n̂i,↓〉 reveals intriguing
physics on a broad range of energy scales, in particular at
low energies due to the interplay between spin and charge
degrees of freedom. The effects of this interplay onto the
double occupancy have been considered in previous theoretical
studies in one dimension [42–44], two dimensions in the square
[45–47] and hexagonal lattices [48], and three dimensions
[43,49–52], and experimentally in three dimensions [53,54].

At high temperatures the double occupancy grows mono-
tonically while increasing the temperature toward its infinite
temperature value nd = 1/4, since more and more density
fluctuations are created. In contrast, it has been observed
that at low temperatures the double occupancy decays
with increasing temperature. This decrease is at first sight
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FIG. 3. (Color online) Temperature derivative of the double
occupancy ∂nd/∂(kBT ) vs (U/t,kBT /t), from DMRG. This quantity
allows one to characterize the regimes of growths or decays of the dou-
ble occupancy with temperature. The successive decay and growth of
double occupancy, for large U/t , is the signature of the Pomeranchuk
effect. For intermediate interactions 1 � U/t � 4, the double occu-
pancy successively grows, decays, and grows again with temperature.
This signals the presence of a double Pomeranchuk effect.

counterintuitive, since it lowers the charge fluctuations. How-
ever, it is understood that it facilitates spin excitations and is
preferred in terms of entropy. The entropy density s and the
double occupancy are related by the (exact) Maxwell relation
1
kB

∂s
∂U

= − 1
kB

∂nd

∂T
. This effect is the analog of the Pomeranchuk

effect [42,44,45,49–52,55].
We observe this phenomenon in the regime of large

interactions U � t , as shown in Fig. 3, where it is shown that
∂nd/∂(kBT ) is successively negative and positive as tempera-
ture grows. Cuts of nd at fixed U/t are also shown in Fig. 4.
This “simple” Pomeranchuk effect has been discussed for a
one-dimensional system using different techniques [42–44]. In
the regime of low temperatures and intermediate interactions
1 � U/t � 4, we observe, however, that there is an additional
low-temperature regime of growth of double occupancy. As
we will see, this is the sign of a double Pomeranchuk effect.
According to this picture, the double occupancy actually
decays (on lower temperatures than shown in Figs. 3 and 4 but
visible in Fig. 5), grows, then decays again, and finally grows at
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FIG. 4. (Color online) Double occupancy nd vs kBT /t , from
DMRG, for U/t = 1,2,3,5,7,10 from top to bottom increasing U/t .
For large U/t , the conventional Pomeranchuk effect is the successive
decay and growth of double occupancy with growing temperature.
For intermediate interactions 1 � U/t � 4, the double occupancy
successively decays (not visible here), grows, decays, and grows again
with temperature, which we refer to as a double Pomeranchuk effect.
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FIG. 5. (Color online) The double occupancy as a function of
temperature: (a) for U/t = 1, (b) for U/t = 3, and (c) for U/t = 10.
Thick red line: double occupancy from the phenomenological
argument. The dashed and dotted lines denote the contribution of the
spin and charge sectors, respectively. Thick black line: DMRG, same
data as Fig. 4 but centered on the low-temperature regime. The density
of states (up to an arbitrary factor) is also shown as a shaded area chart,
which is estimated by the spinon, particle, and hole dispersion given
by Bethe ansatz [25]. For U/t = 10, the contribution from the charge
sector is negligible, and the temperature dependence of nd is very
well described by that of the spin sector in this temperature regime.

higher temperatures. A similar nonmonotonicity in the double
occupancy has previously been observed in the extended
Hubbard chain with moderate nearest-neighbor interactions
[42]. In the next sections, we endeavor to understand this
phenomenon in terms of a competition between charge and
spin degrees of freedom using a phenomenological model.

B. Phenomenological approach

In order to identify the physical mechanism underlying
the double Pomeranchuk effect seen in the DMRG results,
we discuss the finite temperature behavior of the double
occupancy within an effective model.

Within this model we use the well-known fact that the
low-energy excitations of the one-dimensional Hubbard model
at half filling consist of decoupled spin and charge sectors
with linear and massive dispersion, respectively [6]. Further,
we assume that the spin and charge excitations obey bosonic
and fermionic statistics, respectively. This leads to an effective
low-energy Hamiltonian of the form

Ĥ = EGS + Ĥs + Ĥc. (2)

Here EGS is the ground-state energy of the Hubbard model.
The spin Hamiltonian is given by

Ĥs =
∑

σ=↑,↓

∑
k

εs(k)ŝ†σ (k)ŝσ (k), (3)

where the linear dispersion εs(k) = h̄vs|k| corresponds to
the excitation energy of the spin sector with spin velocity
vs. The operators ŝ†σ (k),ŝσ (k) are assumed to have bosonic
commutation relations.

The charge part is expressed by fermionic particle p and
hole h excitations:

Ĥc =
∑

k

εc(k)[p̂†
kp̂k + ĥkĥ

†
k], (4)

with a massive dispersion εc(k) = √
(h̄vck)2 + �2

c , with a
sound velocity vc and a gap �c. The particles and holes
have fermionic statistics and are related by the particle-hole
symmetry.

The introduced parameters, EGS, vs, vc, and �c, depend on
the hopping t and the interaction U and are determined by the
Bethe ansatz [22] as follows:

EGS = −4t

∫ ∞

0

dω

ω

J0(ω)J1(ω)

1 + exp(uω/4)
, (5)

vs

vF
= I1(2π/u)

I0(2π/u)
, (6)

vc

vF
=

√
�c
2t

[
1 − 2

∫ ∞
0 dω ωJ1(ω)

1+exp(uω/2)

]
1 − 2

∫ ∞
0 dω J0(ω)

1+exp(uω/2)

, (7)

�c

t
= u

2
− 2 + 4

∫ ∞

0

dω

ω

J1(ω)

1 + exp(uω/2)
, (8)

where J0(ω) and J1(ω) are the Bessel functions and I0(ω) and
I1(ω) are the modified Bessel functions. We have used the
parametrization u = U/t , vF = 2at/h̄ is the Fermi velocity in
the noninteracting case, and a is the lattice constant.

The effective model Eq. (2) is expected to be valid in
the following two situations: For weak and intermediate
interaction strength, the charge gap lies within the linear part
of the spin-excitation band. The model then remains valid
for temperatures below or comparable to the charge gap. For
strong interaction strength, the charge gap is larger than the
spinon bandwidth. For temperatures well below the energy
cutoff given by the spinon bandwidth, the system is dominated
by the spin sector and well described by the Heisenberg model
or alternatively the linear part of the spin-excitation band.

The quadratic form of the Hamiltonians Eqs. (3) and (4)
allows us to immediately compute the partition function and
the free energy F = EGS + Fs + Fc, which reads

Fs = −L
π

6h̄vs
(kBT )2, (9)

Fc = −L
2kBT

πh̄vs

∫ ∞

�c

dε
ε√

ε2 − �2
c

ln[1 + e
− ε

kBT ], (10)

where L is the system length. For the Hubbard model, the
double occupancy is the derivative of the free energy with
respect to interaction strength:

nd (T ) = ∂F

∂U
. (11)
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At zero temperature, only the ground state contributes to
the double occupancy, i.e., nd (T = 0) = ∂EGS/∂U , which is
evaluated exactly. The other contributions determine the finite
temperature behavior of the double occupancy.

Combining the expression for the double occupancy
Eq. (11) with Eqs. (9), (10), and (5)–(8), the temperature
dependence of the double occupancy can be computed straight-
forwardly. The results for different values of U/t are shown
in Fig. 5 together with the corresponding DMRG result.

As can be seen in Fig. 5, the results for the double occupancy
given by the phenomenological model approach the DMRG
result for temperatures below kBT � 0.15. In order to analyze
the behavior of the double occupancy, we show as well the sep-
arate contributions of the spin and charge sector and the density
of states. One sees that the charge and spin sectors always
increase and decrease the double occupancy, respectively, with
increasing temperature. The increase caused by the charge
sector is expected, since charge excitations are connected to
particle fluctuations which cause the increase of the double
occupancy. In contrast, the excitation of the spin sector
decreases particle fluctuations. Since at temperatures much
below the charge gap the gapless spin excitations dominate,
the double occupancy is found to start universally decreasing.
This conclusion is in full agreement with the Pomeranchuk
scenario discussed previously [42,43,45,49–52,55–57].

At higher temperature the variation of the double occupancy
is determined by the competition of both sectors and as
a result can be nonmonotonic. At intermediate interaction
strength [see Fig. 5(b)], the decrease is quickly followed
by a clear rise for kBT > 0.1t due to the onset of charge
excitations. The edge of the charge excitations band shows
up as a singularity in the density of states at kBT /t ∼ 0.32.
This divergence is reminiscent of the square-root singularity
of the density of states of particles with a quadratic spectrum
in one dimension. At even higher temperatures the density
of states of the spin sector rises considerably, such that
again spin excitations dominate, which leads to another
decrease of the double occupancy. This explains the previously
mentioned double Pomeranchuk effect, which thus directly
stems from the separation of charge and spin excitations
for one-dimensional systems. Let us note that the first
nonmonotonicity in the double Pomeranchuk effect has a small
amplitude and thus an experimental observation would be very
demanding.

As explained above, our phenomenological model is valid
in the temperature regime where the spectrum of spin and
charge degrees of freedom is approximately linear and mas-
sive, respectively. For high interactions as in Fig. 5(c), the
spinon bandwidth decreases approximately proportionally to
J 2/U . Therefore the regime of validity of the phenomenolog-
ical model is reduced for larger U/t . This is clearly seen in
Fig. 5(c), in which the curves only start to overlap close to
kBT /t ∼ 0.1. In particular, the slopes of the two curves show
still considerable deviations.

The observation of the temperature dependence of the
double occupancy is thus intimately linked to the interplay
of spin and charge modes, which goes beyond the simple
Pomeranchuk scenario (decrease and increase only).

As we will see in the next section, the spin charge sep-
aration is less evident in the spin-spin–correlation functions,

because both types of fluctuations lead to a suppression of
correlations.

C. Singlet and triplet correlations

Recent experimental advances open the possibility to
measure the nearest-neighbor singlet and triplet correlations
[14,20]. This motivates us to study their property in detail. In
the sector Sz = 0, they are defined as

P̂s(i) = |s〉〈s|, P̂t0(i) = |t0〉〈t0|, (12)

|s〉 = (|↑i ↓i+1〉 − |↓i ↑i+1〉)/
√

2, (13)

|t0〉 = (|↑i ↓i+1〉 + |↓i ↑i+1〉)/
√

2, (14)

where |↑i〉 (|↓i〉) denotes the state with one single
atom on site i with spin up (down). Using the conven-
tional definition of spin operators, 
Si = ∑

α,β={↑,↓} ĉ
†
iα 
σαβ ĉ

†
iβ

where 
σ denotes the three Pauli matrices, these projectors
read P̂s(i) = 1/4P̂ 1

i P̂ 1
i+1 − 
Si · 
Si+1, P̂t0(i) = 1/4P̂ 1

i P̂ 1
i+1 +


Si · 
Si+1 − 2Ŝz
i Ŝ

z
i+1. Here P̂ 1

i is the local projector onto singly
occupied states on site i. As a consequence, singlet and triplet
correlations depend on both spin and charge correlations. Due
to the spin rotation SU(2) symmetry, one can simplify the
above relations using 〈
Si · 
Si+1〉 = 3〈Ŝz

i Ŝ
z
i+1〉.

At low temperatures, the singlet correlations are higher
than triplet correlations, as shown in Fig. 6. The ground-state
singlet correlations increase with U/t , due to the suppression
of charge fluctuations. As temperature increases, more and
more triplet excitations are created and the singlet correlations
decrease. The corresponding energy scale is of the order
of the tunneling t at low U/t and is the antiferromagnetic
exchange Jex at high U/t . In contrast, the triplet correlations
are very small at low temperatures and then increase with rising
temperature, since excitations in the spin sector are created
and dominant. At higher temperatures, the triplet correlations
decay due to creation of charge fluctuations, seen in the
increase of the doubly occupied states.

We have thus a good characterization of the degree of short-
range antiferromagnetic order as a function of temperature.
An interesting question is how the quasi-long-range order

0 2 4 6
kBT/t

0.0
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0.4

0.6

〈P̂
s
〉

(a)

0 2 4 6
kBT/t
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0.2

〈P̂
t0
〉

(b)

FIG. 6. (Color online) Spin correlations in a homogeneous
chain at half filling for U/t = 1,2,3,5,7,10,20 from bottom to top
increasing U/t (high kBT /t). (a) Singlet correlations. The number of
singlets is maximal in the ground state and decays monotonically with
growing T . (b) Triplet Sz = 0 correlations. At low temperature triplet
excitations are created, and they decay again at higher temperatures.
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FIG. 7. (Color online) (a) Spin correlations 〈Ŝz
i Ŝ

z
i+1〉 as a

function of distance |i − j |, log-lin scale, U/t = 1.5, kBT /t =
0.20,0.48,1.11 from top to bottom increasing T . The correlations
decay exponentially for large distances and increase while lowering
T . The DMRG relative error for distances |i − j | � 12 is below
1% comparing the number of retained states M = 192 and 512.
(b) Correlation length ξ as a function of temperature kBT /t for
U/t = 0,3,10. The value of ξ represented here is obtained with a
number of retained states M = 512. The deviations with respect to
the number of states M = 192 and 512 is below 1%; see Fig. 8 for
the convergence with respect to the fit range.

(for one dimension no long-range antiferromagnetic order
exists) is connected to the short-range one. In order to
explore this issue we investigate the decay of the correlations
with distance, since in one dimension at finite temperature
correlation functions decay exponentially [6].

Typical results for the spin-spin correlations as a function
of distance are shown in Fig. 7.

A full analysis of the long-range behavior would go
beyond the scope of the present paper, but some elements of
information can be readily extracted. We refer the reader to [58]
for a very insightful study of the behavior of the correlations
at finite temperature in the one-dimensional t-J model. This
model is a good effective model for the large-U Hubbard model
with small hole doping.

From the field theory of one-dimensional systems [6] one
can expect the spin-spin correlation to behave asymptotically
as

〈Sr · S0〉 = A(r) + (−1)rB(r), (15)

where A(r) is the ferromagnetic component, describing
fluctuations with momentum close to zero, and B(r) is
the antiferromagnetic one describing spin fluctuations with
momentum close to π . In the low-energy limit A(r) only
depends on the spin part of the Hamiltonian and thus on vσ ,
while B(r) depends both on the charge and the spin parts.
At zero temperature A(r) decays as 1/r2 while B(r) decays
with a nonuniversal power law. At large interaction strength
U/t , the antiferromagnetic part B(r) decays relatively slowly
like 1/r and thus strongly dominates at large distances over
the ferromagnetic part A(r). At finite temperature, arguments
using conformal invariance show that a power-law decay of
correlations with distance is turned at long distances into an
exponential decay [6] with a correlation length of the form

ξν = (h̄βv)/(νπ ), (16)
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ξ
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U/t = 5.0

U/t = 10.0

FIG. 8. (Color online) Rescaled spin-correlation length ξkBT /at

vs temperature. In the Tomonaga-Luttinger liquid regime, the con-
formal field theory predicts that ξkBT /at goes to a constant for low
T . We compare it with the prediction of the Tomonaga-Luttinger
liquid for U/t = 5,0,10 in this order from top to bottom (arrows).
The correlation length is estimated on a range |i − j | in [10,20] and
the error bar is the difference with the estimate for a range [6,12], the
small ranges being the main source of error.

where β = 1/(kBT ) is the inverse temperature, ν is the
zero-temperature exponent, and v is the velocity of the corre-
sponding excitations. We thus see that in general the spin-spin
correlation will be characterized by two correlation lengths.
For the parameters considered here we find numerically that
the part A decays very rapidly and that the antiferromagnetic
part dominates the decay of the correlations already at
relatively small distances. At large and intermediate interaction
strength and low temperatures, this can be understood, since it
is well known that the antiferromagnetic correlations dominate
at zero temperature. We extract the correlation length from
a single exponential fit as shown in Fig. 7(b) for various
temperatures. We see a clear divergence at low temperature
as can be expected from Eq. (16). The general temperature
dependence of the correlation length is shown in Fig. 8.

The field-theoretic formula Eq. (16) would predict a
saturation of ξkBT at low temperature as roughly observed
in the numerical data. For very small or very large U one
can quantitatively compute the correlation lengths as ξ/a =
t/(πkBT ) for U/t = 0 and ξ/a = h̄vs/(aπkBT ) in the large
U/t limit, with vs defined in Eq. (6).

These limiting values (indicated with arrows in Fig. 8)
agree reasonably well with the extrapolation of the numerical
data. For intermediate U values and larger temperatures there
are of course many corrections to the asymptotic low-energy
formulas coming in particular from the coupling of the spin and
charge degrees of freedom at intermediate energies. Similarly
strong deviations from the expected zero temperature limit
have been observed for the t-J model [58].

We conclude this section with a few observations. First, the
value ξ/a � 2 is reached at a fraction of the temperature on
which the nearest-neighbor correlations grow. The correlation
length also grows faster for intermediate U than in the limit
of large and small U . This is in qualitative agreement with
the fact that the nearest-neighbor correlations are the largest
at intermediate U (see Fig. 1) and suggests that the measure
of the nearest-neighbor correlations is indeed a good way to
detect the onset of quasi-long-range antiferromagnetic order.
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IV. TRAPPED SYSTEM

Since in current experimental realizations a trapping poten-
tial is present, we would like to understand its effect on the
singlet and triplet correlations. We focus in particular on the
parameters used in [20].

A. Singlet and triplet correlations in the trap

In the following, the system is described by the Hamilto-
nian of Eq. (1) with an additional harmonic potential Vi =
Vt (i − L/2)2, which is coupling to the local density.

We find that due to thermal redistribution of the particles
within the trap the dependence of averaged spin correlations
on temperature can differ from the case of a homogeneous
system discussed above (Fig. 6).

We discuss two different density regimes, with a density
close to n = 1 and 2 at the center of the trap at low temperatures
kBT /t � 1. The density profile can be better characterized by
the rescaled densities ρ = (Vt

zt
)d/αN , with ρ = 1.61,4.82 here

(see also the Appendix).
For the low rescaled density ρ = 1.61 [Fig. 9(a)], at first

sight, the behavior of the singlet and triplet correlations
resembles that of the homogeneous system. In particular,
the singlet correlations decay monotonically with increasing
temperature and the triplet correlations show a maximum
around kBT /t = 1.55. However, due to the redistribution of
the density by thermal excitations [Fig. 9(b)], the correlations
decrease more rapidly than they would in a homogeneous
system. This is due to the fact that doping away of half filling
reduces the spin correlations as seen in Figs. 9(c) and 9(d).

In contrast, for high rescaled density ρ = 4.82, the singlet
correlations behave very differently and show a nonmonotonic
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FIG. 9. (Color online) (a) Singlet and triplet correlations as a
function of kBT /t averaged over the chain in the presence of a
trapping potential, for a rescaled density of ρ = 1.61 and U/t = 1.44.
(b) Density distribution, (c) local singlet, and (d) triplet correlations
along the chain, kBT /t = 0.5,1.5,3 for the solid, dotted, and dash-
dotted lines, respectively.
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FIG. 10. (Color online) (a) Singlet and triplet correlations as a
function of kBT /t averaged over a single trapped chain, for a rescaled
density of ρ = 4.82 and U/t = 1.44. (b) Density distribution, (c)
local singlet, and (d) triplet correlations along the chain, kBT /

t = 0.5,1.5,3 for the solid, dotted, and dash-dotted lines respectively.

temperature dependence [Fig. 10(a)]. This nonmonotonicity
can be explained by the competition between the intrinsic
decrease, which is counteracted by the particle redistribution.
At very low temperatures the intrinsic decrease of the singlet
correlations is dominating. This first decrease is followed by
a strong increase of correlations. As seen in Fig. 10(b), the
particles are redistributed from the center toward the edges
for increasing temperature. This leads in the central part of
the trap to a depletion of the local density toward half filling
〈n̂〉 = 1. Since the singlet correlations are maximized at half
filling [see maximum around i = 22 in Fig. 10(c)], this leads
to an increase of the local singlet correlations in the central
region of the trap [Fig. 10(c)]. This increase in the central
region overwhelms the intrinsic decrease which occurs in the
boundary regions at intermediate temperatures. For even larger
temperatures the redistribution is less relevant and the intrinsic
decay dominates. Thus, the competition between the intrinsic
singlet correlation decay and the enhancement of correlations
by particle redistribution is the cause of this nonmonotonicity.

The nonmonotonic temperature dependence of the singlet
and triplet correlations found makes their use as a thermometer
difficult. However, for the parameters considered here the
difference of the two is monotonic, as seen in Figs. 9(a) and
10(a), which can be a better measure of temperature. Indeed,
the difference of singlet and triplet correlations is a function
of magnetic correlations only, which have monotonous tem-
perature variations.

B. Local observables in the trap

In order to check the quality of the local-density approxi-
mation we plot the singlet and triplet correlations for different
characteristic densities 0 < ρ < 5 at kBT /t = 1 versus the
local doping δ = 1 − 〈n̂〉 in Fig. 11. Since all the data collapse
on a single line, this indicates that the actual value of the
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FIG. 11. (Color online) Singlet and triplet correlations as a
function of the local doping δ = 1 − 〈n̂〉, collapsed data for several
trapped chains with different rescaled densities 0 < ρ < 5 (various
markers), kBT /t = 1. (a) U/t = 1.5. (b) U/t = 10. The Gutzwiller
approximation for U/t = 10 is also depicted as lines; see text.

correlations is fully determined by the local density. We also
checked that the local density versus local chemical potential
dependence collapses to a good precision, indicating that the
local-density approximation holds.

The spin correlations are maximal at half filling since empty
or doubly occupied sites do not contribute to spin correlations.
The decay of the spin correlations is found to become sharper
for larger interaction values U/t . It is explained as follows: for
strong interactions, the doping systematically induces double
occupancies, which in turn suppress the spin correlations.
Therefore, the dependence on the doping around half filling is
approximately linear. Using the Gutzwiller approximation [21]
one obtains, in the limit of large U/t , Ps/t0(δ) = Ps/t0(δ = 0)
(1 − |δ|)2. This result is shown as lines in Fig. 11 and is in
good agreement with the numerical results for U/t = 10 for
low doping.

On the other hand, for weaker interactions, the density
fluctuations are already non-negligible at half filling, and the
additional particles are partially redistributed on empty sites,
limiting the formation of double occupancies and thus making
the suppression of spin correlations by the doping softer.

V. COMPARISON TO EXPERIMENTAL RESULTS

In current experiments, the one-dimensional tubes are
obtained using a very strongly anisotropic three-dimensional
lattice as in [20], with a strong tunneling t along the x

axis and weaker tunneling t⊥ along the transverse y and z

axes. In this section, we consider the array of trapped one-
dimensional tubes, neglecting the weaker coupling t⊥ between
chains. This approximation is typically valid for temperatures
kBT � t⊥. The trapping potential is assumed to be harmonic
Vijk = Vt (i2 + αyj

2 + αzk
2), where (i,j,k) are indices along

the x,y,and z axes, with Vt/t = 5.75 × 10−3, αy = 2.84, and
αz = 0.84. The interaction strength is U/t = 1.44, and the
global chemical potential is set to reproduce the total number of
atoms N = 66 000 for each temperature. For these parameters,
the interactions are too small to form clear Mott plateaus.

In the experiment [20], the density difference 〈P̂s − P̂t0〉/2
has been measured for a set of different initial entropies
per particle Si before loading atoms into the lattice. Here
we estimate the temperature Tf and entropy per particle
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1
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k
B
T

f
/t
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FIG. 12. The final entropy Sf (a) and temperature kBTf /t (b)
for the experiment [20]. Both are deduced from the difference of
the singlet and triplet correlations as a function of the experimental
initial entropy Si . The error bars on Si have been estimated in [20].
The uncertainty on Sf and kBTf /t is the propagated uncertainty of
〈P̂s − P̂t0〉/2 from [20], the DMRG errors being much smaller. We
also take into account the uncertainty due to the fluctuations of the
number of atoms N = 66 000 ± 6000 and they are found to add
very little to the estimated uncertainty. Experimental data courtesy
of Greif et al. [20].

Sf after the atoms have been loaded into the lattice. They
are determined such that the simulated spin correlation as
a function of Tf (or of Sf ) matches the experimentally
obtained value. The correspondence is unique for the cases
we considered, as was the case for single chains in Figs. 9(a)
and 10. Note that we neglect altogether the small amount
of entropy along the transverse directions y and z, since this
calculation is based on the simulation of isolated chains.

The results for Sf and Tf are shown in Fig. 12. For large
initial entropy Si > 1.5kB the dependence of the final entropies
on the initial one is consistent with a linear behavior within the
error bars. Typically the determined entropy Sf is a bit larger
than the initial entropy Si . This effect is even larger at lower ini-
tial entropy, where the determined entropy Sf approximately
saturates. In this regime, the final entropy Sf in the optical
lattice is approximately 0.4kB larger than the initial entropy Si ,
which might stem from the heating during the lattice loading
procedure, a value consistent with the previous estimation
[20]. For larger initial entropies, the heating seems less pro-
nounced. We also extract the corresponding final temperature
[Fig. 12(b)], which has a very similar behavior. From our data,
we see that the lowest temperatures reached in the experiment
[20] are kBTf /t ≈ 1 ± 0.1, which corresponds to the onset of
nearest-neighbor spin correlations as shown in Sec. III C.

We also compute the entropy and temperature for two
different tunnelings t corresponding to t/t⊥ = 7.3 and 5.0 in
Fig. 4(a) of [20], with interaction strength U/t = 1.43 and 2.36
and trapping potential Vt/t = 5.5 × 10−3 and 8.0 × 10−3, re-
spectively [59]. As shown in Fig. 13, although the experimental
population imbalances in singlet-triplet correlations have the
same value 〈P̂s − P̂t0〉/2 � 0.035 (within error bars) for the
two values of t , the deduced entropy S is actually larger by
a factor of 1.4 for the weaker t . This is consistent with our
previous results, since a larger temperature (larger entropy) is
needed to get similar correlations for larger U/t in the regime
U/t � 3. (See Fig. 6.) One of the possible reasons for the
entropy to be larger in the case of a lower tunneling t may be
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FIG. 13. (Color online) The singlet-triplet population imbalance
as a function of the final entropy Sf for t/t⊥ = 7.26,5.03. The dots
denote experimental singlet-triplet population imbalance from [20]
and the deduced final entropy. The error bars on the population
are from the experimental ones [20] and the propagated error on
the entropy is represented. All other uncertainties are neglected
(see Fig. 12 for details).

that the loading procedure induces more heating since the final
lattice potential is higher.

VI. CONCLUSION

In this paper, we have studied various aspects of the
thermodynamics of the one-dimensional Hubbard model,
both in the infinite length limit and in trapped setups. In the
first part, we have described in detail the low-temperature
properties of the double occupancy. The Pomeranchuk
effect occurs in its most simple form at large U/t , where
the double occupancy nd (T ) first decreases and then
increases with increasing temperature. For intermediate
interactions, however, the nonmonotonicity is more complex.
To understand the underlying physics, we have considered an
effective theory including both the spin degrees of freedom
with linear dispersion and charge degrees of freedom with
gaped dispersion. This treatment yields a clear picture of
the Pomeranchuk effect in terms of the low-lying excitation
modes, in particular, in the nontrivial intermediate U/t regime.

In the second part, we obtained the low-temperature singlet
and triplet nearest-neighbor correlations and their dependence
on interactions. From the study of longer-range correlations,
we observe that the temperature of the onset of short-range
correlations is slightly above the temperature of growth of
correlation length. Below this temperature, we find a fair
agreement of the correlation length with the predictions of
conformal field theory in the regime of large interactions.

Additionally, we have discussed the effect of a trap potential
onto the temperature dependence of correlations. We remark
that the density redistribution effect can play a significant role
and can induce a nonmonotonic dependence of singlet cor-
relations with temperature, depending on the density regime.
This nonmonotonicity does not show up in the difference of the

singlet and triplet occupation. This quantity can thus be used as
a thermometer. We also present an extensive comparison with
the experiment [20] to extract the temperature and entropy in
various setups. We estimate that kBT /t ≈ 1 ± 0.1 is reached in
the experiment, close to the temperature where longer-distance
correlations are established.
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APPENDIX: RESCALED DENSITY

For completeness in this appendix, we discuss the properties
of the reduced density ρ, following the notation of [52].
This was first introduced in the context of one-dimensional
Bose systems [62]. For the sake of generality, consider a
d-dimensional lattice of lattice spacing a, within a spherically
symmetric potential V (r) = Vt |r/a|α .

Within the local-density approximation, the induced local
chemical potential is μ(r) = μ0 − Vt |r/a|α and the average
of any local observable 〈Ô(r)〉 is uniquely determined by
its homogeneous counterpart evaluated at the corresponding
chemical potential O[μ(r)]. Here μ0 denotes the chemical
potential in the center of the trap. In this situation the average
over the trap of a local operator Ô(r) reads

O
N

= �d−1

ad

∫
dr rd−1O(r)

= 1

ρ

�d−1

α

∫ μ0(ρ)

−∞
dμ(μ0(ρ) − μ)d/α−1O(μ). (A1)

In the last expression we changed variables to μ = μ

zt
, with z

being the lattice coordination, and defined

ρ =
(

Vt

zt

)d/α

N. (A2)

The corresponding formula for the particle number can be
used in order to determine the central chemical μ0, which
only depends on the characteristic density. Therefore, given
the dimensionality d and the nature of the trap through the
exponent α, two systems with the same reduced density
have the same integrated properties, although their respective
trapping potential Vt and number of particle N may be very
different. This quantity is useful to establish generic state
diagrams [52] in trapped setups.
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