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Dark-soliton dynamics and snake instability in superfluid Fermi gases trapped by an anisotropic
harmonic potential
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We present an investigation of generation, dynamics, and stability of dark solitons in anisotropic Fermi gases
for a range of particle numbers and trap aspect ratios within the framework of the order-parameter equation. We
calculate the periods of dark solitons oscillating in a trap and find good agreement with the results based on the
Bogoliubov–de Gennes equations. By studying the stability of initially off-center dark solitons under various
tight transverse confinements in the unitarity limit, we not only give the criterion of dynamical stability, but
also find that the soliton and a hybrid of solitons and vortex rings can be characterized by different oscillation
periods. The stability criterion is not fulfilled by the parameters of the recent experiment of Yefsah et al. [Nature
(London) 499, 426 (2013)]. Therefore, instead of a very slow oscillation as observed experimentally, we find
that the created dark soliton undergoes a transverse snake instability with a collapse into vortex rings, which
propagate in solitonlike manner with a nearly 2 times larger period.
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I. INTRODUCTION

Dark solitons, namely, localized density dips with a phase
jump across their density minimum, are the most fundamental
nonlinear excitations in nonlinear dispersive media. They
appear in many areas of science, such as water waves, nonlinear
optics, biophysics, and plasma and particle physics [1], and
more recently in Bose-Einstein condensates [2–4]. Since the
first observation of the crossover from a Bardeen-Cooper-
Schrieffer (BCS) superfluid to a Bose-Einstein condensation
(BEC) in ultracold fermionic atomic gases [5–9], under-
standing the formation, dynamics, and stability of solitons
in a strongly interacting fermionic system has attracted great
attention [10,11] and explored theoretically [12–19].

Based on the BCS mean-field theory [20], the existence and
properties of black solitons in the BCS-BEC crossover were
demonstrated [12] by the real solutions of the Bogoliubov–de
Gennes (BdG) equations. The more general case of the
complex solutions corresponding to gray solitons was also
considered [13,16]. Subsequently, the periodic dynamics of
dark solitons in a harmonic trap [14,15] and two-soliton
collisions [16] were studied by numerically solving the time-
dependent BdG equations. It was predicted that the oscillation
period of a soliton in a harmonic trap increases as one moves
from the BEC to BCS regimes [14,15]. From the computational
side, calculating solutions to both the time-independent and
time-dependent BdG equations is numerically intensive, since
they require self-consistent calculations of single-particle
states whose number increases linearly with the number of
particles. For this reason, these investigations have essentially
been restricted to Fermi gases confined in a box [12,13] or
one-dimensional (1D) trapping potential [15,16] and for small
numbers of atoms, which is essentially quasi-1D. However,
this is not particularly relevant to current experimental settings.

In the very recent MIT experiment performed by Yefsah
et al., with a fermionic superfluid of 6Li near a Feshbach

resonance the long-lived solitons were observed [11]. These
authors created dark solitons by phase imprinting in the
cigar-shaped superfluid. Instead of in situ imaging solitons
at the Feshbach resonance, the visualization of solitons relied
on the time-of-flight method. It was obtained after releasing
the superfluid cloud from its trap and letting it expand
with the rapid ramp to the weakly interacting BEC regime.
Then the oscillation period of dark solitons in the unitary
regime was measured, which was 10 times larger than that
predicted by the BCS mean-field theory [14,15]. Note that
Yefsah et al. essentially prepared the superfluid Fermi gases
containing about 2 × 105 atom pairs and confined them in
an external anisotropic harmonic trap, which is not satisfied
by the quasi-1D condition. Hence this is of great interest
in the generation, dynamics, and stability of dark solitons
in a genuinely three-dimensional (3D) superfluid Fermi
gas.

Different from previous investigations by the extended BdG
equations [12–16], our theoretical investigations are based
on the time-dependent order-parameter equation [21,22].
The order-parameter equation can only describe superfluidity
features macroscopically, but its mathematical framework is
simple, involving only a single function of the coordinate, i.e.,
the superfluid density. Thus we encounter no limitation in the
number of particles and external potentials, and the analysis is
simple and clear. Our calculation is carried out for a wide range
of atom numbers and trap aspect ratios. We not only present
the oscillation periods of dark solitons in the trapped Fermi
gases containing a small number of atoms, but we also find
that as the number of atoms is increased by 2 orders, the period
of stable solitons increases 8%. By examining the effects of
transverse confinement on the stability of initially off-center
solitons through their phase profiles, we give the criterion
of dynamical stability. Finally, we find that the dark soliton
created in the MIT experiment is subject to snake instability,
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splitting into two vortex rings and eventually reducing to one
vortex ring, which performs a solitonlike oscillatory motion.

This paper is organized as follows: After a brief description
of the order-parameter equation and the numerical method in
Sec. II, the dynamics of dark solitons in the quasi-1D regime
is studied in Sec. III, and the soliton periods along the BCS-
BEC crossover are compared with those obtained from the
BdG equations. In Sec. IV, the snake instability of a dark
soliton in the unitary limit is studied and the dynamic stability
criterion is given. The results of our calculation on the dark-
soliton dynamics in the parameters of the MIT experiment are
presented in Sec. V. Finally, a conclusion is given in Sec. VI.

II. MODEL AND METHOD

We consider an ultracold Fermi gas at zero temperature in
which fermionic atoms have two spin states with equal number.
In a ground state all atoms are paired and in the superfluid state,
which can be described by the following time-dependent order-
parameter (or macroscopic wave function) equation [21–29]:

ih̄
∂�s

∂t
=

[
−h̄2∇2

2M
+ Vs(r) + μs(ns)

]
�s, (1)

where �s is the order parameter of fermionic atomic pairs in
the superfluid state. This complex quantity can be specified by
its magnitude and its phase, �s = |�s |ei�s . The pair density
in the superfluid state equals ns = |�s |2, which should be
discriminated from the condensate density. So the normalized
condition is given by

∫
dr|�s |2 = N , where N is the total

atomic pair number of the superfluid Fermi gas, also equal
to the number in each spin state. The superfluid velocity is
given in terms of the order-parameter phase by the relation
vs = h̄∇�s/M [2,22], where we have used the mass of atom
pair M (i.e., M = 2m, with m being atomic mass).

Defining a dimensionless interaction parameter η ≡
1/(kF as), where kF is the Fermi wave number and as is
s-wave scattering length, one can distinguish several different
superfluid regimes: a BCS regime (η � −1), a BEC regime
(η � 1), and a BCS-BEC crossover regime (−1 < η < 1).
A special case η = 0 is called the unitarity limit where the
scattering length is infinity. The BCS-BEC crossover regime
is a strongly interacting regime, while BCS (η � −1) and
BEC (η � 1) limits are actually weakly interacting. In general,
the expression for the equation of state μs(ns) = 2μ(n),
with n = 2ns being the atomic superfluid density, is very
complicated, but it can be fitted by the analytical formula
based on the Monte Carlo data [30] and approximated by the
polytropic approximation [31–33]:

μs(ns) = 2μ0(ns/n0)γ , (2a)

γ = γ (η) = n

μ

∂μ

∂n
=

2
3σ (η) − 2η

5 σ ′(η) + (η)2

15 σ ′′(η)

σ (η) − η

5 σ ′(η)
,

(2b)

where μ0 and n0 are reference chemical potential and par-
ticle number density, respectively [33]. Usually we take the
reference particle number density n0 = (2mEF )3/2/(6π2h̄3)
to be the per spin density of the noninteracting Fermi gas at
the trapping center, and the reference chemical is thus μ0 =
EF [σ (η) − ησ ′(η)/5], proportional to the Fermi energy EF =

(h̄kF )2/(2m). The order-parameter equation incorporated with
the equation of state allows one to investigate the smooth
crossover from the BEC limit to the BCS regime [34] in a
unified way.

It is noticed that in the unitarity limit (η = 0,γ = 2/3), the
order-parameter equation is exactly equivalent to one derived
by Salasnich et al. from an extended Thomas-Fermi density
functional theory [21]. In the BEC limit (η � 1,γ = 1), the
order-parameter equation coincides exactly with an equation
derived by Pieri and Strinati based on BdG equations [35].
Very recently, Forbes and Sharma [36] presented a comparison
between the Fermi superfluid dynamics in the unitary limit
using the local density functional theory [37] and the order-
parameter equation, and very similar results were found.

It has been demonstrated that the order-parameter equation
is very reliable to capture ground-state properties [27,32]
and low-energy collective dynamics [27,33] in the BCS-
BEC crossover. Furthermore, the results given by the order-
parameter equation in the BEC side of the crossover are
found to be in good agreement with the zero-temperature BdG
equations [38,39]. However, the order-parameter equation
cannot completely capture dynamical properties in the BCS
regime (η < 0), because dynamical behaviors can easily result
in pair breaking due to a very small gap energy [40], while the
order-parameter equation ignores single-particle excitation.

We consider a cylindrically symmetric harmonic trap

Vs(r) = 1
2Mω2

z (λ2r2 + z2), (3)

where (r,z) are cylindrical coordinates with r =
√

x2 + y2.
The aspect ratio (anisotropy) of the trap is defined by λ =
ω⊥/ωz, with the trapping frequencies ω⊥ and ωz. So the Fermi
energy for the fermions trapped by a 3D harmonic potential is
given by EF = h̄(6Nω2

⊥ωz)1/3. The axial trapping frequency
is ωz = 2π × 10.66 Hz in the MIT experiment [11], and the
transversal frequency ω⊥ = λωz is determined by fixing the
axial frequency and different aspect ratios. We choose the
total number of atom pairs in a wide range, N = 2 × 105 ∼
2 × 102. In the following, the length is in units of az ≡√

h̄/(Mωz) = 8.89 μm and time is in units of axial trapping
period Tz ≡ 2π/ωz = 93.8 ms [11]. Two-dimensional density
profiles are presented by normalized cross-sectional densities

in the y = 0 plane, i.e., ns(x,z) = a3
z

2
√

2N
|�s(x,y = 0,z)|2.

Recently we have presented the dark-soliton solutions
of quasi-1D order-parameter equations by the multiple-scale
method in the small-amplitude limit [18]. Later, bell solitons
along the BCS-BEC crossover as exact soliton solutions of the
order-parameter equation in arbitrary amplitudes were found
analytically [19]. In the MIT experiment, dark solitons in
Fermi gases were created by means of the phase imprinting
technique [11], which originally was proposed to generate
vortices and solitons in weakly interacting atomic BECs [41],
and experimentally implemented [42,43]. The main idea of this
technique is described as shining an off-resonance laser on a
condensate in order to create phase steps between its different
parts. Instead of exposing the analytic 1D soliton solution [19]
to 3D, we simulate the phase imprinting method to generate
initial solitons in anisotropic Fermi gases along the BCS-BEC
crossover.
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FIG. 1. Dark soliton dynamics in anisotropic superfluid Fermi gases in the unitarity limit, with total atom pairs N = 2 × 102 and aspect
ratio λ = 6.5. Plane (a) shows the initial density profiles of dark soliton generated at the axial position z0 = 3Rz/4, with Rz being the axial
half length. Planes (b), (c), and (d) are snapshots of dark-soliton dynamics at times t = 0.4, t = 0.8, and t = 3.6, respectively. Light and dark
regions indicate high and low densities. Plane (e) is the spatiotemporal contour plot of the renormalized density (the ground-state density minus
the actual axial density) at the r = 0 plane. The dark soliton oscillates in the trap with the first period of 1.75Tz and the reduced second of
1.57Tz.

We solve the order-parameter equation by discretizing with
the split-step Crank-Nicolson algorithm [44]. The initial dark
soliton is created by employing imaginary time propagation
subject to an enforced axially symmetric π phase step, and then
its dynamics is calculated by using real-time propagation.

III. THE SOLITON PERIODS ACROSS
THE BCS-BEC CROSSOVER

The beginning of our calculation is to apply the parameters
N = 2 × 102 and λ = 6.5 for the superfluid Fermi gas in the
unitarity limit (η = 0). By imposing a π phase step at the
axial position z0 = 3Rz/4, with Rz being the axial half length,
the density profile evolves into that of an axially symmetric
dark soliton shown in Fig. 1(a). This off-center dark soliton
under harmonic confinement is expected to oscillate back and
forth along the trap as a quasiparticle [45–47]. Figures 1(b)–
1(d) depict the density profiles of the dark soliton at different
evolution times. As shown in Fig. 1(b), the initial black soliton
moves towards the trap center at t = 0.4 from the right side,
in which it becomes a shallower gray soliton due to the higher
density near the center the faster it gets. For the time scale of the
axial trapping period t = 0.8 in Fig. 1(c), the soliton is prone
to be unstable, emitting radiation in the form of sound waves.
After long-lived oscillations accompanied by the sound waves
at t = 3.6, the dark soliton completely decays into a train of
sound waves [see Fig. 1(d)].

In order to monitor the soliton trajectory, we present the
spatiotemporal evolution by the renormalized density (the

time-independent ground-state density without a soliton minus
the actual density) along a cross section at r = 0 in Fig. 1(e),
where the soliton and sound waves are indicated by the
light regions. Figure 1(e) provides a clearer indication of
dynamical instability in the form of sound radiation and gives
the first period of the dark soliton oscillating in the trap to
be Ts = 1.75Tz. It is shown that the dissipation of energy
by the sound waves from the soliton is associated with an
increase of amplitude of oscillation (antidamping) and the
soliton becomes shallower; as a result, it accelerates with the
second oscillation period of 1.57Tz.

Such dynamical decay of a moving soliton via the emission
of sound waves can be accounted for by two instability
mechanisms in the framework of the order-parameter equation:
(i) axial background inhomogeneity due to the trapping
potential [46,48–50] and (ii) the effects of transverse degree
of freedom coupled with the axial degree by the atomic
interaction [46,51–53].

The relevant size of solitons in the crossover from the
BEC limit up to the unitary limit can be characterized by the
healing length ξ = h̄/

√
2Mμs , with local chemical potential

μs(r) depending on the spatially inhomogeneous density ns(r).
The local chemical potential is determined by the ground-
state solution of the order-parameter equation Eq. (1), that
is, μs(r) + Vs(r) = μG. By using the normalized condition,
one can obtain the bulk chemical potential μG [33]. In the
presence of the harmonic trap, the axial size of the superfluid
Rz = √

2μG/Mω2
z is set by the trapping frequency. For the

case of Fig. 1, we find that Rz/ξ = 2
√

μsμG/h̄ωz = 63, which
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FIG. 2. The spatiotemporal contour plots of dark-soliton dynam-
ics in superfluid Fermi gases containing N = 2 × 102 atomic pairs.
(a) Corresponds to η = 0 (the unitarity limit) with aspect ratio λ = 15,
and (b) for η = 0 with λ = 30; and (c) and (d) are for η = 1.0 (BEC
side) and η = 6.0 (BEC limit), respectively, both with λ = 30.

means that the change in the axial background is very weak
over the size of the soliton.

On the other hand, the characteristic size of the soliton
is the order of the healing length, thus the corresponding
(axial) kinetic energy is the order of μs . The dimensionality
parameter defined by α = μs/h̄ω⊥ = 3.22 implies that the
kinetic energy is larger than the transverse energy h̄ω⊥,
and the atomic interaction can induce transfer of axial
energy to the transversal degrees of freedom. Therefore, we
conclude that the dominant decay mechanism is due to the
coupling to transverse modes.

To suppress the dynamical instability, we perform a stronger
transverse confinement of their motion, that is, λ = 15 (α =
2.44 correspondingly). Therefore, the growth of transverse
energy h̄ω⊥ suppresses the transfer of kinetic energy of the
soliton to transverse modes, resulting in the decay of the soliton
[see Fig. 2(a)]. For a tight enough trapping potential (λ =
30,α = 1.93) in Fig. 2(b), the instability does not occur as a
consequence of the possibility of separation of the axial and
transversal degrees of freedom. It is seen that the period of the
stable soliton oscillation is Ts = 1.7Tz, which agrees well with
that calculated by the BdG equations [14,15] for the case in
the unitarity limit. As shown in the inset of Fig. 3, the soliton
periods have a relatively weak dependence on the anisotropy,
that is, larger values of λ yield smaller periods. Notice that
under conditions of tight transverse confinement λ = 30 and
small number pairs N = 2 × 102, the system is in the quasi-
1D regime, which corresponds to the cases discussed by the
mean-field theory [14,15]. We also present the spatiotemporal
evolutions of dark solitons in the quasi-1D regime for the
cases of the BEC side in Fig. 2(c) and BEC limit in Fig. 2(d),
respectively.

Figure 3 shows our results (�) on the periods Ts of dark
soliton in the quasi-1D regime as a function of the dimen-
sionless interaction parameter η ≡ 1/kF as . The decrease of
Ts as one moves from the BCS regime to the BEC limit is
consistent with the mean-field theory computations by Scott
et al. (
) [14] and Liao and Brand (�) [15]. In the BEC
limit (η = 6), our result is very close to the well-known value
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FIG. 3. (Color online) Periods of dark solitons in the quasi-1D
regime along the BCS-BEC crossover. Our results (�), based on the
order-parameter equation, are compared with those from the the BdG
equations by Scott et al. (
) [14] and Liao and Brand (�) [15].
The horizontal dashed line indicates the well-known period

√
2Tz for

atomic BECs. The inset shows the periods of the soliton oscillating
in the unitarity limit as a function of the aspect ratio.

√
2Tz for atomic BECs [45–47], which is indicated by the

horizontal dashed line in Fig. 3. We find that in the BEC regime
(η > 0), our results are slightly larger than those based on the
extended BdG equations. This is because the BdG equations
cannot obtain the beyond-mean-field term of the equation of
state correctly [9]. Notice that the order-parameter equation
fails to give correct results on the BCS side. For comparison
purposes, we also present our results on the BCS side (η < 0).
Interestingly, different from the small discrepancy in the BEC
regime, in the BCS side the BdG results are significantly larger
than our results, which may be interpreted by the coupling to
fermionic quasiparticle excitations near the soliton [14], which
is completely disregarded in the order-parameter equation.

IV. SNAKE INSTABILITY OF UNITARY FERMI GASES

Dark solitons have 1D character and are stable in the
quasi-1D regime, but they feature a long-wavelength trans-
verse instability known as the “snake instability” [54–58]
when extended into higher dimensions. The snake instability
originates from the transfer of the soliton kinetic energy
to the transverse modes parallel to the soliton nodal plane.
Generally, dark solitons undergo a snake deformation, causing
the nodal plane to collapse into vortex rings [56–58] in 3D (or
vortex-antivortex pairs in two dimensions [55]). For atomic
BECs, it has been shown that this instability leads to a strong
bending of the nodal plane, which breaks down into vortex
rings and sound waves, as experimentally observed [59,60].

The snake stability of dark solitons of superfluid Fermi
gases in the unitarity limit can be studied by monitoring the
evolution of a standing dark soliton created at the trap center
[54–58]. The development of the snake instability and the
concomitant vortex rings for a wide range of numbers of atom
pairs with λ = 6.5 are displayed in Fig. 4(a) for N = 2 × 102,
Fig. 4(b) for 2 × 103, and Fig. 4(c) for 2 × 105, respectively.
Vortex rings resemble toroids where the superfluid density is
depleted, and so the slice of the vortex ring appears as two
dark spots separated vertically. Since the presented density
profile is symmetrical about the x = 0 axis, only the x � 0
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FIG. 4. Snapshots of the stationary dark-soliton dynamics in the unitarity limit with λ = 6.5. Planes (a), (b), and (c) correspond to the total
numbers of atom pairs N = 2 × 102, N = 2 × 103, and N = 2 × 105, respectively.

part is shown, where each vortex ring is indicated by one
dark spot. As shown in Fig. 4(a), the stationary dark soliton is
subject to the snake instability, bending into one vortex ring
and sound waves, in strong contrast to the moving soliton
slowly decaying into sound radiation (see Fig. 1). This is due
to the larger dimensionality parameter α = μG/h̄ω⊥ = 7.38
at the trap center than that at the off-center position. As the
number of atom pairs rises, the increased chemical potential
opens more decay channels, which results in the formation of
more vortex rings, that is, three (α = 15.90) in Fig. 4(b) and
14 (α = 73.80) in Fig. 4(c). From plane (a) to (c) the chemical
potential increases tenfold and inversely, the size of solitons or
vortex rings decreases threefold. We can estimate the size in
the experimentally relevant case of N = 2 × 105 in Fig. 4(c).
The size scale is given by ξ = Rz/959 = 0.29 μm, which is
too small to be resolved by optical means directly but by the
time-of-flight expansion acting as a magnifying glass [11]. In
addition, we find the time for the start of snake instability
reduces significantly from 0.32Tz in Fig. 4(a) to 0.05Tz in
Fig. 4(c).

Now we show how the instability mechanism can be
suppressed under tight transverse confinements [61] and
determine the criterion for stability against the transverse
decay [51]. We consider the superfluid Fermi gases containing
N = 2 × 104 atom pairs in the unitarity limit and examine
the evolution of dark solitons generated at an off-center
position of 3Rz/4. Figure 5 shows the density (left planes)
and corresponding phase (right planes) of the evolutions of the
solitons at the time when the solitons reach the trap center.
Planes (a), (b), (c), (d), and (e) correspond to λ = 6.5, 50, 100,
180, and 250, respectively, and the evolution time t = 0.56,
0.53, 0.47, 0.45, and 0.42, respectively.

With a weak transverse trapping λ = 6.5 in Fig. 5(a), the
created soliton subject to snake instability is decayed to vortex
rings, one of which reaches the trap center at 0.56Tz. Vortex
rings can be evidenced by the 2π phase change at any point of

the circle, as shown in the right plane of Fig. 5(a). Increasing
the transverse frequency λ = 50 in Fig. 5(b) leads to a decrease
in the bending of the soliton, and hence the production of a
single vortex ring. It is seen only by observing dips in the
density profile from the left plane of Fig. 5(b); it is very hard
to discriminate between the soliton and the vortex rings. We
find that the vortex ring evolves back into a soliton when
moving near the ends of the trap due to the decrease of
the dimensionality parameter. It is seen that such a periodic
soliton or vortex ring is stable with an oscillation period of
2.2Tz, which was observed first in atomic BECs [62]. In the
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FIG. 5. Close-up snapshots of density (left) and phase (right)
profiles of the evolutions of the off-centered dark solitons initially
generated at 3Rz/4, when they evolve near the center of the unitary
Fermi gases with N = 2 × 104 for different transverse confinements.
Planes (a), (b), (c), (d), and (e) correspond to λ = 6.5, 50, 100, 180,
and 250, and evolution time t = 0.56, 0.53, 0.47, 0.45, and 0.42,
respectively.
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showing the onset of the snake instability and the decay of the soliton into two vortex rings, as evidenced by the corresponding phase profiles.

geometries λ = 100 in Fig. 5(c) and λ = 180 in Fig. 5(d),
where the soliton is transversely unstable but the transverse
width of the system is too small to support vortex rings, an
excitation with soliton and vortex properties, known as a hybrid
of soliton and vortex rings [62,63], is predicted to occur. The
hybrid of solitons and vortex rings can be evidenced in the
right planes by the emergence of not only phase azimuthal
dependence but also a phase jump, which is characteristic of
a soliton. We find that the oscillation period of the soliton and
vortex ring hybrid is 2.0Tz for the case of Fig. 5(c). Finally, a
very tight transverse confinement (λ = 250) results in a highly
elongated quasi-1D geometry, evidenced by a stable soliton
with its step phase profile shown in Fig. 5(e). The period of the
stable soliton in such a highly elongated geometry is found to
be 1.83Tz, only 8% larger than that in the quasi-1D regime.

Therefore, the criterion of dynamical stability of dark
solitons in trapped unitary Fermi gases can be estimated [51]
by the case of Fig. 5(e), which is αc = μs/h̄ω⊥ = 4.2. We
find that the stability criterion (i.e., α < αc) is very strict
for the conditions of current experiments. A system with a
total number of atom pairs of 105 in most Fermi experiments
requires at least λ = 1500 in the unitarity limit when solitons
are generated in the off-center position of 3Rz/4, while only
λ = 350 is required for αc = 2.4 of weakly interacting atomic
BECs [54].

V. COMPARISON WITH EXPERIMENT

In the MIT experiment [11], the superfluid Fermi gas
containing 2 × 105 atom pairs was prepared in a cylindrically
symmetric trap with ωz = 2π × 10.66 Hz and λ = 6.5. In
order to observe dark-soliton dynamics in the Fermi gas, they
optically applied a step-function potential to advance a π phase
shift of the superfluid order parameter, thereby imprinting a
moving soliton at the off-center position.

We perform numerical simulations using the experimental
parameters in the unitary limit. The results of the close-
up snapshots of density profiles (top row) of dark-soliton
dynamics and corresponding phase profiles (bottom row) are
presented in Fig. 6. In Fig. 6(a), the initial soliton has a
node of zero density at 3Rz/4 (top) and a π phase step
(bottom). As the soliton starts to move at t = 0.07 (6.56 ms),
the soliton plane is dynamically unstable and subject to a
gradual bending, as shown in Fig. 6(b), resulting from the
inhomogeneous transverse density. Subsequently, as shown
in Fig. 6(c), the soliton plane tears into pieces, creating two
vortex rings and radiating sound waves. The vortex rings are
evidenced azimuthally by a 2π phase dependence in the bottom
plane. At 11.2 ms [Fig. 6(c)], the two vortex rings produced
propagate in opposing directions, that is, the inner ring initially
propagates to the right and the outer to the left. Finally, the
vortex ring propagating right is absorbed by the boundary and
only the left vortex ring survives. Note that the dimensionality
parameter at the 3Rz/4 position is α = 32, much larger than
the stability criterion αc = 4.2 estimated by us, so such a decay
channel can be anticipated.

It is interesting to investigate the evolution of the survival
vortex ring in the trapped Fermi gas. As shown in Fig. 7, we
find that the vortex ring is stable and presents an oscillation
in a solitonlike manner, which is highlighted by red lines.
Interestingly, after reflecting at the left end, it also disappears
as it moves to the right boundary; thus only a single oscillation
period can be observed. This period is given by about 2.8Tz,
which is nearly 2 times the soliton period of 1.7Tz and also
differs from the period of 2.0Tz for a hybrid of solitons and
vortex rings. The results suggest that in a strongly interacting
superfluidity, to probe the 1D character of stable solitons
one needs a very small number of atoms or very high trap
anisotropy to guard against snake instability, which is difficult
to achieve in the current experimental situation. However,
this may be an ideal system to experimentally study the
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FIG. 7. (Color online) Snapshots of the oscillation of a vortex ring
created by the snake instability of the unitary Fermi gases from Fig. 6
at (a) t = 0.4 as well as (d) the corresponding phase, (b) t = 2.0, and
(c) t = 2.8.

dynamics of vortex rings or hybrids of solitons and vortex rings
resulting from snake instability, which can be distinguished by
measuring different oscillation periods or their phase profiles,
as we discussed.

VI. CONCLUSIONS

We perform the calculations for the dynamics and stability
of dark solitons in anisotropic superfluid Fermi gases for a wide
range of atomic particle numbers and aspect rations within
the framework of the order-parameter equation. We study the
dynamics of solitons in the trapped superfluid Fermi gases with
a small number of atoms, and the computed soliton period of
1.7Tz in the unitary limit is in good agreement with one by the

BdG equations. The snake instability of unitary Fermi gases
is studied. By examining the evolutions of an initially off-
center dark soliton under various aspect ratios, and a transition
from hybrids of solitons and vortex rings to a stable soliton
discriminated by their phase profiles, we give the criterion
for stability against transverse decay, which is αc = 4.2. In
addition, it is found that the soliton period of 1.83Tz increases
8% as the number of atom pairs is increased 2 orders, and the
hybrid of solitons and vortex rings has a larger period of 2.0Tz.
We simulate the recent MIT experiment on the dark-soliton
dynamics in the unitary Fermi gas. Instead of performing a very
slow oscillation, as observed experimentally, the imprinted
soliton is found to evolve into vortex rings which propagate in
solitonlike manner with a period of 2.8Tz. Such disagreement
between theory and experiment may be accounted for by the
time-of-flight method with Feshbach resonance, which will be
considered in the future.

Note added in proof. Recently, we noted Refs. [64] and [65]
addressing similar problems.
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