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Unconventional superfluid phases and the phase dynamics in spin-orbit-coupled Bose systems
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We study the phase and amplitude distribution of superfluid (SF) order parameters for spin-orbit-coupled two
species bosons in a two-dimensional finite-size square lattice using inhomogeneous mean-field analysis. We
demonstrate how phase distribution of the SF order parameter evolves as we tune the spin-orbit coupling γ and
t , the spin-independent hopping in the strong-coupling limit. For t � γ , we find the homogeneous superfluid
phase where the phase of the SF order parameter is uniform. As we increase γ , spatial inhomogeneity in the
phases of the SF order parameter grows leading to a twisted superfluid phase. For t ∼ γ , competing orderings in
the phase distribution are observed. At large γ limit, a ferromagnetic stripe ordering appears along the diagonal.
We explain that this is due to the frustration bought in by the spin-orbit interaction. Isolated vortex formation is
also shown to appear. The effect of the detuning field δ on the distribution of phases and amplitudes of the order
parameter has also been studied. We also investigate the possible collective modes for this finite-size system. In
a deep superfluid regime we derive the Euler-Lagrange equation of motion for the phases and the dynamics of
lowest normal modes are discussed.
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I. INTRODUCTION

The recent advancement in optical lattice experiments to
investigate the idealized strongly correlated many-body system
has initiated a great interest among the condensed-matter
community [1]. Starting from mimicking a simple tight-
binding Hamiltonian in a periodic lattice, it can now create
more complex situations seen in real materials. Creation of
artificial Abelian or non-Abelian gauge fields and density-
density interaction are some of them to mention [2,3]. Exper-
imental realization of Mott-insulator to superfluid transition
for ultracold bosons [4,5] in such a system became a paradigm
of itself. Recently, there has been experimental realization to
simulate tunable spin-orbit coupling in neutral bosons in an
optical lattice [6,7]. This is remarkable because it is known that
for real material spin-orbit coupling is essentially an intrinsic
[8] property of the material and could not be controlled. The
spin-orbit interaction can change the physical properties of
the system dramatically. In an optical lattice, the spin-orbit
coupling is achieved by Raman laser induced transitions
between the two internal states of a neutral bosonic atom. The
resulting spin-orbit interaction could be purely Rashba [9]
type or Dresselhaus [10] type or a suitable combination of
both.

The physical implications of such spin-orbit interaction
have been studied extensively recently [11–16] in various
contexts. In the Mott regime it is shown to support exotic
magnetic textures, such as vortex crystals and Skyrmion lattice
[11–13]. The signature of the Mott-insulator to superfluid
transition has been shown to be associated with precursor peaks
in momentum distributions [17–20]. Various other equilibrium
and nonequilibrium dynamics have also been analyzed which
could have interesting experimental signatures [21]. Boson
fractionalization has also been proposed and formation of
twisted superfluid phases has been noticed as a result of
spin-orbit interaction [20,22]. It may be mentioned that for
the fermionic case interesting many-body dynamics have also
been observed [23] in the presence the spin-orbit interaction.

The Mott-insulator to superfluid transition is well captured
by the Bose-Hubbard model [24–26]. There is already a
large amount of work done which investigated the low-energy
properties of such a Bose-Hubbard model [27–30]. However,
much of these works were mainly aimed at looking into
the systems which are thermodynamically large and are in
weak-coupling regime. In this work, we look into the effect
of spin-orbit interaction of two-component bosons in a strong-
coupling limit for finite-size systems. We are motivated to look
into microscopic manifestation of the spin-orbit interaction
and various ramifications of the superfluid order parameter for
a finite-size system in different parameter regimes. For this
we employ Gutzwiller projected inhomogeneous mean-field
treatment [27,31], which seems to be pertinent for such a
small system size. We work in the strong-coupling limit where
the Hubbard interaction is the highest energy scale of the
problem. This limit enables us to take the number of states
in the Gutzwiller projected state to be necessary minimal. The
Hamiltonian, H , we work with can be written as the sum of
two terms, H0 and H1, which are given below [7,20]:

H0 =
∑
ia

−μnia + Unia(nia − 1) + λU
∑

i

ni1ni2

−
∑
〈ij〉a

tab
†
iabja,

(1)
H1 = iγ

∑
〈ij〉

�
†
i ẑ · (�σ × �dij )�j

+
∑

i

(δ�†
i σy�i − ��

†
i σz�i).

Here �i = (bi1,bi2) with biα representing the bosonic annihi-
lation operator for the species α (with α taking values 1 and
2). As usual niα denotes the number operator for respective
bosons. In H0, μ represents the chemical potential, � is the
Zeeman shift between the two species, U is the intraspecies
interaction, and λ is the on-site interspecies interaction. The
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last term in H0 represents the usual spin conserved hopping
interaction. The terms in H1 describe three different types of
spin-orbit interaction. The first term with coupling strength
γ describes the usual Rashba [9] spin-orbit interaction. �dij

denotes the vector pointing from site i to site j . The dot product
with the unit vector ẑ signifies that the system lies in the x-y
plane. The spin-dependent hopping process for this system
could be written as �

†
i Rij�j . The matrix Rij describes the

hopping process in background non-Abelian gauge field. Here
Rij = e

�A·(�ri−�rj ) with �A = α(σy,−σx,0) [11,12]. The diagonal
terms coming from Rij contribute to the spin conserved
hopping process and the off-diagonal terms constitute the
spin-dependent hopping process with γ ∼ sin α. The last two
terms in the expression of H1 describe the effect of transverse
Zeeman field in y-z plane with strength δ and � in the y and
z directions, respectively. The presence of these two terms
makes the Hamiltonian different than what has been studied
recently [11,12]. Presence of � breaks the degeneracy between
two species of bosons and results in a unique nondegenerate
Mott state. It may also be noted that, while Refs. [11,12]
studied the properties of the effective spin Hamiltonian deep
inside the Mott phase in the strong-coupling limit, our aim is to
look into a superfluid regime taking into account the effect of
� and δ. While taking into the effect of δ and � in our model,
we have in our mind the experimental realization of Ref. [7]
where two species of bosons refers to mF = 0 and mF = −1
hyperfine states of F = 1 Rb atoms. The spin-orbit coupling
is achieved by applying two Raman lasers whose frequencies
are detuned by δ compared to the Raman transition frequency
of mF = 0 and mF = −1 hyperfine states of Rb atoms. In
addition to the usual spin-dependent hopping process, these
lasers also create an effective Zeeman field in the y-z plane
which are represented by δ and � terms in the expressions of
H1. Our aim of the present study is to examine the effect of γ ,
δ, and � on the superfluid order parameters. Below we explain
our plan presentation.

In Sec. II, we begin by giving a detailed analysis of the
mean-field procedure and obtain the phase diagram for MI-SF
transition in the t-μ plane for representative values of γ for
zero and finite values of the detuning field δ. Following this,
we look into the phases and magnitudes of the SF order
parameter in a superfluid regime. We show that the phases and
the magnitudes of the SF order parameters respond differently
as the parameters are varied. We find that when t/γ � 1, the
SF phase is described by a homogeneous superfluid where
the magnitudes and the phases of the SF order parameter are
spatially uniform. For intermediate values where t ∼ γ , we
find that the phases and the amplitudes of both species of
the SF order parameter are inhomogeneous and show a large
vortexlike pattern. Depending on the relative strength of t and
γ , it could be the superposition of local homogeneous phases
and patches where the phases form a spiraling pattern. For the
limit t/γ � 1, the phases of the order parameter develop a
ferromagnetic order along the diagonal direction followed by
periodic modulations of magnitude of the SF order parameter.
We explain that this is due to inherent frustration brought
in by the spin-orbit interaction. The gradual transition of the
phase textures for t/γ � 1 to t/γ � 1 is possibly a crossover
phenomena where, due to the presence of spin-orbit coupling

term γ , the phases begin to fluctuate from a homogeneous
distribution and reach an ordered pattern via a disordered
intermediate regime. The scenarios could be described as
ordered-disordered-ordered phenomena. In Sec. III, we discuss
the effect of detuning field δ on the distribution of phases and
the magnitude of the SF order parameter. We find that it brings
in additional correlation between the phases of the SF order
parameter of two species.

In Sec. IV, we study the fluctuations around the mean-field
configuration and investigate the lowest possible excitations.
In Sec. V, we study the dynamics of phases inside the deep SF
regime. Assuming that the phases of the order parameters are
the only relevant low-energy degrees of freedom in this regime,
we deduce the Euler-Lagrange equation of motion for it and
find the normal modes of small oscillations. It appears that,
due to the constrained collective motions among the phases
of the nearest-neighbor bosons, imaginary frequency appears
signifying damped vibration. We also look at the nature of
lowest normal modes of the vibrations. The density distribution
and the rich phase textures we obtain due to interplay of
various system parameters (i.e., t,γ,δ) could be experimentally
detected by possible noise-correlation measurement, mass
current measurement, and the presence of additional peaks in
Bragg scattering or in situ microscopy [32–34]. We summarize
our work in Sec. VI.

II. MEAN-FIELD STUDY

As already mentioned, in this work we study spin-orbit-
coupled two component bosons in square lattice described
by the Hamiltonians in Eq. (1). Our primary purpose is to
examine how the phase and the magnitude of the SF order
parameter behave as various system parameters are changed. In
our analysis all the parameters have been scaled by the on-site
spin-independent density-density interaction U . To begin with
we keep the on-site detuning parameter δ = 0.0. The effect of δ

has been discussed in Sec. III. We confine our numerical results
for a system of size 10 × 10. In all cases, the chemical potential
μ is taken to be 0.2 and interspecies interaction strength λ is
fixed at 0.6. For our purpose of mean-field analysis we take
the Gutzwiller variational wave function as |�〉 = ∏

i |ψi〉,
where |ψi〉 is the wave function at a given site i. |ψi〉 is given
by |ψi〉 = ∑

m,n fm,n|mn〉. Here |mn〉 denotes a state with m

(and n) boson(s) of species 1 (and 2). fmn is the Gutzwiller
coefficient associated with the state |mn〉. As we work in a
strong-coupling limit where U is much larger that t and γ and
other system parameters, it is sufficient to take states up to
two particles at a given site. The mean-field superfluid order
parameters are defined as 
ia = 〈ψi |bia|ψi〉; here i denotes
the site index and a signifies the species index which could take
values 1 and 2. A nonzero value of 
ia indicates a superfluid
phase. The expressions for 
ia in terms of fmn,i are given
below:


i1 = f10,if
∗
00,i + f11,if

∗
01,i +

√
2f20,if

∗
10,i ,

(2)

i2 = f01,if

∗
00,i + f11,if

∗
10,i +

√
2f02,if

∗
01,i .

The first part of the Hamiltonian in Eq. (1) excluding
the hopping term contains on-site interactions and we call
it Hat . The expectation value of it with respect to Gutzwiller
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variational wave function |�〉 is given by

〈Hat 〉i = −μ1(|f10,i |2 + |f11,i |2 + 2|f20,i |2) + λU |f11,i |2

−μ2(|f01,i |2 + |f11,i |2 + 2|f02,i |2)

+ 2U (|f20,i |2 + |f02,i |2). (3)

Here 〈Hat 〉i denotes contribution from ith site in Hat . A generic
term in H1 [and the spin-independent hopping term in Eq. (1)]
can be written as b

†
i,αbj,β . The mean-field decomposition of it

is given by [27,31]

b
†
i,αbj,β = 
∗

iαbjβ + 
jαb
†
iβ − 
∗

iα
jβ, (4)

where 
ia is the mean-field order parameter as evaluated in
Eq. (2). After we substitute Eqs. (3) and (4) in Eq. (1), and use
Eq. (2) we can write the mean-field decomposed Hamiltonian
as

H =
∑

i

χ
†
i Fi(μ,λ,
j,α,t,γ )χi, (5)

where χ
†
i = (f00,i ,f10,i ,f01,i ,f11,i ,f20,i ,f02,i). The problem

then reduces to diagonalizing the matrix Fi at every site
self-consistently. In the Appendix, we have given the full
expression of the matrix Fi in Eq. (A1). The Hamiltonian
in Eq. (5) is still a coupled problem as it involves the order
parameters of nearest-neighbor sites. We notice that, in the
presence of spin-orbit coupling, 
iα cannot be taken uniform
at each site as in that case the spin-orbit interaction contributes
nothing to the total energy. To find the mean-field solution, we
start from a given random initial distribution of 
iα at each site
i and diagonalize the Fi(μ,λ,
j,α,t,γ ) at each site. We then
calculate the new set of 
̃iα corresponding to the minimum
eigenvalue of Fi . The resulting 
̃iα’s are fed back into Eq. (5)
until 
i becomes equals to 
̃i at each site i. We do this
procedure for approximately 103 random configurations and
take the configurations of 
̃iα which corresponds to the global
minima. In the left panel of Fig. 1, we show the phase diagram
for the MI-SF transitions in the t-μ plane for representative
values of γ with δ = 0.0. In the right panel of Fig. 1, we have
plotted the MI-SF transition for δ = 0.005. We notice that the
results shown in Fig. 1 match well with the earlier results in

Refs. [18,20]. Now we discuss the phases and the magnitudes
of the SF order parameters for different values of t and γ .

A. Numerical results

We have found, in general, that the presence of spin-orbit
coupling (γ ) in two species bosons as given in Eq. (1) yields
an inhomogeneous superfluid phase where the phases of the
superfluid order parameter are spatially nonuniform. When the
spin-conserved hopping parameter (t) dominates over spin-
orbit coupling γ , then the superfluid phase could be described
as a homogeneous superfluid phase but when γ is comparable
to t or larger than t , the phases and the magnitudes of the SF
order parameters are not homogeneous and in general show
different behavior depending on the relative strength of t and
γ . First we discuss the regime when t � γ , followed by the
regime where t ∼ γ . After this we discuss the regime where
γ � t .

1. When t/γ � 1

In Fig. 2, we present the resulting distributions of phases
and the magnitude of the order parameter 
iα . The arrows
represent the phases and the background color represents the
relative magnitudes of the order parameters. The dark color
represents greater magnitude. The upper panel is for 
i1 and
the lower panel is for 
i2. In the extreme left panel the result
is shown for t = 0.04,γ = 0.02. We find that the distribution
of phases 
i1 are ordered and spatially uniform, while that
of 
i2 is disordered. The magnitudes of 
1 form a two
sublattice structure; however, there are degenerate solutions
with spatially uniform magnitude. It is clear that the two
sublattice structure is the result of spin-orbit interaction. Also
we have 〈
i1〉 � 〈
i2〉. The above differences in phase and
amplitude distribution between the two species are due to the
presence of �; the system is favoring the condensation of
species 1 which resembles the homogeneous superfluid. The
middle panel of Fig. 2 represents the result for t = 0.04,γ =
0.025. We observe that the phases of the superfluid order
parameter are no longer uniform in space and change from one
position to another having a definite twist angle between them,
leading to what has been called a twisted superfluid phase [22].
We observe the reduction of the ordered pattern of 
i1 and
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FIG. 1. (Color online) Here we have shown the MI-SF transition in the t-μ plane. In the left panel we have shown the MI-SF transition
for δ = 0.0 and the right panel is for δ = 0.005. The red points denote the transition for γ = 0.0 and the blue points denote the transition for
γ = 0.04. For both panels λ is 0.6 and � is 0.01.
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y

x

FIG. 2. (Color online) Small square boxes containing arrows
denote the positions of a site in a 10 × 10 square lattice. The distance
from lower horizontal boundary and the distance from left vertical
boundary gives, respectively, the (x,y) coordinates in the usual
Cartesian coordinate system. This description goes for Figs. 3–6,
9, and 10. Magnitude and phase of the order parameter is plotted at
each site. The arrows represent the phases and the color represents the
magnitude of the order parameter 
i . The upper panel denotes phase
and magnitude for 
1 and the lower panels are for 
2. The left panels
denote the result for γ = 0.02,t = 0.04. The middle panels are for
γ = 0.025,t = 0.04 and the right panels are for γ = 0.03,t = 0.04.
We have set � = 0.01. In these figures and the subsequent figures
dark color represents greater amplitude and white color means lesser
amplitude but never zero. The color scheme used in different figures
is to be compared qualitatively only.

onset of diagonal ordering. Interestingly, we observe that
whenever the phase of the SF order parameter 
i1 is deviated
from zero (indicated by horizontal alignment of arrows), it is
accompanied with a reduction of the magnitudes of the order
parameter. The phases of 
i2 also show signature of diagonal
ordering. The competition between ordering along the two
diagonal directions result in forming large vortices as seen in
the middle lower panel in Fig. 2. The right panels of Fig. 2
represents the results for t = 0.04,γ = 0.03. In all the cases
we have taken � = 0.01.

2. When t ∼ γ

The phase textures for this regime could be described as
follows. We find a competition between local ferromagnetic
alignment for the nearest 
i’s and the ferromagnetic (FM)
ordering along the diagonal neighbors. The FM ordering for
the neighboring sites results from direct hopping, whereas
the ferromagnetic ordering along the diagonal sites is due
to the spin-orbit coupling as explained in next section. In
Fig. 3, the left panel represents the phase distribution for
γ = 0.035, the middle panel is for γ = 0.04, and the right
panel is for γ = 0.06. For all figures in Fig. 3 the value of
t is also set at 0.04. We notice that the minimum-energy
configuration presented here is not unique. There are many
degenerate configurations with identical energy. However, the
quantum fluctuations would pick up the global minima. For
example, in Fig. 3, we find the onset of density modulations
and no vertex formations. There are degenerate mean-field

x

y

FIG. 3. (Color online) Distribution of phase and the order param-
eter as explained in Fig. 2. Here the left panels represent the result for
γ = 0.035,t = 0.04, the middle panels represent γ = 0.04,t = 0.04,
and the right panels represent γ = 0.06,t = 0.04. We have taken
� = 0.01,δ = 0.0.

solutions with completely random density distribution with
isolated vertex formations.

3. When t/γ � 1

In this regime we notice that the phases form a ferro-
magnetic alignment along any one of the diagonals. The
magnitude of the order parameter is also seen to be modulated.
In Fig. 4, we present the distribution for the phases and the
magnitudes of SF order parameter for γ = 0.1,t = 0.02. We
see that ferromagnetic ordering of phases along the diagonal
is fully established. While in the left panel FM ordering
happens for both diagonals, for the middle panel it happens
for only the (1,1) direction. In the left panel isolated vertex

i i+x

i i+x

i+y i+x+y

i+x+yi+y

y

x

FIG. 4. (Color online) Distribution of phases and the order
parameter as explained in Figs. 2 and 3. The left and the middle panel
are drawn for γ = 0.1,t = 0.02. We have kept � = 0.01,δ = 0.0.
These represent the degenerate mean-field configuration. We see that
the left panel contains vertex and antivertex. The green circle contains
the vertex configurations and the pink circle contains antivertex. In the
right panel we have shown the spin-orbit-coupled hopping processes
for up-spin starting from site i in the counterclockwise direction.
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FIG. 5. (Color online) (Left) Distribution of phases and amplitude for δ = 0.005. The values of t,γ for the left panel are (0.04, 0.02), for
the middle panel (0.04, 0.025), and for the right panel (0.04, 0.03). (Right) Distribution of phases and amplitude for δ = 0.005. The values of
t,γ for the left panel are (0.04, 0.035), for the middle panel (0.04, 0.04), and for the right panel (0.04, 0.06). For all the figures, the values of
μ,λ are respectively 0.2 and 0.6.

[11] and antivertex is seen to appear. To understand the
phase distribution in this regime it may be useful to consider
an elementary square plaquette and consider the meanfield
Hamiltonian for it. Let us consider the hopping of an up spin
under spin-orbit coupling via the sites i, i + x, i + x + y, and
i + y in a counterclockwise direction as shown in the right
upper panel in Fig. 4. The mean-field decomposition of the
Hamiltonian for the bonds of an elementary square shown in
the right panel of Fig. 4 imposes the following constraints on
the phases:

θi,1 − θi+x,2 = ±π, θi+x,2 − θi+x+y,1 = π

2
,

(6)
θi+x+y,1 − θi+y,2 = 0, θi+y,2 − θi,1 = −π

2
.

In the above θjα denotes the phases of the SF order parameter

jα. The above set of equations does not have simultaneous
solutions for all the parameters. One may eliminate θi+x,2

(and θi+y,2) from the first and second (and third and fourth)
to solve for θi,1 and θi+x+y,1 to obtain that they are equal.
The numerical results seem to confirm this. It then poses an
ill-defined equation for θi+x,2 (and θi+y,2) which is fixed to
minimize the palette energy. The ratio of average palette energy
obtained from numerics to that obtained by minimizing a single
plaquette is 0.94, which is satisfactory. In recapitulation, we
have shown within the mean-field how the twisted superfluid
phase appears as we gradually tune the parameter t and γ for
a tight-binding Hamiltonian given in Eq. (1). We have shown
the onset of density modulations and stripe pattern [35,36] for
the phases as γ is increased gradually. The transition of the
phase textures for t/γ � 1 to t/γ � 1 is possibly a crossover
phenomena where, due to the presence of spin-orbit-coupling
term γ , the phases start to fluctuate from a homogeneous
distribution and reach an ordered pattern via a disordered
intermediate regime. The scenarios could be described as
ordered-disordered-ordered phenomena.

III. EFFECT OF FINITE δ

Here we discuss the effect of detuning field δ. We find
that for very small values of δ the resulting phase and

amplitude distribution does not differ from the case δ = 0.0.
However, as we increase δ, it starts to effect the resulting
phase and amplitude distribution of the SF order parameter
in a significant and distinctive way. In Fig. 5, we have
shown the results for δ = 0.005. We have observed that for
γ = 0.02,t = 0.04, as shown in the left panel of Fig. 5, the
nature of the phase distribution does not change from that of
the δ = 0.0 case as shown in the left panel of Fig. 2. However,
for γ = 0.025,t = 0.04, we observe that finite δ has brought
in substantial differences from that of the δ = 0.0 case. For
these parameter values δ = 0.0 has already initiated a twisted
superfluid phase; however, for finite δ we observe a uniform
superfluid phase as seen in the middle panel of the left of
Fig. 5. But we find that though the phase distribution of both
the species of bosons are uniform, the relative phase difference
between two species is 90◦ due to the presence of δ. This
feature continues for small to medium values of γ as described
in Fig. 5. For γ = 0.03 we observe that a twisted superfluid
phase has appeared but for a given site the phases of two
species of bosons are at 90◦. This feature may be explained in
the following way. The detuning term at a given site is given by
δ(ib†1b2 + H.c.) (we have omitted the site index i), which yields
a mean-field decomposition ∼ 2δ|
1||
2| sin(θ1 − θ2). The
appearance of sin(θ1 − θ2) brings in additional correlations
between the phases of two species at a given site i. When γ is
small, the detuning term maximizes itself by making θ1 − θ2 =
90◦. For this reason we find that the resulting phase distribution
is distinctively different from that of δ = 0.0. The diagonal
ordering that was very strong for the δ = 0.0 case is not
that prominent for δ = 0.005 due to the additional competing
mechanism brought in by δ. However, for very large values of
γ as shown in the right panel of Fig. 6, we find that the effect
of δ has been minimized and the diagonal ordering has been
fully established similar to the δ = 0.0 case. So far, we have
discussed the effect of δ on the phases of the order parameter.
The effect of the detuning parameter δ acts as a leveler as
far as the amplitude of the order parameter is concerned. We
have observed that for γ � t and γ ∼ t the amplitude of 
i1

and 
i2 are same. Though in Fig. 5 we see differences in
the amplitudes of 
1 and 
2, they differ in the sixth decimal
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y

x

FIG. 6. (Color online) (Right) Distribution of phases and ampli-
tude for δ = 0.005. The values of t,γ for the left panel are (0.04,
0.08) and for the right panel (0.02, 0.1). For all the figures, the values
of μ,λ are respectively 0.2 and 0.6.

places implying that they are almost equal. However, for γ � t

(presented in Fig. 6), we see that the magnitudes of 
i1 and 
i2

differ and form a modulated pattern. Thus we conclude that
sufficiently strong values of the detuning parameter δ bring in
distinct differences on the phase and amplitude distributions
of the SF order parameters when compared to the δ = 0 case.

IV. FLUCTUATION AROUND THE MEAN FIELD

Having discussed the phase and amplitude distribution for
different values of t and γ within the mean field, we now look
into the fluctuations around the mean-field solutions obtained
in the previous sections. We confine our analysis for the δ =
0.0 case as the small but finite δ is seen to yield no new
feature in the fluctuations. To take into account the role of
fluctuations, we expand the Gutzwiller coefficient [37] fmn,i

around its mean-field value and expand it as fmn,i = f̄mn,i +
δfmn,i , where f̄mn,i represents the mean-field value. After we
substitute it in Eq. (5) we retain the terms which are quadratic in
δfmn,i (and its complex conjugate). The resulting Hamiltonian
then could be written as

H = �†Hδ�. (7)

Here �† = (ψ1,ψ2, . . . ,ψr, . . . ,ψN ) and ψi = (
ψui,ψdi).

Here ψui = (δf00,iδf10,iδf01,iδf11,iδf20,iδf02,i) and ψdi = ψ∗
ui .

It is clear that Hδ represents a 12N × 12N Hermitian matrix
whose eigenvalues and eigenvectors represent the collective
modes. It may be noted that the substitution, δfmn,i =∑

k umn,ke
ikr + vmn,ke

−ikr , does not simplify the calculation
as the f̄mn,i’s are not translational invariant. We denote the
lowest positive eigenvalue by E0 (10−16). The E0 is a measure
of possible low-energy collective modes of the system and
is shown in Fig. 7. In the left panel of Fig. 7, log10E0 has
been plotted with N as the system size. The various colors
represent various sets of parameters (γ,t). Red represents
(0.1, 0.02), blue represents (0.02, 0.04), green represents (0.03,
0.04), black is for (0.04, 0.04), gray is for (0.06, 0.04), orange
denotes (0.08, 0.04), magenta denotes (0.025, 0.04), and cyan

E2

4 5 6 7 8 9 10

0.6

0.8

1.0

1.2

1.4

1.6

1.8

4 5 6 7 8 9 10
0.85

0.90

0.95

1.00

1.05

1.10

1.15

0.
1l

og
0

10
E

N N

FIG. 7. (Color online) In the left panel a measure of zero energy
eigenmodes, E0, due to the collective motions has been shown.
In the right panel the bandwidth around E2 has been plotted. For
both, the figure horizontal axis represents the length of a N × N

lattice. The various colors represent various sets of parameters as
described in the text.

is for (0.035, 0.04). This color scheme is maintained for all the
figures that will be used later. In the following we discuss the
textures of the order parameter 
ia for different values of t and
γ . We find that for t � γ , the system always find zero energy
modes. For t ∼ γ , where the phases are disordered, we also
find similar behavior. However, for γ � t , we find that E0 is ∼
104 times larger than the other parameter regime. However, E0

scales to lower values monotonically as we increase the system
size. The gradual decrease of E0 with system size N indicates
that it is approaching the possible zero-energy modes. The
reason that, for γ � t , E0 is larger than other cases by a few
thousand order is the following. For t � γ the uniform phase
distribution always find nearly zero-energy collective modes
and there is no frustration in the system also. For t ∼ γ , the
spins are disordered and random. Thus it is easily possible to
redistribute the phases to have low-energy eigenmodes which
are nearly degenerate with the original solutions. However,
for γ � t , the distribution of phases and the magnitudes are
determined by the frustration brought in by spin-orbit cou-
pling. The degenerate solutions in this case as seen from Fig. 4
are not easily connected. Thus the lowest possible collective
excitations cost more energy than other cases. However, as
we increase the system size, we expect that the degenerate
solutions are easily obtained from one another leading to nearly
zero-energy excitations. We also observe that the eigenvalues
of the collective modes form three distinct bands. This is
clear from Eq. (3). The fluctuation of f2,0 or f0,2 yields the
bands around U , while the fluctuation of f11 yields the bands
around λ/2. The fluctuation of f1,0, f0,1, and f0,0 constitutes
the lower bands. We denote these three bands by E2, E1, and
E0, respectively. In the right panel of Fig. 8, we have plotted the

4 5 6 7 8 9 10

0.26

0.28

0.30

0.32

0.34

4 5 6 7 8 9 10

0.15

0.10

0.05

0.00

−0.05

−0.10
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FIG. 8. (Color online) In the left panel the bandwidth around E1

has been shown. The right panel is for E0. In both the figures the
horizontal axis represents the length of a N × N lattice.
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y
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FIG. 9. (Color online) Magnitude and phase of the order-
parameter fluctuation are plotted at each site. The arrows represent the
phases and the color represents the magnitude of the order-parameter
fluctuation δi . The upper panel denotes phase and magnitude for δ1

and the lower panels are for δ2. The left panels denote the result for
γ = 0.025,t = 0.04. The middle panels are for γ = 0.04,t = 0.04
and the right panels are for γ = 0.1,t = 0.02. As mentioned, we
have taken μ = 0.2,λ = 0.6,δ = 0.0.

bandwidth with the system sizes for different parameter values.
In the left panel of Fig. 8 we have plotted the bandwidth formed
around E1 and the right panel is for around E0. It appears that,
for a given t , the bandwidth is inversely proportional to γ . Also,
the greater the value of γ , the more the bandwidth oscillates
with the system sizes. We notice that the bands E2 and E1 are
symmetric but E0 is not because of the presence of �.

In Fig. 9 we have represented the fluctuation of the order
parameter 
iα . By expanding fmn,i around its mean-field value
f̄mn,i we can express 
i,a = 
̄i,a + δi,a , where δi,a is given
below:

δi,1 = f̄10,iδf
∗
00,i + f̄ ∗

00,iδf10,i + δf10,iδf
∗
00

+ f̄11,iδf
∗
01,i + f̄ ∗

01,iδf11,i + δf11,iδf
∗
01,i

+
√

2(f̄20,iδf
∗
10,i + f̄ ∗

10,iδf20 + δf20,iδf
∗
10),

(8)
δi,2 = f̄01,iδf

∗
00,i + f̄ ∗

00,iδf01,i + δf01,iδf
∗
00

+ f̄11,iδf
∗
10,i + f̄ ∗

10,iδf11,i + δf11,iδf
∗
10,i

+
√

2(f̄02,iδf
∗
01,i + f̄ ∗

01,iδf02 + δf02,iδf
∗
01).

δfmn,i’s has been calculated from the eigenvectors cor-
responding to E0. Using the values of δfmn,i we calculate
δi,a according to Eq. (8). Its magnitude and phases have
been plotted in Fig. 9. This yields the probable low-energy
collective modes for the finite-size system. We observe quite
distinct patterns in three different limits. For t/γ � 1, we
find that the fluctuation of magnitude of δi,1 is δi,2 follows
each other. The phase fluctuation is such that it is almost
an equal superposition of parallel and antiparallel phases so
that the sum,

∑
i,j cos(θi − θj ) ∼ 0.0, is given in horizontal

or vertical line. For some nearest-neighbor bonds, the phases
are right angles contributing cos(θi − θj ) ∼ 0.0. The phase
fluctuation of δ2 follows a similar pattern as in δi,1, though
deviations are seen due to the presence of γ . For the cases
t/γ ∼ 1 and t/γ � 1, we find a diagonal ordering which
is broken at midway by opposite alignment of phases at the

nearest diagonal sites. Also we notice that the fluctuation of
the magnitudes of δi,1 and δi,2 start to deviate slowly as we
increase the value of γ .

V. DYNAMICS OF THE PHASES

Now we turn our attention to deep inside the superfluid
regime where one may neglect the fluctuations of the mag-
nitude of the order parameter and consider the phases as the
only relevant degree of freedom. Following a semiclassical
approximation, we deduce the Lagrangian and the equation
of motion for the phases and determine the normal modes of
the vibrations. For simplicity, we have taken δ = 0.0 in the
following analysis. The mean-field decomposition of Eq. (1)
could be written as

H =
∑

i

μα,i〈nα,i〉 + U

2
〈nα,i〉2 + λU 〈nα,i〉〈nβ,i〉

−
∑
〈ij〉

(λij,αβ
∗
α,i
β,j + H.c.). (9)

In the above λij,αβ denotes a generalized hopping parameter.
The main disadvantage of Eq. (9) is that all the variables
commute with each other and bear no signature of the original
bosonic commutation relations. To derive the Lagrangian of
the phases of the order parameter 
iα , we follow the procedure
in [38,39]. Translating the original bosonic commutators to the
commutation relations of the mean-field variables, we find that

[n1,b1] = −b1 → [〈n1〉,
1] = −
1. (10)

Writing 
1 = eiθ1 |
1| and keeping |
1| constant we obtain

[〈n1〉,eiθ1 ] = −eiθ1 . (11)

Expanding eiθ1 and keeping only the lowest-order term we
obtain, for θ1 → 0, the following commutation relations:

[〈n1〉,θ1] = i, [〈n1〉2,θ1] = 2i〈n1〉. (12)

The above procedure yields the following coupled equations
involving ∂θα

∂t
and 〈nαi〉:

∂θ1i

∂t
= −

(
μ + � + U

2

)
+ U 〈n1i〉 + λU 〈n2i〉,

(13)
∂θ2i

∂t
= −

(
μ − � + U

2

)
+ U 〈n2i〉 + λU 〈n1i〉.

Solving for 〈n1i〉 and 〈n2i〉 from the above two equations
and substituting in the Hamiltonian in Eq. (9), we obtain the
following equations:

Hsh = B0

[(
∂θ1i

∂t

)2

+
(

∂θ2i

∂t

)2]
+ B1

∂θ1i

∂t
+ B2

∂θ2i

∂t

+B3
∂θ1i

∂t

∂θ2i

∂t
+ F̃ (θi1,θi2) + B4, (14)

where F̃ (θi1,θi2) is given in the Appendix. Expressions for Bi’s
are also given in the Appendix. To derive the Euler-Lagrange
equations of motion, we introduce the relative and total phase
by the relation θ1i = θci + θir ,θ2i = θci − θir . After inserting
the above change of variables, we can rewrite Eq. (14) as
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FIG. 10. (Color online) We have shown the nature of vibration
for the lowest normal modes. In each panel the upper panels denote
vibrations of θ1 and the lower panels are for θ2. The right panel
denotes the case γ < t (γ = 0.02,t = 0.04). The middle panel rep-
resents γ ∼ t (γ = 0.04,t = 0.04). The right panel represents γ > t

(γ = 0.1,t = 0.02). As mentioned, we have taken μ = 0.2,λ =
0.6,δ = 0.0. The white region denotes motion in the clockwise
direction and the blue region denotes motion in the counterclockwise
direction.

follows:

Hn =
∑

i

T1(θ̇ic + αc)2 + T2(θ̇ir + αr )2

+ F̃ (θir ,θic) +
∑

αicr . (15)

Here T1/2 = 2B0 ± B3. Using the above equations, we
write the resulting Lagrangian and the equation of motion
below:

L =
∑

i

T1(θ̇ic + αc)2 + T2(θ̇ir + αr )2 − F̃ (θir ,θic),

(16)

θ̈ic = −∂F̃ (θic,θir )

T1∂θic

, θ̈ir = −∂F̃ (θic,θir )

T2∂θir

.

In the last equation we have deliberately omitted the in-
consequential constant term

∑
αicr . After simplifying the

right-hand side (RHS) of the second and third identity of
Eq. (16) and subsequently expanding up to a linear term, we
can rewrite it as �̈ = M�, where, for a system of N × N

lattice, � is a column matrix with 2N2 element such that
�i = θic and �N2+i = θir where i runs from 1 to N2. M is a
2N2 × 2N2 square matrix. The eigenvalues of the matrix M

yield the normal modes. We find that due to the presence of

γ , the normal modes develop negative eigenvalues signifying
damped modes. In Fig. 10 we have plotted schematically the
lowest normal modes for three different regimes. In all the plots
the blue region denotes displacements of phases in forward
direction (counterclockwise rotation, θ1(2) increasing) and the
white regions denote displacements in the backward directions
(clockwise rotation, θ1(2) decreasing). The right panel denotes
the case for γ � t , the middle panel denotes γ ∼ t , and the
right panel is for t � γ . In each of these panels the upper
one denotes the displacement for species 1 and the lower
panel describes the displacements for species 2. Looking at the
upper panel we find that, for the γ � t , there is the tendency
of phases to move synchronously along the diagonal which
is expected. However, for the middle panel and the left panel
there are preferences in horizontal ordering and patches of
areas vibrating in breathing modes. For the species 2, as shown
in the lower panel of Fig. 10, we find similar behavior though
the region executing breathing modes is larger.

VI. DISCUSSION

To summarize, we have explored the different phases
that might occur for spin-orbit-coupled bosons in the optical
lattice in a strong-coupling limit. We have extensively studied
the distribution of phases and the magnitude of the SF order
parameter for a finite-size system using an inhomogeneous
mean-field analysis. We have shown that for a given t , as we in-
crease the spin-orbit interaction γ , we observe the destruction
of the normal homogeneous superfluid phase and the onset
of twisted superfluid phases. At large γ limit, a ferromagnetic
ordering along the diagonal appears. Though our analysis
was done for a finite-size system, this is possibly a crossover
mechanism as explained in the text. We have also shown that
the presence of δ brings in significant correlations between the
phases of two species of bosons. We have also investigated the
fluctuation around the mean field and discussed the nature of
collective motions leading to possible zero-energy modes. The
scaling of minimum-energy excitations with system size has
also been shown. Finally, using semiclassical approximation,
we derived the equation of motion for the phases and derive
the normal modes of vibrations. We think that some of the
results may have interesting experimental signatures in the
light of recent experiments [32–34].

APPENDIX

The elements of the matrix Fi(μ,λ,
jα,t,γ ) are given
below (for simplicity we shall not write the various parameters
in the parentheses):

Fi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0 �i �̃i 0.0 0.0 0.0

�∗
i −(μ + �) −iδ �̃i

√
2�i 0.0

�̃∗
i iδ −(μ − �) �i 0.0

√
2�̃∗

i

0.0 �∗
i �̃∗

i −2μ + λU i
√

2δ −i
√

2δ

0.0
√

2�∗
i 0.0 −i

√
2δ −2(μ + �) + 2U 0.0

0.0 0.0
√

2�∗
i i

√
2δ 0.0 −2(μ − �) + 2U

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)
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In the above 
jx1(2) denotes the up (down) contribution from
two x neighbors, 
jx1(2) = 
i+x,1(2) + 
i−x,1(2). A similar
explanation goes for 
jy1(2). Expressions for �i and �̃i are

�i = −t1(
∗
jx1 + 
∗

jy1) + γ (
∗
jx2 + i
∗

jy2),

�̃i = −t2(
∗
jx2 + 
∗

jy2) + γ (
∗
jx1 − i
∗

jy1). (A2)

Now we write down the expressions for B’s and F̃ used in
Sec. V:

B0 = λ2
0U

2
, B3 = uλλ2

0

(
1 − 1

λ2

)
,

B1 = λ0

(
a1

λ
− a2

)
+ λ0U

(
A2 − A1

λ

)
+ Uλλ0

(
A1 − A2

λ

)
,

B2 = λ0

(
a2

λ
− a1

)
+ λ0U

(
A1 − A2

λ

)
+ Uλλ0

(
A2 − A1

λ

)
,

B4 = −a1A1 − a2A2 + U

2

(
A2

1 + A2
2

) + λUA1A2,

a1 = μ + ω + U

2
, a2 = μ − ω + U

2
, λ0 = λ

U (λ2 − 1)
,

A1 = λ0

(
a2 − a1

λ

)
, A2 = λ0

(
a1 − a2

λ

)
, (A3)

αc = B1 + B2

2(2B0 + B3)
, αr = B1 − B2

2(2B0 − B3)
,

(A4)
αicr = −α2

c − α2
r ,

F̃ (θi1,θi2)

= −2γt

∑
〈ij〉

[cos(θ1i − θ1j ) + ηβ2 cos(θ2i − θ2j )]
∣∣δ2

1

∣∣

− 2γsβ
∑
〈ij〉x

[cos(θ2i − θ1jx) − cos(θ1i − θ2jx)]
∣∣δ2

1

∣∣

+ 2γsβ
∑
〈ij〉y

[sin(θ1i − θ2jy) + sin(θ2i − θ1jy)]
∣∣δ2

1

∣∣. (A5)
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