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Finite-resolution fluctuation measurements of a trapped Bose-Einstein condensate
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We consider the fluctuations in atom number that occur within finite-sized measurement cells in a trapped
Bose-Einstein condensate. These approximate the fluctuation measurements made in current experiments with
finite-resolution in situ imaging. A numerical scheme is developed to calculate these fluctuations using the
quasiparticle modes of a cylindrically symmetric three-dimensionally trapped condensate with either contact or
dipole-dipole interactions. We use this scheme to study the properties of a pancake-shaped condensate using
cylindrical cells. The extension of the theory to washer-shaped cells with azimuthal weighting is made and used to
discriminate between the low-energy roton modes in a dipolar condensate according to their projection of angular
momentum. Our results are based on the Bogoliubov approach valid for zero and small finite temperatures.
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I. INTRODUCTION

Many important properties of degenerate quantum gases
are revealed through their fluctuations (e.g., see [1–21]).
Recently experiments with trapped Bose gases have mea-
sured density fluctuations in quasi-one-dimensional (quasi-
1D) [16,18], quasi-two-dimensional (quasi-2D) [13,22], and
three-dimensional systems [20,21] using in situ absorption
imaging. Such measurements are necessarily made with finite
resolution, so that effectively the number of atoms within a
finite-sized cell is counted. The size of this cell is typically
set by the pixel size of the charge-coupled device used to
collect the image and the resolution-limited spot size of the
imaging system (e.g., see [22]). In practice the smallest spot
sizes obtained are comparable to the healing length (typically
∼1 μm). The size of the cell relative to the physical length
scales of the system (e.g., thermal wavelength and healing
length) is crucial in determining the measurement results [23].

In this paper we develop a technique to calculate the
fluctuations of a Bose-Einstein condensate (BEC), in which
we explicitly include the properties of the finite-sized mea-
surement cells. Recent work [23] has addressed how this can
be done in uniform systems. Here we consider the extension to
the trapped system. This situation is rather more challenging
because the system lacks translational invariance and the
excitations need to be determined numerically. We apply our
scheme to consider the kinds of fluctuation measurements
that could be made with in situ imaging through a pancake-
shaped condensate, which should be approximately described
by calculating the number fluctuations within cylindrical
cells, as schematically shown in Fig. 1. Our results, for
condensates with both contact and dipole-dipole interactions
(DDIs), demonstrate that fluctuation measurements are acutely
sensitive to the nature of the interactions in the system. Finally,
we consider a more complex weighted-washer-shaped cell,
which can be built up by amalgamating a number of smaller
cylindrical cells. We show how this washer cell can be used
to reveal the low-energy excitations with particular values of
angular momentum projection.

The structure of the paper is as follows: In Sec. II we
outline our formalism for the fully three-dimensional trapped
system and detail our numerical scheme for calculating number

fluctuations within cylindrical cells, as depicted in Fig. 1. In
Sec. III we present our main results. We characterize the
two-point second-order density-density correlation function
and then compute the fluctuations within cylindrical cells for
a pancake condensate with either contact or DDIs. We then
introduce a weighted-washer-shaped cell and discuss how it
might be realized in experiments. We extend our numerical
scheme to treat this case and then apply it to characterizing
the low-energy roton modes of a dipolar BEC. Finally, we
conclude in Sec. IV.

II. FORMALISM

A. Condensate and quasiparticles

Here we consider atoms confined to a cylindrically sym-
metric harmonically potential

V (x) = 1
2Mω2

ρ(ρ2 + λ2z2), (1)

where M is the atomic mass and λ = ωz/ωρ is the trap aspect
ratio. We examine the properties of condensates in which the
atoms interact with DDIs or short-ranged contact interactions.
For the dipolar case we take the dipoles to be polarized along
z so that the interaction potential is of the form

UD(r) = 3gdd

4π

1 − 3 cos2 θ

|r|3 , (2)

where gdd = μ0μ
2
m/3, with μm the magnetic dipole moment,

and θ is the angle between r and the z axis. This choice ensures
that the system remains cylindrically symmetric, simplifying
the numerical treatment. For the case of contact interactions
UC(r) = gδ(r), where g = 4πash̄

2/M , with as the s-wave
scattering length. We note that in general dipolar gases interact
with both parts, U = UD + UC , although the contact part can
be tuned using a Feshbach resonance (e.g., see [24]).

The condensate wave function ψ0, which we take to be
normalized to the condensate atom number N0, satisfies the
nonlocal dipolar Gross-Pitaevskii equation [25]

μψ0 =
[

− h̄2∇2

2M
+ V (x) +

∫
d3x′U (x − x′)n0(x′)

]
ψ0,

(3)
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FIG. 1. (Color online) Schematic geometry of the system we
consider: a radially symmetric pancake condensate realized by tight
confinement along z; and a cylinder-shaped cell in which number
fluctuations are measured. The cylindrical cell is parametrized by the
radius R from the trap center to the cylinder axis, and its diameter D.
The z extent (from −zL to zL) is taken to be larger than the condensate
thickness.

where μ is the chemical potential and n0(x′) = |ψ0(x′)|2 is
the condensate number density. Our interest is in ground-state
solutions where the condensate wave function can be taken to
be real.

To understand the fluctuations of this system we consider
the field operator, which can be decomposed as

	̂(x) ≈ ψ0(x) + δ̂(x), (4)

where δ̂(x) is the noncondensate operator, with 〈δ̂(x)〉 = 0. The
noncondensate operator can be expressed in a quasiparticle
expansion as

δ̂(x) =
∑

i

[ui(x)α̂i − v∗
i (x)α̂†

i ], (5)

where the amplitude functions {ui,vi}, with energy eigenvalues
εj , are obtained by solving nonlocal Bogoliubov–de Gennes
equations [26]. The quasiparticle operators satisfy [α̂i ,α̂

†
j ] =

δij , and in thermal equilibrium have an occupation given by

n̄j ≡ 〈α̂†
j α̂j 〉 = 1

eβεj − 1
, (6)

where β = 1/kBT is the inverse temperature. The nonconden-
sate number density is given by

ñ(x) = 〈δ†(x)δ̂(x)〉, (7)

=
∑

j

[|uj (x)|2n̄j + |vj (x)|2(n̄j + 1)], (8)

so that the total density is

n(x) = n0(x) + ñ(x). (9)

We solve for the condensate and quasiparticles by exploit-
ing the cylindrical symmetry of the problem. For example, the
quasiparticles can be calculated in subspaces of fixed z pro-
jection of angular momentum (mj ) as uj (x) = uj (ρ,z)eimj φ ,
where ρ and φ are the radial and angular coordinates for the
x-y plane. The numerical solutions are then found on special
quadrature grids based on Bessel (ρ direction) and Fourier
(z direction) decompositions, which differ for each value of
angular momentum projection [26]. Further details on how

we solve the Gross-Pitaevskii and Bogoliubov–de Gennes
equations can be found in Ref. [27].

B. Number fluctuations within cells

We initially focus on the case of cylindrically shaped
measurement cells (see Fig. 1) where we denote the region
inside the cell as σ . The number fluctuations within the cell
may be characterized by the variance of the atom number,

δN2
σ ≡ 〈(N̂σ − Nσ )2〉, (10)

where

N̂σ ≡
∫

σ

d3x 	̂†(x)	̂(x) (11)

is the cell number operator, and Nσ ≡ 〈N̂σ 〉. The mean number
of atoms within the measurement cell σ is given by

Nσ = N0σ + Ñσ , (12)

where

N0σ =
∫

σ

d3x n0(x), (13)

Ñσ =
∫

σ

d3x ñ(x) (14)

are the mean condensate and noncondensate numbers in the
cell, respectively.

The fluctuations in number about the mean are

δN2
σ =

∫
σ

d3x1

∫
σ

d3x2 Snn(x1,x2), (15)

where Snn(x1,x2) ≡ 〈δn̂(x1)δn̂(x2)〉 is the Ursell density-
density correlation function, and we have introduced the
density fluctuation operator

δn̂(x) ≡ 	̂†(x)	̂(x) − n(x), (16)

≈ ψ0(x)[δ̂(x) + δ̂†(x)]. (17)

In the last line we have used Eq. (4) and neglected the
small terms which are second order in the quasiparticles.
This should be a good approximation for temperatures well
below the condensation temperature and away from the
condensate surface. Both of these conditions ensure that
n0 
 ñ. Evaluating Eq. (15) using (17) gives

δN2
σ =

∑
i

∫
σ

d3x1

∫
σ

d3x2 δni(x1)δn∗
i (x2) coth

(
βεi

2

)
,

(18)

where δni(x) ≡ ψ0(x)[ui(x) − vi(x)] is the density fluctuation
amplitude of the ith quasiparticle.

1. Uniform system

In this section we consider a homogeneous condensate in D
spatial dimensions. We take the system to be in a box of volume
V = LD, and subject to periodic boundary conditions, so that
the condensate is ψ0 = √

n0, with n0 = N0/L
D the condensate

density. In this case the cell fluctuations are [23,28,29]

δN2
σ = n

∫
dDk

(2π )D
τ̃ (k)S(k), (19)
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where n = N/LD is the total density and

S(k) = 1

N

∑
j

∣∣∣∣
∫

dDx e−ik·xψ0(x)[uj (x) − vj (x)]

∣∣∣∣
2

(20)

is the static structure factor. The function τ̃ (k) describes
the cell geometry, and is the Fourier transform of τ (r) ≡∫
σ

dDx1
∫
σ

dDx2 δ(r + x2 − x1) (see [23] for details).
We note that for the uniform system the Ursell correla-

tion function is translationally invariant, i.e., Snn(x1,x2) →
Snn(x1 − x2), and in obtaining Eq. (19) we have used

S(k) = 1

n

∫
dDr Snn(r)e−ik·r. (21)

For a uniform condensate the structure factor is given by the
Feynman relation

S(k) = αf

ε0(k)

ε(k)
coth

(
βε(k)

2

)
, (22)

where ε0(k) = h̄2k2/2M , αf = n0/n,

ε(k) =
√

ε0(k)[ε0(k) + 2n0Ũ (k)], (23)

is the Bogoliubov dispersion relation, and Ũ (k) is the Fourier
transform of the interaction potential U (r). We note that
Eq. (22) is valid for small condensate depletion, i.e., αf ≈ 1.

While the result (19) does not apply to the trapped case, it
does provide a starting point for a local-density treatment of
trapped systems, which we develop further in Sec. II B3.

2. Trapped system

For a trapped system, using modes obtained by numerical
diagonalization, it is inconvenient to calculate the Ursell
function because it has a shot-noise part that behaves as
δ(x1 − x2), and thus slowly converges as we increase the
number of modes. Instead it is convenient to normally order
the operators to obtain

δN2
σ = Nσ +

∫
σ

∫
σ

G(2)(x1,x2)d3x1d
3x2 − N2

σ , (24)

where

G(2)(x1,x2) ≡ 〈	̂†(x1)	̂†(x2)	̂(x1)	̂(x2)〉 (25)

is the normally ordered density-density correlation function.
Making use of Wick’s theorem [30,31] and keeping only

terms to second order in the quasiparticle operators we arrive
at1

δN2
σ = Nσ +

∫
σ

∫
σ

d3x1d
3x2 ψ0(x1)ψ0(x2)[m̃(x1,x2)

+ ñ(x1,x2) + c.c], (26)

where

ñ(x1,x2) = 〈δ̂†(x1)δ̂(x2)〉 =
∑

j

[u∗
j (x1)uj (x2)n̄j

+ vj (x1)v∗
j (x2)(1 + n̄j )], (27)

1Note that this approximation is valid when n0(x) 
 ñ(x),|m̃(x)|.

m̃(x1,x2) = 〈δ̂(x1)δ̂(x2)〉 = −
∑

j

[uj (x1)v∗
j (x2)(1 + n̄j )

+ v∗
j (x1)uj (x2)n̄j ], (28)

are the noncondensate and anomalous density matrices, re-
spectively2 (also see [32]). The local character of these quanti-
ties [i.e., ñ(x) = ñ(x,x) and m̃(x) ≡ m̃(x,x)] was investigated
for systems with contact and DDIs in Ref. [27]. We emphasize
that Eq. (26) is equivalent to Eq. (18), but converges much
faster with the number of quasiparticle modes included in the
summation.

3. Local-density approximation

The uniform-system treatment of Sec. II B1 can be extended
to the trapped system using a local-density approximation
(LDA). The LDA theory has also been used to obtain the
dynamic structure factor for trapped BECs (e.g., see [33,34]),
relevant to Bragg spectroscopy. Because our interest in this
paper is in pancake-shaped systems we formulate this section
making a quasi-2D approximation, i.e., utilizing the results
in Sec. II B1 with D = 2. To do this we integrate out the z

dimension to obtain the 2D density profile of the condensate
n2D(ρ) ≡ ∫

dz |ψ0(ρ,z)|2, where ρ = (x,y) is the in-plane
position vector. An important issue is the form of the Fourier-
transformed interaction Ũ (kρ) for the quasi-2D system. The
approach we use is discussed in Refs. [35,36] and we do not
repeat the details here.

The essence of the LDA approach is to treat each part of the
trapped system as a locally homogeneous system at the same
density, and then add up all such contributions in the region
of interest (i.e., the cell). This approach should be valid where
the uniform-system treatment presented in Sec. II B1 is valid
(n0 
 ñ) and where the density of the system does not vary
rapidly with position.

We compute the averaged static structure factor for the
system within the cell σ by the density-weighted LDA sum

Sσ (kρ) = 1

Nσ

∫
σ

d2ρ n2D(ρ)S(kρ,ρ), (29)

where S(kρ,ρ) is the uniform static structure factor (22)
evaluated using the density at ρ [i.e., n0 → n2D(ρ)].3 The
number fluctuations for the trapped system are then given by
Eq. (19) with the replacement S(kρ) → Sσ (kρ). Additionally,
we note that under the quasi-2D approximation the cylindrical
cells become disks in the ρ plane, and the geometry function
appearing in Eq. (19) is [23]

τ̃ (kρ) = π2D2J 2
1

(
1
2Dkρ

)
/k2

ρ, (30)

where J1 is the Bessel function, and D is the disk diameter.
Details of our full algorithm for evaluating the fluctuations

according to Eq. (26) are given in the Appendix.

2Both ñ and m̃ are real since the sum is taken over all modes.
3Note that we also take αf = 1 in applying the uniform treatment,

and make use of only the condensate density.
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FIG. 2. (Color online) Condensate (solid line) and noncondensate
(dashed line) density for a system with purely DDIs [blue (black)]
and purely contact interactions [red (gray)]. The condensate density
is scaled by a factor of 1/10 to allow easier comparison to the
noncondensate density. Other parameters are T = 10h̄ωρ/kB , N0 =
25 × 103, and λ = 20. For the purely dipolar case DI = 220, while
for the solely contact case CI = 127.

III. RESULTS

A. Systems and parameters

For our results we define length in terms of the radial
harmonic oscillator length aρ =

√
h̄/Mωρ , and following

Ref. [26] we utilize the dimensionless interaction parameters
CI = N0as/aρ and DI = 3N0gddM/4πh̄2aρ for the contact
and DDIs, respectively.

We calculate results for N0 = 25 × 103 atoms within a
pancake-shaped trap with aspect ratio λ = 20. In the results
we focus on the comparison of two parameter sets: (i) a system
interacting purely via a contact interaction, i.e., with CI = 127
and DI = 0; (ii) a system interacting purely via a DDI, i.e.,
with CI = 0 and DI = 220. Both parameter sets have been
chosen so that the condensates have nearly the same chemical
potential μ = 37.6 h̄ωρ .4 This ensures that many properties
of the two systems are comparable. For example, in Fig. 2
we compare the density profiles of the two systems along
the x axis, demonstrating that the densities and shapes of the
condensates are very similar. To put the dipolar parameters
into the context of current experiments, the choice of 164Dy,
with dipole moment μm = 10μB , would correspond to a radial
trapping frequency ωρ = 2π × 10.8 s−1.

For the choice of parameters we make here the dipolar
condensate has rotonlike excitations [37]. These roton modes
arise in regimes of tight confinement along the direction in
which the dipoles are polarized, and for sufficiently strong
DDIs. In this case the effective interaction in the x-y plane
becomes momentum dependent [38]. For in-plane momenta

4In the pancake geometry the DDI is predominantly repulsive and
the effect on the chemical potential is overall positive.
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0.9

0.95
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1.15

x/aρ
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(2

) (
0
,
x
x̂
)

FIG. 3. (Color online) The normalized correlation function
g(2)(0,xx̂) for a condensate with purely dipole interactions (dashed
line) and purely contact interactions (solid line). Other parameters are
T = 10h̄ωρ/kB , N0 = 25 × 103, and λ = 20. For the purely dipolar
case DI = 220, while for the solely contact case CI = 127.

h̄kρ � h̄/az, where az = √
h̄/Mωz is the z confinement length,

the DDI is repulsive, while for h̄kρ � h̄/az it crosses over to
being attractive. Thus modes of wavelength λrot ∼ az can be
energetically softened by their interaction with the condensate,
in which case we refer to them as rotons. Interestingly these
modes are sensitive to the condensate density and, due to the
radial trapping, they are effectively confined as a roton gas in
the high-density central part of the condensate [39]. Detailed
properties of the rotons for the parameter regime we consider
here can be found in Refs. [27,40].

B. Two-point correlations

We first examine the two-point normally ordered density
correlation function, with results comparing the purely dipolar
and contact condensates presented in Fig. 3. Here we show the
normalized correlation function [2] defined by

g(2)(x1,x2) = G(2)(x1,x2)

n(x1)n(x2)
, (31)

with one point taken at the trap center x1 = 0 and the other
taken to lie along the x axis, x2 = xx̂. Previous work has
considered aspects of this correlation function for condensates
with contact interactions [31,41–45], and DDIs [46,47] in the
quasi-two-dimensional regime.

For the case of pure contact interactions g(2)(0,xx̂) is near
unity everywhere that the condensate density is significant,
except for a dip occurring for small point separation (x �
0.5aρ). The dip is a manifestation of suppressed density
fluctuations due to repulsive contact interactions and occurs
on a length scale set by the healing length ξ = h̄/

√
Mgn,

which is ξ ≈ 0.17aρ for our system (using the peak density at
the trap center).

In contrast, the case of pure dipolar interactions demon-
strates a marked peak for small separation and subsequent
oscillations with increasing x. The large central peak is due
to the attractive character of the DDI for the short-wavelength
roton modes. The choice of the fixed point at the origin results
in oscillations dominated by the mj = 0 roton modes as these
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FIG. 4. (Color online) Number fluctuations as a function of
cylinder position R for various diameters D at zero temperature for (a)
pure contact interactions CI = 127 and (b) pure dipolar interactions
DI = 220. Other parameters as in Fig. 3.

are the only excitations with nonzero density at the trap center.5

As noted in Sec. III A, the roton wavelength is approximately
set by the z confinement length, and is λrot ≈ 1.5aρ [from
Fig. 8(b)]. The reduction in g(2) for x � 7aρ occurs because at
these positions the noncondensate density begins to exceed
the condensate density (see Fig. 2) which invalidates our
evaluation of (25).

C. Cylinder-cell fluctuations

1. Zero temperature

In Fig. 4 we investigate the role of interactions in number
fluctuations within cylindrical cells at zero temperature. The
purely contact case is examined in Fig. 4(a). These results
reveal that the fluctuations are sub-Poissonian (δN2

σ < Nσ )
in the central region where the condensate is dense, and that
the relative fluctuations (δN2

σ /Nσ ) decrease with increasing
cell size. For large cells (D 
 ξ ) the fluctuations are sensi-
tive to the long-wavelength (phonon) modes of the system,
qualitatively consistent with the results of [23] for the uniform
quasi-2D Bose gas. For cells near the surface of the condensate
(R ∼ 8aρ), where the density is low and interaction effects are
reduced, the fluctuations approach Poissonian.

For the pure dipolar case the relative fluctuations exhibit
a nonmonotonic dependence on cell size. Notably, near the

5Note that the fixed point is actually at the centermost radial
grid point which is not precisely at the origin; this implies a small
contribution from |mj | > 0 modes.
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FIG. 5. (Color online) Number fluctuations as a function of
cylinder position R for various diameters D at T = 10h̄ωρ/kB for (a)
pure contact interactions CI = 127 and (b) pure dipolar interactions
DI = 220. Other parameters as in Fig. 3.

trap center a super-Poissonian peak emerges for intermediate
cylinder sizes that best match the roton modes, i.e., D = 1aρ

for R ≈ 0 [23,36], where this value of D is roughly half
the roton wavelength. As these cells are moved outwards
(e.g., D = 1aρ for R � 3aρ) the relative fluctuations decrease.
This reveals the narrow confinement of the rotons to the
high-density region of the condensate [39].

2. Nonzero temperature

We assess the influence of temperature in Fig. 5, by
considering the same systems presented in Fig. 4, but with
the temperature increased to T = 10h̄ωρ/kB (corresponding
to 5.3 nK, which is about 14% of the condensation temperature
Tc). For pure contact interactions [Fig. 5(a)] two significant
changes occur: (i) The fluctuations increase near the surface,
R ≈ 6aρ , where the noncondensate density is largest and the
suppression effect of the repulsive interactions is weakest (also
noting that ρ > 7aρ is also where ñ � n0 and our approach is
invalid). (ii) The fluctuations in large cells (D � 1aρ) tend to
increase. This occurs because the large cells are dominated by
phonon modes which are thermally activated at the temperature
considered. In contrast, the smaller cells (D < 1aρ) are
dominated by shorter-wavelength excitations that are largely
frozen out, and the fluctuations remain near their T = 0 value.
The behavior we observe in Fig. 5(a) is qualitatively similar
to the behavior seen in Fig. 1 of Ref. [18], where density
fluctuations were measured for a quasi-1D Bose gas.

Similarly, in Fig. 5(b) we observe that the temperature tends
to increase the fluctuations of the purely dipolar condensate
[cf. Fig. 4(b)]. Notably, a large roton peak occurs at the trap
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FIG. 6. (Color online) Cylindrical-cell fluctuations from full 3D
(solid) and LDA (dashed) calculations for both T = 0 and T =
10h̄ωρ/kB with a cell diameter of D = 1aρ . (a) Pure contact case
CI = 127. (b) Pure dipolar case DI = 220.

center for cells with D ∼ 1aρ . This enhancement is due to
the thermal activation of the rotons, and is considerably more
prominent than the peak in the two-point correlation function
observed for the same parameters in Fig. 3.

3. Comparison to LDA approach

In Fig. 6 we compare the full Bogoliubov calculations
against the LDA approach outlined in Sec. II B3. Because
the LDA approach requires only the condensate mode ψ0 [to
obtain n2D(ρ) and Ũ (kρ)] it is much simpler to implement, and
avoids the complexity of solving for all of the quasiparticle
modes.

The most noticeable difference is at R � 7aρ where the
LDA results start to increase rapidly with R. This occurs at the
surface of the condensate where both approaches are invalid.
We also note that for the dipolar case [Fig. 6(b)] the agreement
for R � 3aρ is less satisfactory at finite temperatures than
what we observe for the contact case [Fig. 6(a)]. This arises
because the roton modes, which are thermally activated at
this temperature, are not well described within the LDA. The
temperature in the dipolar case also tends to increase the
noncondensate density at the trap center (relative to the contact
case; see Fig. 2).

D. Weighted-washer-shaped cell fluctuations

1. Measurement operator

We define the washer-shaped cell σ to be concentric with the
trap center, and to have a mid-radius R and radial thickness W

[see Fig. 7(a)]. We require R > W/2, to ensure that the washer

ν = 1

ν = 2
ν = 3

ν = 4

ν = 5

ν = 6

ν = 7

ν = 8
ν = 9

ν = 10

ν = 11

ν = 0
x

y

W

R

φ

(a)

(b)

FIG. 7. (Color online) (a) The geometry of the washer-shaped
cell. This cell is centered on the trap center, and is parametrized by
the mid-radius R and width W , with a z extent taken to be larger
than the condensate thickness. (b) In practice the washer cell can be
constructed using a set of cylinder subcells, which we have labeled
by ν. A weighted-cell measurement can be made by multiplying the
number measurement made in each subcell by a phase factor e−imφν ,
where φν is the angle to the center of subcell ν.

has a finite central core. As in the cylinder cell we assume that
the z extent is larger than the condensate thickness.

In Ref. [36] it was found that considering fluctuations
within washer-shaped cells centered at the origin selects for the
contribution from mj = 0 modes. Here we generalize this idea
by defining a weighted number operator for the washer-shaped
cell σ as

N̂σm ≡
∫

σ

d3x e−imφ	̂†(x)	̂(x), (32)

with m being an integer. We note that effectively N̂σm is the
azimuthal Fourier transform of the density operator in the
region σ . In practice the washer-shaped cell could be formed by
amalgamating measurements from a number of smaller cylin-
drical subcells, weighted by appropriate phases, as indicated
in Fig. 7(b). Recently experiments have demonstrated similar
types of combined cell correlation measurements: In Ref. [48]
a Fourier transform over the cells was used to correlate density
fluctuations at different locations in a quasi-2D condensate; in
Ref. [18] cells were amalgamated in the analysis of a quasi-1D
condensate to verify the scaling of fluctuations with cell size.
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FIG. 8. (Color online) Weighted number fluctuations within
washer-shaped cells for DI = 220, CI = 0, and T = 10h̄ωρ/kB with
washer width W = 0.4aρ . (a) m = 0 (dashed), 1 (solid), and 6
(dot-dashed). Inset: Reproduction of m = 1 result (black) along with
the contribution solely due to the two mj = 1 roton modes (gray).
(b),(c) Contours of the density fluctuation amplitude δni [see Eq. (18)]
for the two roton modes considered in the inset of (a). These modes
have the third (b) and sixth (c) to lowest energies within the mj = 1
subspace. (d) The lowest roton mode for mj = 6, having the second
to lowest energy in the mj = 6 subspace. Solid lines are positive and
dashed lines are negative with thick black lines indicating the zero
crossings; contour spacing 3/a3

ρ . Other parameters as in Fig. 3.

The fluctuations in N̂σm are given by

δN2
σm ≡ 〈|N̂σm − Nσm|2〉, (33)

where Nσm = 〈N̂σm〉 is the mean value, with Nσm = 0 for
m = 0, due to the cylindrical symmetry of the system. The
numerical algorithm for evaluating this is a minor variation of
the cylinder-shaped cell algorithm, and details are given in the
Appendix.

2. Application to a dipolar condensate in the roton regime

In Fig. 8(a) we evaluate the weighted-washer-cell fluctua-
tions for a dipolar condensate, presenting results for m = 0, 1,
and 6. We note that the unweighted case m = 0 was considered

previously in Ref. [36]. There it was noted that the fluctuations
in the washer cells varied rapidly with cell radius R as
compared to the case of a cylindrical cell [cf. Fig. 5(b)]. This
observation also holds true for the m = 1 case, but the variation
is greatly reduced for the m = 6 case. This variation arises
because the washer cell selects the contributions from a few
quasiparticles of particular angular momentum projection. If
these modes are rotonic modes they contribute strongly to the
fluctuation signal [27] and tend to have a rapid spatial variation.
To confirm that the fluctuation measurements are dominated
by a few roton modes we compare the full (m = 1) calculation
with that using only the two lowest-energy mj = 1 roton
excitations [i.e., the sum in Eq. (A13) restricted to these two
modes6] and show this comparison in the inset. The agreement
is particularly good near the trap center where these modes
are confined, as can be seen by the roton profiles shown in
Fig. 8(b) and 8(c). In contrast, for the m = 6 case the relevant
roton mode propagates azimuthally and has only a weak radial
dependence [Fig. 8(d)] and the flucutation signal in in Fig. 8(a)
varies much more slowly as R changes. Also the larger angular
momentum of this mode forces it further from the trap center.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have developed a method for calculating
the number fluctuations within finite-sized cells of a trapped
BEC. We have investigated the canonical case of cylindrical
cells in a pancake-shaped BEC, which is relevant to current
experiments using absorption imaging. We present results for
condensates with purely contact or purely dipole interactions.
These results reveal the strong dependence of the fluctuations
on the nature of the interactions. We also use these results
to validate a simpler LDA approach which is found to have
reasonable agreement with the full solutions.

We propose the idea of using weighted-washer-shaped
cells, which could be formed from a set of underlying
cylindrical subcells. The fluctuations measured in the washer
cell discriminate contributions from particular classes of quasi-
particle modes, i.e., those with a particular angular momentum
projection, with the particular projection values selected being
determined by the choice of weighting. We demonstrate
that this scheme can probe roton modes within a dipolar
condensate, and that the measured fluctuation signal comes
from the lowest few modes. Rotons have not yet been identified
in experiments and fluctuation measurements complement a
number of other proposals for schemes to detect these modes
(e.g., see [49]). The importance of discriminating rotons with
mj = 0 has been identified by Ronen et al. [50]: In certain
parameter regimes they predict that the dipolar condensate will
spontaneously take a biconcave (density-oscillating) shape,
and that accompanying this transition the lowest-energy roton
will change from having angular momentum projection mj = 0
(“radial roton”) to mj = 0 (“angular roton”). More recently it
was shown that angular rotons can be engineered by applying
an external potential to force the condensate density into a
biconcave shape [40]. We note, however, that when the trap is

6The rotons for the parameters of the calculation we present here
are extensively characterized in Ref. [40], particularly Fig. 1 and 3(b).
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not cylindrically symmetric mj is no longer a good quantum
number and the roton modes distort [51].

The high-resolution imaging required to experimentally
measure the fluctuations in small cells is a capability that is
now appearing in many experiments. At the forefront of such
work Hung et al. [48] have developed a system to calculate
the static structure by such in situ measurements of density
fluctuations. In those experiments the maximum wave vector
for the structure factor was limited to ≈2 μm−1, due to their
resolution limit. This setup would immediately carry over to
the construction of weighted-washer-shaped cells, with the
maximum value of m limited to the washer circumference
divided by the imaging system’s resolution limit.

Natural extensions of this work are to go beyond the
Bogoliubov approach in calculating the quasiparticle modes.
That is, to include the back-action of the noncondensate atoms
on themselves and the condensate, e.g., using the Hartree-Fock
or other similar approximations [52–54]. In the case of dipolar
gases, where the fluctuations due to the roton modes become
significant, these corrections may be important even at low
temperatures [55].
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APPENDIX: NUMERICAL ALGORITHM

In this appendix we briefly outline the algorithm we use
to accurately and efficiently compute the fluctuations [i.e.,
evaluate Eq. (26)].

1. Cylinder-shaped cells

Taking advantage of the cylindrical symmetry of the
problem we decompose the modes as

uj (x1) = ei(mj φ1+Sj )uj (ρ1,z2), (A1)

v∗
j (x2) = e−i(mj φ2+Sj )vj (ρ2,z2), (A2)

where mj is the angular momentum projection along z of
mode j and Sj represents a constant phase for each mode that
cancels from the observables we compute. By construction
we take two-dimensional functions uj (ρ,z) and vj (ρ,z) to be
real.

The integration region σ for the cylinder-shaped cell is
shown in Fig. 1. The limits in the z direction (−zL and zL)
are taken to be symmetric about zero and large enough so that
the cylinder height is greater than the condensate thickness
in this direction. Thus we can focus on the shape of the cell
in the x-y plane and take all atoms, irrespective of their z

coordinate, as contributors (as would be the case of a column
density taken with absorption imaging along z). Without loss
of generality we position the cell symmetrically about the
x axis so that the limits of φ integration (which we refer
to as φL and −φL) are symmetric about zero, as shown in

Fig. 9(a) for the case of a cylinder-shaped cell in the x-y
plane, and in the ρ-φ plane in Fig. 9(b). The φ integration
is performed first and in general φL is ρ dependent, meaning
that the x-y integration of cylindrical cells is performed by
summing arcs that subtend various angles. See Fig. 9 for
additional information on the definition of cylinder-shaped
cells.

Returning to our expression for number fluctuations,
Eq. (26) now reads

δN2
σ = Nσ +

∑
j

∫ ρb

ρa

dρ1 ρ1

∫ zL

−zL

dz1

∫ φL(ρ1)

−φL(ρ1)
dφ1

∫ ρb

ρa

dρ2 ρ2

∫ zL

−zL

dz2

∫ φL(ρ2)

−φL(ρ2)
dφ2 ψ0(ρ1,z1)ψ0(ρ2,z2)

× 2 cos[mj (φ1 − φ2)][−uj (ρ1,z1)vj (ρ2,z2){1 + 2n̄j } + uj (ρ1,z1)uj (ρ2,z2)n̄j + vj (ρ1,z1)vj (ρ2,z2){1 + n̄j }]. (A3)

This expression can be simplified considerably to a form
suitable for numerical evaluation. Crucially, the φ integral is
analytic, i.e.,

∫ φL(ρ2)

−φL(ρ2)

∫ φL(ρ1)

−φL(ρ1)
cos[mj (φ1 − φ2)]dφ1dφ2

= 4

m2
j

sin[mjφL(ρ1)] sin[mjφL(ρ2)]. (A4)

The mean cell number [see Eq. (12)] is evaluated as

N0σ = 2
∫ ρb

ρa

φL(ρ)ρ

[ ∫ zL

−zL

n0(ρ,z)dz

]
dρ, (A5)

Ñσ =
∑

j

{Aj n̄j + Bj (1 + n̄j )}, (A6)

where

Aj = 2
∫ ρb

ρa

φL(ρ)ρ

[ ∫ zL

−zL

uj (ρ,z)2dz

]
dρ, (A7)

Bj = 2
∫ ρb

ρa

φL(ρ)ρ

[ ∫ zL

−zL

vj (ρ,z)2dz

]
dρ. (A8)

The number fluctuations can be evaluated as

δN2
σ = Nσ +

∑
j

{Cj (1 + 2n̄j ) + Dj n̄j + Ej (1 + n̄j )},

(A9)

where

Cj = −8αjβj , Dj = 8α2
j , and Ej = 8β2

j , (A10)
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FIG. 9. (Color online) Schematic showing how we integrate over the cylindrical cell in the x-y plane by summing over arcs that vary as a
function of ρ. (a) A cylinder-shaped cell (shaded) in the x-y plane. An integration arc demonstrates the angular limit function φL(ρ). The radial
limits ρa and ρb are also indicated. (b) A cylinder-shaped cell (shaded) in the ρ-φ plane. One case with R > 1

2 D (right shaded region) corresponds
to a cylinder cell that does not contain the origin: For this case ρa = R − 1

2 D, ρb = R + 1
2 D, and φL(ρ) = cos−1([ρ2 + R2 − 1

4 D2]/2ρR) for
ρa � ρ � ρb. The other case with R < 1

2 D (left shaded region) is a cylinder cell that contains the origin: For this case ρa = 0, ρb = R + 1
2 D,

and φL(ρ) = π for ρ � 1
2 D − R and φL(ρ) = cos−1([ρ2 + R2 − 1

4 D2]/2ρR) for 1
2 D − R � ρ � ρb.

and

αj =
∫ ρb

ρa

ρ
sin[mjφL(ρ)]

mj

[ ∫ zL

−zL

uj (ρ,z)ψ0(ρ,z)dz

]
dρ,

(A11)

βj =
∫ ρb

ρa

ρ
sin[mjφL(ρ)]

mj

[ ∫ zL

−zL

vj (ρ,z)ψ0(ρ,z)dz

]
dρ,

(A12)

with 1
mj

sin[mjφL(ρ)] → φL(ρ) for mj = 0.
The key quantities to be evaluated, given in Eqs. (A5)–

(A12), benefit because the integrations over the z variable
can be carried out in advance (these terms are all in square
brackets). We also note that because uj and vj are obtained
on quadrature grids (see Sec. II A), careful interpolation
onto a specialized cell-integration grid is required to avoid
boundary effects when calculating the various integrals over
the variable ρ. This is particularly important when the cell size
is small compared to the resolution of the grids on which the
condensate and quasiparticles are calculated.

In a typical case, which involves using ∼104 precalculated
quasiparticle modes, it takes around 2 min per cell to calculate
δN2

σ on a single-core machine. For each of our figures we

normally need to consider several hundred different cells
which would take of the order a day on a single core. However,
the calculation for each cell is independent and this process
may be efficiently implemented in parallel.

2. Weighted-washer-shaped cells

Our numerical procedure follows that outlined above
with a few small modifications. The x-y plane integra-
tion is easily converted to the ρ-φ plane (cf. Fig. 9),
where it is given by φL = π for ρa � ρ � ρb, with ρa =
R − 1

2W and ρa = R + 1
2W . The fluctuations are then cal-

culated according to

δN2
σm = Nσ +

∑
j

[Cj (1 + 2n̄j ) + Dj n̄j + Ej (1 + n̄j )]δm,mj
,

(A13)

with the replacement 1
mj

sin(mjφL) → π in Eqs. (A11)
and (A12). The term δm,mj

in Eq. (A13) shows that a cell
symmetrically placed (with respect to the symmetry axis of the
system) selects contributions from quasiparticles of a definite
angular momentum projection.
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