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Nonlinear Rabi oscillations in a Bose-Einstein condensate
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For a Bose-Einstein condensate in a trap with oscillating barriers, in the resonance approximation, evolution
equations are derived. Their analytical solution reveals the existence of two fundamentally different types of
nonlinear conservative Rabi oscillations: (i) with periodic temporal variation of moduli and phase difference of
levels’ amplitudes of probability, and (ii) with monotonic temporal variation of the phase difference. It is shown
that the two types can be realized for the same parameters of the scheme, but for different initial conditions.
Analytical predictions are confirmed by numerical solution to the Gross-Pitaevskii equation.
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I. INTRODUCTION

The Rabi oscillations, i.e., periodic oscillations of popu-
lations of quantum systems resonantly excited by periodic
external signal, belong to fundamental quantum-mechanical
phenomena; they have been intensively studied for atomic
systems [1], in quantum optics [2], for bulk semiconductors
and quantum wells and dots [3], graphene [4], spasers [5],
Bose-Einstein condensates (BECs) [6], and their hybrids with
superconducting quantum interference devices [7]. In the
simplest case of two-level atomic systems these oscillations are
characterized by the Rabi frequency which is fully determined
by the two-level transition dipole moment, the amplitude of the
external signal, and detuning between the transition frequency
and frequency of the signal. Consequently, the Rabi frequency
does not depend on the system’s initial conditions. In this
regard, it describes the response of a conservative linear
quantum system to periodic perturbations.

This paper considers the nonlinear coherent Rabi oscilla-
tions in an atomic BEC in a dynamical trap. The trap can
be organized on the basis of an optical trap formed by the
interference of a laser beam incident on a movable mirror
with the beam reflected from the mirror [8]. Such a trap
provides simultaneous particles’ localization and excitation.
This is simply an example of resonance excitation of a
conservative nonlinear quantum system demonstrating some
general features of the nonlinear Rabi oscillations; see also
Refs. [9,10]. Probably, the most striking of these features is the
possibility of formation of fundamentally different dynamical
regimes for the same scheme’s parameters, but different initial
conditions, as shown below.

As a preliminary step, in Sec. II presented are states with
definite quasienergy [11] of a single quantum particle in an
infinite potential well with oscillating positions of barriers,
following Ref. [12]. Next, in Sec. III the results of Sec. II are
reformulated in terms of evolution equations for probability
amplitudes of two levels, both for single quantum particles
and for BEC. Their analytical solution is given in Sec. IV.
In the main section, Sec. V, an analysis is presented of the
phase plane demonstrating various regimes of nonlinear Rabi
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oscillations for the cases of small and large detunings between
the frequency of two-level transition and the frequency of
mirror position modulation. In Sec. VI numerical solution
to the Gross-Pitaevskii equation is presented and compared
with the analytical treatment. General discussion is given in
Sec. VII.

II. GOVERNING EQUATIONS AND QUASIENERGIES

For a single quantum particle in a one-dimesnional (1D)
trap, the wave function ψ(x,t) obeys the Schrödinger equation,

ih̄
∂ψ

∂t
= − h̄2

2mp

∂2ψ

∂x2
+ U (x,t)ψ, (1)

with the coordinate x, time t , the reduced Planck constant
h̄, the particle mass mp, and the trap potential U . Though
the concrete form of the potential is not critical for the final
results, let us assume that it corresponds to the infinite potential
well with oscillating barriers. Then the potential U (x,t) = 0
for Lleft(t) < x < Lright(t), and the boundary conditions for
Eq. (1) are

ψ(x = Lleft(t),t) = 0, ψ(x = Lright(t),t) = 0. (2)

The probability to find a particle in the trap, or the wave-
function norm,

Ns =
∫ Lright(t)

Lleft(t)
|ψ(x,t)|2dx, (3)

according to Eq. (1), does not depend on time. For definiteness,
suppose that the left barrier is motionless, Lleft(t) = 0, and the
right barrier oscillates harmonically with period T , frequency
� = 2π/T , and small modulation depth μ � 1:

Lright(t) = w(t) = L0[1 + μ cos(�t)]. (4)

For μ = 0 eigensolutions of Eq. (1) have a discrete highly
nonequidistant spectrum:

ψ (0)
n (x,t) = e−i

E
(0)
n
h̄

t sin
(
k(0)
n x

)
, k(0)

n = πn

L0
,

(5)

E(0)
n = h̄2

2mp

k(0)
n

2 = π2h̄2

2mpL2
0

n2, n = 1,2,3, . . . .
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Unperturbed eigenfunctions ψ (0)
n are the even (odd) functions

of (x − L0/2) for an odd (even) n.
States with fixed quasienergy [11] are determined by the

conditions,

ψε(x,t) = uε(x,t)e−i ε
h̄
t , uε(x,t + T ) = uε(x,t). (6)

For the problem under consideration these states were found
in [12]. The Fourier series for the periodic functions of time
uε(x,t) are

uε(x,t) =
∞∑

l=−∞
alχε,l(x)e−il�t . (7)

Then

χε,l(x) =
{

sin(kε,lx), ε + h̄�l > 0,

sinh(kε,lx), ε + h̄�l < 0,
(8)

where kε,l = √
2mp|ε + h̄�l|/h̄. In this case the Schrödinger

equation, Eq. (1), and the boundary condition at x = 0
are satisfied automatically. Equation (2) at the oscillating
boundary gives

∞∑
l=−∞

alχε,l{L0[1 + μ cos(�t)]}e−il�t = 0. (9)

Let us decompose the periodic functions of time χε,l to the
Fourier series,

χε,l{L0[1 + μ cos(�t)]} =
∞∑

p=−∞
Fl,p(ε)eip�t , (10)

where Fl,p(ε) = Fl,−p(ε). Then it follows from Eq. (9) that
∞∑

l=−∞
Fl,q+l(ε)al = 0, q = 0,±1,±2, . . . . (11)

This is an infinite homogeneous system of linear algebraic
equations with respect to coefficients al . The equation for
determination of quasienergy spectrum ε coincides with the
condition of vanishing of this system’s determinant. For small
μ, the quasienergy is close to the corresponding unperturbed
eigenenergy E(0)

n :

ε = E(0)
n + δε, |δε| � E(0

n . (12)

Here of interest is the resonant case, when the modulation
frequency � is close to the frequency of transition between
the two levels n and m:

h̄� = E(0)
m − E(0)

n + h̄δ�, |δ�|/� � 1. (13)

Then, for small μ, only the amplitudes with l = n and m

can be sufficiently large. It corresponds to the two-level ap-
proximation widely used in quantum mechanics and quantum
optics; see, e.g., [1]. In the case considered, the resonance
approximation is based on the nonparabolic shape of trap
potential with highly nonequidistant energy levels in the
zero-order approximation [see Eq. (5)]. According to Eq. (13),
the modulation frequency � differs from the frequency of
transition, between levels n and m by the value of the order of
the theory small parameter μ. If only level n, e.g., the ground
level, is occupied initially, then, due to the modulation, two
“resonant” levels n and m will have substantial population

whereas population of other levels will be of the order μ2. If
some other levels are excited initially, then they would not be
connected with the “resonant” levels by the modulation and
therefore would have the trivial dynamics. Now Eq. (11) for
the “resonant” levels reads

Fnnan + Fmmam = 0, Fnman + Fmnam = 0, (14)

with

Fnn = (−1)n
nπ

2

δε

E
(0)
n

, Fnm = (−1)n
μ

2
nπ,

(15)
Fmn = (−1)m

mπ

2E
(0)
m

(δε + h̄δ�), Fmm = (−1)m
μ

2
Nπ.

The determinant of the system (14) turns to zero for

δε(±) = −h̄δ�

2
±

√(
h̄δ�

2

)2

+ μ2E
(0)
n E

(0)
m . (16)

The equation above describes the quasienergy splitting and
corresponding Rabi oscillations with the frequency �R =√

δ�2 + 4μ2E(0)
n E(0)

m /h̄2 and period TR = 2π/�R typical of
two-level schemes’ resonant excitation [13].

III. EVOLUTION EQUATIONS

An equivalent description of the Rabi oscillations can be
given by the evolution equations for amplitudes an,m. For this
goal, let us replace the quasienergy shift δε by the operator
ih̄ d

dt
in Eq. (15). Then Eq. (14) reads

ih̄
dan

dt
+ (−1)m−nμnmE(0)

m am = 0,

(17)

ih̄
dam

dt
+ (−1)m−nμnmE(0)

m an + h̄δ�am = 0.

If one seeks the solution to Eq. (17) in the form of an,m(t) =
an,me−i(δε/h̄)t , then one gets Eq. (16). Note also that the
amplitudes an,m are assumed to be slow functions of time
in terms of frequencies of transitions between the levels.

Equations (17) are convenient for the generalization for the
nonlinear case. In fact, if we consider the atomic Bose-Einstein
condensate (BEC) in the dynamic trap, then the macroscopic
wave function ψ(x,t) obeys the Gross-Pitaevskii equation
(GPE) [14],

ih̄
∂ψ

∂t
= − h̄2

2mp

∂2ψ

∂x2
+ U0|ψ |2ψ. (18)

The parameter of nonlinearity U0 can be positive or negative,
depending on the external magnetic field. Now the value Ns

in Eq. (3) becomes proportional to the number of atoms
in the trap. The GPE is valid for weakly nonideal diluted
atomic gases at zero temperature; a similar mean-field equation
for exciton condensates in semiconductors is known as the
Keldysh equation [15].

As in the previous section, Sec. II, here of interest is
also the case of the resonant excitation [see Eq. (13)]. The
corresponding nonlinear generalization of Eqs. (17) for BEC
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reads

ih̄
dan

dt
+ (−1)m−nμnmE(0)

m am

−U0

(
3

4
|an|2 + |am|2

)
an = 0 ,

(19)

ih̄
dam

dt
+ (−1)m−nμnmE(0)

m an

+
[
h̄δ� − U0

(
3

4
|am|2 + |an|2

)]
am = 0.

The validity of the resonance approximation for the diluted
atomic BEC describing by the GPE (18) is, as in the
previous section, based on the trap potential shape with
highly nonequidistant energy levels. In fact, in the zero-
order approximation when the small nonlinear term can be
neglected (U0 → 0), Eq. (18) is reduced to the Schrödinger
equation (1). Then Eq. (5) gives again the energy of the nth
level proportional to n2. Correspondingly, the estimations for
populations of different levels under resonance modulation
presented in the Sec. II retain their validity. Physically it can
be explained because, in the Gross-Pitaevskii theory, only
weakly nonideal gas is considered with sufficiently small
atomic concentration. Note that in the case considered the
two-level model is much more accurate than in the case when
nonuniform spacing of the levels is due to only nonlinear
factors (see, e.g., Ref. [16]). On the same reason, it is not
necessary to use here the approach of nonlinear modes [16].
Additionally to the analytical estimations, it will be confirmed
by the numerical solution to the GPE in Sec. VI.

Equations (19) describe a conservative system with con-
servation of the number of particles; see the normalization
condition (3) where now

Ns = N3

S0
≈ 1

2
(|an|2 + |am|2)L0. (20)

Here S0 is the area of the trap transverse section and N3 is
the total number of particles in the trap with volume V0 =
S0L0. In accordance with Eq. (18), Eqs. (19) are invariant to
time reversal t → −t with simultaneous phase conjugation
an,m → a∗

n,m. For dimensionless values,

ãn,m = an,m

√
V0

2N3
, t̃ = t

μnmE(0)
m

h̄
,

(21)

δω = h̄δ�

μnmE
(0)
m

, ν = U0N3

2V0μnmE
(0)
m

,

Eqs. (19) read

i
dãn

dt̃
+ (−1)m−nãm − ν(3|ãn|2 + 4|ãm|2)ãn = 0,

i
dãm

dt̃
+ (−1)N−nãn + [δω − ν(3|ãm|2 + 4|ãn|2)]ãm = 0.

(22)

The normalization condition (20) gives

|ãn|2 + |ãm|2 = 1. (23)

IV. SOLUTION TO THE EVOLUTION EQUATIONS

Let us introduce real amplitudes and phases,

ãn,m = An,meiϕn,m , � = ϕm − ϕn. (24)

Then Eq. (23) takes the form,

A2
n + A2

m = 1. (25)

The governing equations for the real amplitude An, 0<An < 1,
and phase difference � are, with replacing t̃ → t :

d�

dt
= δω − ν

(
2A2

n − 1
) + (−1)m−n 2A2

n − 1

An

√
1 − A2

n

cos �,

dAn

dt
= −(−1)m−n

√
1 − A2

n sin �. (26)

This system of equations has an integral of motion,

cos � = (−1)m−n

2

(
A2

n − C
)

An

√
1 − A2

n

[
(δω + ν) − ν

(
A2

n + C
)]

,

(27)

with the constant of integration C. With the help of Eq. (27),
one can solve the second of Eqs. (26) and find the dependence
An(t) in terms of elliptic functions, following which, solution
to the first of Eqs. (26) gives the analytical form of the depen-
dence �(t). However, it is more instructive to analyze the solu-
tions to Eq. (26) with the help of the phase plane of this system,
where they are represented by closed lines (An,�). In fact, it is
convenient to treat An as a polar radius and � as a polar angle of
the phase plane; see Figs. 1(a) and 2(a) where X = An cos �.
Trajectories pass through each point of the polar plane inside
the circle with the radius An = 1. At An = 1 (when only the
nth level is occupied) and An = 0 (when only the mth level
is occupied), there are singularities of Eqs. (26). Interestingly,
some trajectories correspond to the complex values of the con-
stant of integration C, whereas the values An,� remain real.

V. PHASE PLANE ANALYSIS

Fixed points of the phase plane can be found when
equalizing to zero the right sides of Eqs. (26). Then,

cos � = ±1,
(28)

δω = (
2A2

n − 1
)(

ν ∓ (−1)m−n 1

An

√
1 − A2

n

)
.

Exact resonance (detuning δω = 0). In this case, there are
two fixed points (An = 2−1/2, � = 0) and (An = 2−1/2, � =
π ) for any value of the nonlinearity parameter ν. Four more
fixed points appear for ν > 2; for them � = 0 and π and

A2
n = 1

2

(
1 ±

√
1 − 4

ν2

)
. (29)

Below we will treat only the simpler case of ν < 2 when only
two fixed points exist [B and C in Fig. 1(a)]. For C = 0 and
1, Eq. (27) reads (for δω = 0)

cos � = (−1)N−n ν

2
An

√
1 − A2

n. (30)

This curve passes through point An = 0 and ends at points
An = 1, � = 0, and π , as shown in Fig. 1(a), (see curve D),
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(a)

(b)

(c)

FIG. 1. (Color online) (a) Phase plane for zero detuning, δω = 0,
ν = 1.5. The circle A [the dotted (blue) curve], with the center 0 and
radius 1, is divided into two cells by the separatrix D [the broken (red)
curve]. Each of the two cells contains a fixed point, B in the right
cell and C in the left cell. Through any point inside each of the cells,
passes one trajectory, a closed curve wraps around the corresponding
fixed point. Solid (black) curves with the arrows b and c are examples
of these trajectories; the arrows show the direction of time evolution.
(b) and (c) Temporal dependencies of the amplitude An(t) [solid
(red) lines] and the phase difference �(t) [dotted (blue) lines] for the
trajectories b and c in Fig. 1(a).

where for definiteness we suppose that n and m are of the same
parity. It is a separatrix, because it divides the phase plane into
two cells, the right and the left ones in Fig. 1(a). In each
cell, trajectories are the closed lines disposed approximately
concentrically around the corresponding fixed point: B (An =
2−1/2, � = 0) in the right cell and C (An = 2−1/2, � = π ) in
the left cell. The trajectories correspond to periodic oscillations
with time of both the amplitude An(t) and the phase difference
�(t), as shown in Figs. 1(b) and 1(c). The period of oscillations
differs for different trajectories, i.e., it depends on the initial

(a)

(b)

(c)

FIG. 2. (Color online) (a) Phase plane for nonzero detuning,
δω = 1.5, ν = 1.5. The circle A [the dotted (blue) curve] with the
center 0 and radius 1 is divided into three cells by the separatrices D

and E [the broken (red) curves]. B and C are fixed points. Through
any point inside each of the cells, passes one trajectory, a closed
curve of the two types. In the first (second) type, the beginning of
coordinates 0 is outside (inside) the curve. The solid (black) curves
with the arrows b (the first type) and c (the second type) are examples
of these trajectories; the arrows show the direction of time evolution.
(b) and (c) Temporal dependencies of the amplitude An(t) [solid
(red) lines] and the phase difference �(t) [dotted (blue) lines] for
the trajectories b and c in Fig. 2(a).

conditions. More exactly, the period decreases (increases) in
the right (left) cells when the trajectory departs from the fixed
point. The modulation depth is not full, but it approaches to
100% for trajectories near the boundaries of the cells.

Nonzero detuning. Now separatrices corresponding to
curves described by Eq. (27) for C = 0 and C = 1 differ, and
the phase plane has a more complicated structure. In Fig. 2,
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shown are the results for the fairly large detuning δω = 1.5
and equal parity of states n and m. In Fig. 2(a) the separatrix
D ends at points An = 1, � = 0, and π , and the separatrix E is
a closed line passing through 0. Now the temporal dependence
of the phase difference, �(t), can be of two types, depending
on initial conditions: (i) periodic, as in the previous case,
and (ii) monotonic which can be decomposed into a sum
of a periodic function and a component linear in time. The
phase plane is divided into three cells [Fig. 2(a)]. The left
cell—a “semimoon”—is bounded by the left semicircle and
the separatrix D. It is of the same type as in the previous case,
i.e., it consists of closed trajectories wrapping around the fixed
point C (� = π ); for trajectories in this cell both the amplitude
An and the phase difference � vary periodically with time (the
first type of trajectories). The features of trajectories inside
the second separatrix E are the same. However, in the cell
bounded by the separatrices D and E and the right semicircle
A, trajectories wrap around the beginning of the coordinates 0
and correspond to periodic temporal variation of the amplitude
An and monotonic variation of the phase difference � (the
second type of trajectories). These two types of trajectories are
illustrated in Figs. 2(b) and 2(c). They are similar to trajectories
of a classical pendulum with an angle periodic variation for
small initial velocities and a monotonous variation for large
velocities.

VI. NUMERICAL SOLUTION TO THE
GROSS-PITAEVSKII EQUATION

The problem given by Eq. (18) and Eq. (2) can be reduced
to a more tractable case with boundary conditions for fixed
interval ends. To this end, let us introduce the coordinate
transformation {x,t} → {ξ,τ } where

ξ = L0
x − Lleft(t)

w(t)
, τ = t,

(31)
w(t) = Lright(t) − Lleft(t).

Then the GPE and the boundary conditions take the form,

ih̄
∂ψ

∂τ
+ h̄2

2mp

L2
0

w2(τ )

∂2ψ

∂ξ 2
− U0|ψ |2ψ

= ih̄

[
L̇left(τ ) + ẇ(τ )

L0
ξ

]
L0

w(τ )

∂ψ

∂ξ
, (32)

ψ(ξ = 0,τ ) = 0, ψ(ξ = L0,τ ) = 0.

Furthermore, we will treat the case w(τ ) = L0 = const be-
cause, first, features of nonlinear Rabi oscillations are of
general nature not depending on the specific form of the trap
dynamics and, second, the corresponding governing equation
has in this case a simpler form:

ih̄
∂ψ

∂τ
+ h̄2

2mp

∂2ψ

∂ξ 2
− U0|ψ |2ψ = ih̄L̇left(τ )

∂ψ

∂ξ
. (33)

Next, we introduce dimensionless coordinates x ′ =
ξ/L0, t ′ = �τ , and the specific form of trap dynamics,

Lleft(t
′) = μ cos �τ = μ cos t ′. (34)

The final form of the problem is (we replace x ′ → x and
t ′ → t)

i
∂ψ

∂t
+ a

∂2ψ

∂x2
= −iμ sin(t)

∂ψ

∂x
+ s|ψ |2ψ,

(35)
ψ(x = 0,t) = 0, ψ(x = 1,t) = 0.

Here a = h̄/(2mpL2
0�). By the appropriate choice of the

conservative norm,

N0 =
∫ 1

0
|ψ(x,t)|2dx, (36)

one can suppose s = ±1. The modulation depth μ is assumed
to be small, μ � 1.

For μ = 0 and s = 0 there are solutions to the linear
problem in the form,

ψ(x,t) = a1(t) sin(πx) + a2(t) sin(2πx), (37)

where an(t) ∼ e−iωnt , ωn = π2n2a, n = 1,2. Then the
resonance condition is ω2 − ω1 = 1, or a = ares = 1/(3π2).
Therefore we assume a = qares, |q − 1| � 1. The initial
condition for the nonlinear problem is

ψ(x,t = 0) = a10 sin(πx) + a20e
i�0 sin(2πx). (38)

Here constants a10, a20, and �0 are real. The norm, Eq. (36),
is N0 = (a2

10 + a2
20)/2.

To compare numerical solution to the GPE with the
analytical results, Secs. IV and V, it is necessary to derive
from the numerical data two spatial Fourier components,

an(t) = 2
∫ 1

0
ψ(x,t) sin(πnx)dx, n = 1, 2. (39)

The approximate norm,

N12(t) = 1
2 (|a1(t)|2 + |a2(t)|2), (40)

should be close to N0 [Eq. (36)]. The criterion of the two-
mode approximation’s validity is |δN | � N0 where δN (t) =
N0 − N12(t). In calculations we discretize the coordinate x

with step of grid 0.001 or 0.01, reducing Eq. (35) to a set of
ordinary differential equations and use the following values
of parameters: s = 1, N0 = 0.01, μ = 0.01. We will consider
cases of exact resonance with q = 1 and nonzero detuning,
q = 1.01. The value of the small parameter in analytics about
0.01 is sufficient for applicability of the analytics presented
above, because the criterion of the approximation validity
is satisfied then with good precision, δN/N0 < 0.005 [see
typical examples in Figs. 3(a) and 3(b)]. When comparing nu-
merics with the analytics, note that A1 and An are normalized
in different ways and the form of modulation in analytics,
Eq. (4), differs from that in numerics, Eq. (34); therefore we
check here the correlation of the general, qualitative type of
the driven BEC nonlinear dynamics. Let us remind that the
analytics in the form presented in Secs. III and IV is applicable
and coincides with the numerics with good precision only in
the cases of small modulation depth, μ � 1, small detunings,
|q − 1| � 1, and weak nonlinearity, N0 � 1.

Exact resonance, q = 1. Phase plane (A1, �) where A1 =
|a1| and � = arga2 − arga1, for trajectories extracted from
numerical simulations is presented in Fig. 4(a); it should be
compared with Fig. 1(a) corresponding to the analytics of
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600 700 800 900 1000 1100
t

0

0.001

0.002

0.003

N / N0

(b)

(a)

FIG. 3. Temporal dependence of the relative inaccuracy
δN (t)/N0 for q = 1 (a) and q = 1.01 (b).

Sec. V. One can see that, as well as in Fig. 1(a), the phase
plane is separated into two cells filled with closed trajectories
wrapping around two fixed points, one on the positive semiaxis
X and the other on the negative semiaxis X. Typical periodic
temporal dependencies of amplitude A1 and phase difference
� are given in Figs. 4(b) and 4(c); they are similar to those
presented in Figs. 1(b) and 1(c). As well as in analytics of
Secs. IV and V, the Rabi period TR is different for different
trajectories: TR = 220 for trajectory (1) in Fig. 4(a), 224 for
(2), 250 for (3), and 260 for (4).

New features that are beyond the two-mode approximation
are the following. First, additionally to a “long period”
presented in Figs. 4(b) and 4(c), there is also a “short period”
with weak modulation depth, as shown in Fig. 4(d). Due
to this additional modulation, trajectories given in Fig. 4(a)
have effectively a finite width. The second new feature is
due to slight displacement of the separatrix between the two
cells from the origin of coordinates. Then even for the exact
resonance there is a narrow bundle of trajectories in the left cell
with the origin of coordinates inside them. Correspondingly,
phase difference varies monotonically with time for them as
shown in Fig. 4(e).

Nonzero detuning, q = 1.01. Corresponding phase plane
given in Fig. 5(a) is similar to the “analytical” one in Fig. 2(a).
The phase plane is separated into two cells with trajectories
wrapping around two different fixed points. Additionally,
trajectories in the right cell are divided in those exterior
with respect to the origin of coordinates and those wrapping
around it; the former trajectories correspond to periodic
temporal variation both of amplitude A1 and phase difference
� [Figs. 5(b) and 5(d)], whereas for the latter trajectories
phase difference varies with time monotonically [Fig. 5(c)].
Rabi period TR is again different for different trajectories:
TR = 213 for trajectory (1) in Fig. 5(a), 215 for (2), 222 for
(3), 231 for (4), and 234 for (5). As well as in the case of
exact resonance, there is also additional small-scale temporal

-0.2 -0.1 0 0.1 0.2
X

-0.2

-0.1

0

0.1

0.2

Y

1
23

4

(a)

FIG. 4. (Color online) (a) Phase plane for zero detuning found by
numerical solution to the Gross-Pitaevskii equation; compare with
Fig. 1(a). (b), (c) Dependencies A1(t) [solid (red) lines] and �(t)
[dotted (blue) lines] for trajectories 1 and 3 in (a), correspondingly.
(d) Small-scale modulation for trajectory 3 in (a). (e) Example of
dynamics with monotonic temporal variation of phase difference
�(t) [dotted (blue) lines].
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FIG. 5. (Color online) (a) Phase plane for nonzero detuning, q =
1.01, found by numerical solution to the Gross-Pitaevskii equation;
compare with Fig. 2(a). (b), (c), (d) Dependencies A1(t) [solid (red)
lines] and �(t) [dotted (blue) lines] for trajectories 1, 3, and 5 in (a),
correspondingly.

modulation of amplitude A1 and phase difference � not shown
here.

VII. DISCUSSION

The analyzed scheme of a dynamic trap, where the trap is
used for localization and excitation of BEC simultaneously,
can be realized by two counterpropagating laser beams—the
incident one and the one reflected from a movable mirror,
whose position is modulated. For a trap with the length
of 10 μm, the typical frequency of two-level transition
corresponds to the kHz range. Therefore the modulation
frequencies necessary for the BEC resonance excitation are in
the microwave range convenient for experiments. Obtaining
an analytical solution to the nonlinear evolution equations
becomes possible due to the conservative nature of the scheme
with conservation of the number of BEC atoms in the trap;
in this point the nonlinear Rabi oscillations differ radically
from those in dissipative schemes with losses and relaxation.
The two-mode, or resonance approximation is appropriate due
to highly nonequidistant distribution of BEC energy levels in
the trap. Numerical solution to the Gross-Pitaevskii equation
confirms the analytics and reveals also additional small-scale
temporal modulation of BEC characteristics that is beyond the
two-mode approximation.

The finite lifetime of BEC in the trap and of Rabi
oscillations’ coherence sets limits to the available time of
experiments. If this requirement is satisfied, then justified is
also the neglect of noise-induced switching between different
regimes of the nonlinear Rabi oscillations presented above.
Taking into account the progress in techniques of the BEC
trapping and low-noise micromechanics, we believe in the
reliability of an experimental demonstration of high sensi-
tivity of conservative nonlinear Rabi oscillations to initial
conditions, as shown above. Even if a number of states are
initially populated, it is possible to select just a pair of them by
the proper choice of modulation frequency. Note also that
one can vary the initial populations of the resonant levels
by an additional pulse of microwave radiation with carrier
frequency close to the resonance. Similar phenomena are
expected to exist in other nonlinear driven quantum systems
including semiconductors, quantum dots, and superconducting
devices.
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