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Atom laser based on four-wave mixing with Bose-Einstein condensates in nonlinear lattices
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Optical lattices are typically used to modify the dispersion relation of the matter wave, in particular, to ensure
resonant conditions for multiwave interactions. Here we propose an alternative mechanism of wave interactions.
It can be implemented using a nonlinear lattice and modifies the momentum conservation law of the interacting
atoms, leaving the energy conservation unchanged. We propose to apply this phenomenon to construct an atom
laser via a resonant four-wave mixing process.
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Resonant interactions in a nonlinear system occur when
matching conditions, ensuring energy and momentum conser-
vation, are satisfied for the modes coupled by the nonlinearity.
This fundamental phenomenon has been studied especially
well in the context of optical applications [1] and spectroscopy
[2]. More than a decade ago it was also applied to the dynamics
of atomic Bose-Einstein condensates (BECs) [3], where four-
wave mixing (FWM) was demonstrated experimentally [4],
and became an important contribution to the field of nonlinear
atom optics [5]. The physics of matter-wave implementation
of the FWM is based on binary collisions in ultracold
atomic gases. Due to the two-body interactions, two matter
waves form a grating from which a third wave diffracts,
thus generating a fourth wave. This process has been used
for coherent matter-wave amplification [6] and generation of
correlated atom pairs [7–11].

A very important application of nonlinear ultracold atoms
systems is the atom laser [12], i.e., a source of coherent matter
waves. It opened the way to fascinating applications of atom
optics [5] and interferometry [13]. In this article we propose
yet another realization of the atom laser, which is based on the
FWM process in a nonlinear lattice.

Due to the constraints imposed by the conservation laws,
mode interactions are very sensitive to the dimensionality of
the system. In particular, the conservation laws require the
magnitudes of all atomic momenta in the center-of-mass frame
to be equal. For atoms in a single internal state, it requires at
least a two-dimensional (2D) geometry [3] and is completely
inhibited in the 1D setting. In order to make the phenomenon
observable in one dimension, one has to employ additional
physical tools. In nonlinear optics it has been realized that
artificial dispersion, introduced, for instance, by periodic
variation of medium parameters, can completely change the
propagation and allow for resonant mode interactions in 1D
systems. Among relevant studies in this direction we mention
resonant mode interactions in 1D nonlinear photonic crystals
[1], in nonlinear discrete systems [14], and, more recently,
in quasi-1D BECs loaded in (linear) optical lattices. This
phenomenon has been studied both theoretically [15] and
experimentally [8,16].
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The main physical ingredient introduced by the linear
lattice is a change of the dispersion relation or, in terms of
the BEC application, of the energy dependence on the Bloch
vector (quasimomentum) of the macroscopic wave function.
Thus, considering the matching conditions, the linear optical
lattice modifies the energy conservation law E(k1) + E(k2) =
E(k3) + E(k4) [where E(k) is now a periodic rather than a
parabolic function], not affecting the momentum conserva-
tion. It is thus natural to explore the implementation of an
alternative realization of resonant mode interactions, namely,
the possibility of modification of the momentum conservation
not affecting the conservation of the energy.

In order to address this possibility we recall that wave
mixing is an essentially nonlinear phenomenon allowing for
modification of matching conditions by means of modulations
of the nonlinearity. In this context we note that in nonlinear
optics the multimode processes in combined linear and nonlin-
ear lattices (nonlinear photonic crystals) have already received
considerable attention, triggered by Ref. [17]. In BECs, where
the nonlinearity stems from the two-body interactions, a
nonlinear spatial lattice can be induced by periodic modulation
of the scattering lengths using the Feshbach resonance.
Such a pure nonlinear lattice has recently been implemented
experimentally [18] and was shown to be a useful tool for
managing superfluid and Josephson currents [19] or soliton
dynamics [20]. The main goal of this paper is to propose a
mechanism for a coherent matter wave formation in a nonlinear
lattice.

In the mean-field approximation a 3D BEC loaded in
a nonlinear optical lattice G(x) is described by the Gross-
Pitaevskii equation (GPE) for the order parameter �,
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where ωy,z are frequencies of the harmonic trap in the
transverse direction and the nonlinear coefficient G(x) de-
scribes the spatial modulation of the scattering length. The
particular shape of the nonlinear lattice is not crucial: here
we choose G(x) = g[1 + α cos(κx)], where g = 4πh̄2as/m,
as is the spatially averaged value of the scattering length, m

is the atomic mass, κ = 2π/d is the lattice vector, d is the
lattice period, and α is the lattice depth. We consider an
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elongated BEC along the x axis, which is also the direction
of the Bragg pulses imposing momentum on the condensate.
We assume that in the perpendicular direction there is strong
confinement, hence the evolution will be quasi-1D. Conse-
quently we develop a 1D phase-matching analysis (although
we emphasize that our numerical simulations below are fully
3D).

Considering an FWM involving a source wave packet
(mother cloud) with momentum h̄k0 and wave packets with
momenta h̄k1, and h̄k2 (daughter clouds), conservation of the
energy requires

2k2
0 = k2

1 + k2
2 . (2)

For a homogeneous condensate, mother and daughters do
not interact resonantly because energy conservation and mo-
mentum conservation cannot be (nontrivially) simultaneously
satisfied. If, however, at some instant the nonlinear lattice is
switched on, wave mixing becomes possible. Indeed, the wave
vectors entering the problem and the lattice period satisfy the
modified momentum conservation law, given by

2k0 = k1 + k2 ± κ. (3)

The relation among the involved parameters is illustrated
schematically in Figs. 1(a) and 1(b). For fixed κ one can
identify the resonant FWM wave vectors in the following
way. Choose the initial k0 and draw a vertical dotted line [see
Fig. 1(a)]. The wave numbers of the daughter wave packets
(k1 and k2) are given by the abscissa of the crossing points of
the vertical dotted line with the lighter (red) solid curve.

One can readily establish that for a given nonlinear lattice
κ , there exists a threshold |k0| = |κ|/4 [see Fig. 1(a)], below
which FWM does not occur. Above this value the mother
cloud generates two daughter clouds, which move in opposite
directions [central (blue) shaded region] or the same direction
[left (red) and right (gray) shaded regions). The respective
geometry of the wave vectors involved become particularly
evident in the plane (k1,k2) as shown in Fig. 1(b). Indeed the
momenta of the generated wave packets at the given k0 and κ

are determined by the intersection of the circle of radius
√

2|k0|
[as follows from Eq. (2)] and the line given by Eq. (3). While
the position of the circle is fixed by its center located at the
origin, the position of the line varies depending on the relation
between k0 and κ . Let k0 be fixed and the lattice parameter κ be
varying. Then the FWM process is possible (the line crosses the
circle) if 0 < κ < 4|k0| [the circle between the two solid lines
in Fig. 1(b)]. In a more narrow region, (2 − √

2)|k0| < κ <

(2 + √
2)|k0|, the produced wave packets propagate in opposite

directions [any line between two dashed lines in Fig. 1(b)
will cross the circle in the second and fourth quadrants]. If,
however, 0 < κ < (2 − √

2)|k0| or (2 + √
2)|k0| < κ < 4k0),

then the generated wave packets will propagate in the same
direction.

In the current study we concentrate on the degenerate case,
where one of the final momenta is exactly the same as the
initial one, i.e., in the case k0 = k2 = −k1 = κ/2 [shown in
Fig. 1(a)] (the general case is described elsewhere [21]). As
a reference physical system we have chosen the 174Yb BEC
used in the original experiment [18], where spatial modulation
of the scattering length up to 250 nm on a scale of 278 nm

FIG. 1. (Color online) (a) Schematic of the FWM wave vectors
involved in the wave mixing process for the fixed nonlinear lattice
wave vector κ . The branches of the solutions k1,2 for a given k0 � 0
satisfy the momentum conservation law with a plus sign in (3)
[the case k0 � 0, corresponding to a minus “−” sign in (3), is
considered similarly]. Vertical dotted and horizontal dashed lines
show an example of the daughter pulse wave vectors k1 and k2,
whose values are obtained from the intersection with the vertical axis;
data are chosen to correspond to the numerical experiment shown
in Fig. 2: this is the degenerated case k1 = −k2 = k0 = κ/2. The
solid black line with the slope indicates k1 = k0 (or, alternatively,
k2 = k0). (b) Geometry of the wave vectors involved in the FWM
process at different lattice vectors. The diagonal dot-dashed line
passing through the center corresponds to the degenerated case. The
region of parameter k0 for which FWM occurs can be divided into
three subdomains (shaded red, blue, and gray, from left to right).
The narrow left (red) shaded region ( |κ|

4 � |k0| � |κ|
2+√

2
≡ κ0) shows

the configuration for which daughter waves propagate in the same
direction, which is opposite to the direction of the source wave;
the central (blue) shaded region (κ0 � |k0| � |κ|

2−√
2

≡ κ1), daughter
waves propagate in opposite directions; and the right (gray) shaded
region (κ1 � |k0|), daughter waves propagate in the same direction as
the source wave.

was observed. We performed full 3D numerical simulations
using the GPE. We used the atomic mass of ytterbium
m = 2.89 × 10−25 kg and the background scattering length
a = 5.55 nm. We started by preparing a system of N = 104

atoms in the ground state of an anisotropic harmonic trap
with axial frequency ωx = 2π × 32 s−1 and radial frequencies
ωy = 2π × 1210 s−1 and ωz = 2π × 1990 s−1. Note that the
axial frequency is the same as used in the experiment, but the
radial frequencies are 10 times larger, and the number of atoms
is 10 times smaller, compared to the data reported in Ref. [18].
Consequently the density of the atomic cloud in the simulation
was lower than the experimental value.

Using the ground state described above we start the actual
FWM process. We simultaneously turn on the nonlinear lattice
with lattice vector κ = 10.15a−1

ho,x (aho,x = √
h̄/mωx and d =

0.834 μm) and amplitude α = 0.4 and impose a pair of Bragg
pulses, to increase its mean BEC velocity up to h̄k0/m =
1.375 mm/s, corresponding to k0 = κ/2. Two other actions
were taken to increase the desired effect. We turn off the trap
in the x direction and reduce the coupling constant g by a factor
of 102. The latter decreases the spreading of the momentum
distribution and can be done by means of Feshbach resonance.

We emphasize that in the arrangement described above
the mean kinetic energy of the BEC wave packet is equal
to E = h̄2κ2/8m, and it is smaller than the energy spacing
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FIG. 2. (Color online) Density of the atomic cloud at t =
34.45 ms. Top: x-z cut through the density at y = 0. Bottom: Density
cut (in units of a−3

ho,x) at y = z = 0. The mother cloud is moving
along the x axis at velocity k0 = κ/2 and creates a wave packet
with momentum k1 = k0 = −k2 = κ/2 [indicated in Fig. 1(a)]. For
comparison, the dashed (red) line shows the density of the BEC when
the nonlinear lattice is absent, α = 0.

between levels of the harmonic trap in the radial direction
(E/h̄ωy = 0.34 and E/h̄ωz = 0.21). This choice prevents the
population of the higher excited modes in radial directions. As
the confinement in y is weaker than that in z, there is some
residual dynamics in this direction, but the movement in z is
almost completely frozen.

Our main result is presented in Figs. 2 and 3. In Fig. 2
we show the atom density at t = 34.45 ms. Besides the
mother wave packet, moving with momentum k0 = κ/2,
we can distinguish the daughter wave packet as a wave
propagating with opposite momentum k0 = −κ/2. The top
plot shows the x-z cut through the density at y = 0. The
bottom plot presents the density cut at y = z = 0. The
visible oscillations in the density result from the overlap of
wave packets moving with different wave vectors. To provide
more evidence that the daughter wave packet is created with
the right momentum, we also include Fig. 3, which shows
the momentum distribution. Again, the top plot shows the
x-z cut through the momentum distribution at ky = 0 and
the bottom plot presents the momentum distribution cut at
ky = kz = 0. Two distinct peaks are visible in the distribution:
one is centered around k = κ/2 (mother cloud) and the second
around k = −κ/2 (daughter cloud). The latter is the atom laser

FIG. 3. (Color online) Momentum distribution of the atomic
cloud at t = 34.45 ms. Top: x-z cut through the momentum distribu-
tion of the atomic cloud at ky = 0. Bottom: Momentum distribution
cut (in units of a3

ho,x) at ky = kz = 0. Clearly, two distinct peaks
are visible in the distribution. The one centered around k = κ/2
is the mother cloud, consisting of most of the atoms. The second
peak is centered around k = −κ/2. The dashed (red) line shows the
distribution of the BEC when the nonlinear lattice is absent, α = 0.

radiation, which is coherently emitted from the initial wave
packet. The distribution of the source is very different from the
initial distribution of the BEC, revealing the internal dynamics
of the cloud. Note that the width of the newborn peak is very
narrow, indicating a high degree of monochromaticity of the
atomic beam. For comparison, the dashed (red) lines in Figs. 2
and 3 show the distribution of the BEC when a nonlinear lattice
is absent, α = 0.

To gain physical insight into the dynamics we consider
the case of a dilute gas tightly bounded in the transverse
direction. In the weakly nonlinear limit the order parameter
in the leading order can be represented in the factorized form,
� ≈ �⊥(y,z)ψ(x,t), where

�⊥(y,z) = 1√
2πσyσz

exp

[
−

(
y2

4σ 2
y

+ z2

4σ 2
z

)]
(4)

is the ground state of the 2D linear oscillator. Now the
dynamics in the radial directions remains negligible and we
reduce the 3D GPE to the 1D equation for ψ(x,t) [22],

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ g1d [1 + α cos(κx)]|ψ |2ψ, (5)
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FIG. 4. (Color online) Relative population imbalance δ(t) of
the atomic clouds vs time in units of t0 = 2/ωx for α = 0.4.
Left: Numerical simulation of the 3D GPE (solid black line);
numerical solution of the plane-wave model, (7) [dashed (red)
line]; and analytical solution of (8) (solid blue line). Right:
Numerical solution of the plane-wave model, (7), for values of
α = 0.25 (solid black line), α = 0.5 [dashed (red) line], α = 0.75
[dotted (blue) line], and α = 1 [dot-dashed (purple) line]. For
|α| � 1, Eq. (8) gives δ(t) = 1 − α2(cos(2γ t) − 1). When α = 0.5,
δ(t) = 1/ cosh(γ t).

where g1d = g/4πσyσz. Furthermore, to reveal the role of the
depth α of the nonlinear lattice we introduce an even simpler
model, decomposing the wave function �(x,t) into two wave
packets,

ψ(x,t) = A0(t)eik0x−iE0t/h̄ + A1(t)eik1x−iE1t/h̄, (6)

with k0 = −k1 = κ/2 and E0 = E1 = h̄2κ2/8m. Assuming
the amplitudes A0,1 to be slowly varying in space we arrive at

ih̄
dA0

dt
= g1dn0A0 + g1dα

2
A∗

1A
2
0 + g1dα

2
n1A1, (7a)

ih̄
dA1

dt
= g1dn1A1 + g1dα

2
A∗

0A
2
1 + g1dα

2
n0A0. (7b)

Here the densities n0 = |A0|2 + 2|A1|2 and n1 = |A1|2 +
2|A0|2 are introduced and the asterisk stands for complex
conjugation. The above equations preserve the total density,
n = |A0|2 + |A1|2, and can be solved by quadratures. We
focus on the case where initially A1(0) = 0. Then, defining
the relative imbalance of the atoms as δ(t) = (|A0(t)|2 −
|A1(t)|2)/n, we obtain that the evolution is described by the

implicit formula

g1dn

2h̄
t =

∫ 1

δ

ds√
(1 − s2)(s2 − (1 − 4α2))

. (8)

For short times, estimated by t � 1/(γ
√

1 + α2), the pop-
ulation imbalance δ(t) = 1 − 2(αγ t)2 + 2

3α2(1 + α2)(γ t)4 +
. . . , where γ = g1dn/2h̄. The dynamics of δ(t) versus α is
illustrated and described in Fig. 4.

To compare the 3D dynamics with the plane-wave model
introduced above [Eqs. (7) and (8)], we define Ai(t) =√

Ni(t)/L, where L = 2
√

〈x2〉 is the effective length of the
condensate and Ni(t) is the total number of atoms in the
ith wave. We find that appropriate widths [determining g1d

introduced in (5)] are σy = 〈y2〉1/2 = 0.18aho,x and σz =
〈z2〉1/2 = 0.12aho,x. The results of the comparison are shown in
Fig. 4(a), where we also include the direct solution, (8). Clearly
for short times the agreement between the 3D simulation
and the plane-wave model, and even with the analytical
solution, (8), is very good. At later times the effects related
to spreading of the BEC and the decreasing overlap between
mother and daughter wave packets become important, leading
to a discrepancy between simulations and the reduced model,
(7). Figure 4(b) shows the conversion dynamics for different
lattice amplitudes α, as well as the decay of the mother wave
packet at the critical value α = 1/2.

To summarize, here we have presented the theory of
an atom laser, based on the FWM process. Its origin lies
in the spatial modulation of the nonlinearity due to two-
body interactions between atoms. This modulation affects
the momentum conservation, leaving the energy conservation
unchanged. We have performed numerical simulations using
parameters inspired by experiment [18] and demonstrated a
new form of degenerated FWM.
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and M. Trippenbach, Phys. Rev. A 73, 033602 (2006); J.
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