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Condensation energy of a spin-1/2 strongly interacting Fermi gas
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We report a measurement of the condensation energy of a two-component Fermi gas with tunable interactions.
From the equation of state of the gas, we infer the properties of the normal phase in the zero-temperature limit.
By comparing the pressure of the normal phase at T = 0 to that of the low-temperature superfluid phase, we
deduce the condensation energy, i.e., the energy gain of the system upon being in the superfluid rather than
the normal state. We compare our measurements to a ladder approximation description of the normal phase
and to a fixed-node Monte Carlo approach, finding excellent agreement. We discuss the relationship between
condensation energy and pairing gap in the BEC-BCS crossover.
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I. INTRODUCTION

From a thermodynamic point of view, a superconducting
state is favored compared to a normal state when the free
energy of the former (ES) is lower than that of the latter
(EN ). This energy difference, called the condensation energy,
is a central concept in the BCS theory of conventional
superconductivity. For example, in the weakly interacting
regime the condensation energy is related to the superfluid
pairing gap � by

Ec = EN − ES = Nf

�2

2
, (1)

where Nf is the density of states at the Fermi energy [1]. For
superconductors, the condensation energy is obtained from
the measurement of the critical magnetic field Hc at which
superconductivity is quenched,

Ec = μ0
H 2

c

2
, (2)

where μ0 is the vacuum magnetic permeability [1]. While
BCS theory [and relation (1)] have proven very successful to
explain conventional superconductivity, a similar description
to explain exotic forms of superconductivity, such as encoun-
tered in cuprate or iron-compound materials, is still lacking.
In particular, the role of the condensation energy in high-Tc

superconductors is thought to give insight into the mechanism
that could be responsible for driving the superconducting
transition (see, e.g., [2–5], and references therein), though its
extraction from experimental data or even its relevance is still
a hotly debated issue [6–8].

Ultracold atoms are now increasingly used as test beds to
experimentally explore quantum many-body physics, owing
to their high degree of control [9]. It has become possible to
simulate Hamiltonians from various fields of physics, such as
neutron matter or condensed matter physics in simple systems.
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Moreover, interactions between ultracold atoms, characterized
by the s-wave scattering length a, can be tuned via magnetic
Feshbach resonances, giving access to the regime of strong
interactions.

In this article, we investigate the condensation energy of a
dilute spin-1/2 strongly interacting Fermi gas with a variable
interaction strength. We show that the condensation energy
can be measured by applying a chemical potential imbalance
between the two spin states which is the analog of a magnetic
field in superconductors. In contrast to superconductors, we
explore a regime where the effective Zeeman energy is of
the order of the Fermi energy. We compare our experimental
results to a diagrammatic theory, finding excellent agreement.

II. NORMAL-STATE PRESSURE

The experimental setup was presented in [13]. Our system
is a quantum gas of 6Li prepared in a mixture of its two lowest
energy spin states.

The gas is loaded into a single-beam dipole trap, providing
a radial (strong) confinement, while the axial (weak) confine-
ment (z axis) is provided by magnetic coils. This results in
a cigar-shaped trap. The interactions are tuned using a pair
of coils in the Helmholtz configuration in order to create a
large homogeneous bias field to tune the scattering length a

via the 832.18-G Feshbach resonance [10]. The mixture is
cooled to quantum degeneracy by lowering the trap depth,
and absorption images perpendicular to the weak direction are
recorded to obtain the in situ density distributions along the
z axis. Previous theoretical [11,12] and experimental [13,14]
studies have demonstrated that the density profiles of a trapped
spin-imbalanced Fermi gas can be used to extract the equation
of state (EoS) of the corresponding homogeneous system

via the pressure formula, P (μ1,μ2,T ) = mω2
r

2π
[n̄1(z) + n̄2(z)],

where ωr is the radial trapping frequency, and n̄i(z) =∫
d2r ni(r,z) is the doubly integrated density distribution of

spin species i (i = 1,2).
At unitarity, where the scattering length a diverges, we

previously measured the pressure of the spin-balanced gas as a
function of the reduced temperature t = kBT /μ (where 2μ =
μ1 + μ2) [13], as well as the pressure of the spin-imbalanced
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gas at t ≈ 0 as a function of the spin-polarizing field b =
μ1−μ2

μ1+μ2
. We suggested that the low-temperature properties of

the normal phase of the Fermi gas were consistent with a
Fermi-liquid behavior [19]. As a result, the low-temperature
and low-imbalance limit of the pressure of the unitary gas can
be written as

h(t,b) = P (μ1,μ2,T )

2P0(μ)
� ξ

−3/2
N + χ̃b2

2
+ c̃V t2

2
, (3)

where P0(μ) = 1
15π2 ( 2m

h̄2 )3/2μ5/2 is the ideal Fermi-gas pres-
sure. The response coefficient to temperature t is the dimen-
sionless specific heat c̃V , while the response to the polarizing
field b is the dimensionless magnetic susceptibility χ̃ (equal
to 5π2/8 and 15/4, respectively, for the ideal Fermi gas).
The magnetic susceptibility has been the subject of a previous
work [18], and we focus here on the measurement of the
pressure of the normal phase ξ

−3/2
N in the t = 0 and b = 0

limits. In the (t,b) plane, our measurements of the EoS of
the unitary gas have been performed along two directions:
the unpolarized gas as a function of temperature h(t,b = 0)
(Fig. 1) and the low-temperature polarized gas versus the
chemical potential imbalance h(t = 0,b) [Fig. 2(a)]. The
quadratic behavior of the pressure versus both b and t

supports the Fermi-liquid interpretation of the low-temperature
thermodynamic properties of the normal phase. However, the
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FIG. 1. (Color online) Reduced pressure h(t,b) =
P (μ1,μ2,T )/2P0(μ̄) of the spin-1/2 unitary Fermi gas, where
P0 is the T = 0 Fermi pressure of an ideal gas, t the reduced
temperature kBT /μ, and b = 0 the unpolarized gas. Open black
circles are data from [13] taken at B = 834 G, while filled black
circles include a small correction due to a recently determined
downshift of the Feshbach resonance [10]. This correction is
estimated using Tan’s contact calculated by the bold diagrammatic
Monte Carlo (bDMC [16]) (see Appendix B for details). The
Fermi-liquid fit is shown as the solid red line, and the extrapolated
zero-temperature pressure of the normal state ξ

−3/2
N is represented by

the (red) X. MIT data from [15] are represented by (blue) squares;
the corresponding fit, by the dashed (blue) line; and the extrapolation
at t = 0, by the open (blue) square. The bDMC calculation [16] is
shown by the solid green line. The agreement with the bDMC data
is excellent, while a small discrepancy from the MIT data is visible
near the superfluid-to-normal transition around tc = 0.40 [15] or
tc = 0.33 here [17] (the latter represented by the dashed vertical
line). The dashed horizontal (red) line corresponds to the superfluid
pressure; the dotted black line, to the ideal gas.

system will ultimately undergo a second-order phase transition
to a superfluid state, and below the temperature tc ∼ 0.33, the
pressure of the spin-balanced gas deviates from the t2 behavior.
In contrast, at t = 0, the spin-imbalanced gas (μ1 �= μ2) under-
goes a first-order phase transition to an unpolarized superfluid
phase when hS(0,0) = hN (0,0) + χ̃b2/2. This condition is
the analog of Eq. (2), and at unitarity it yields the critical
chemical potential imbalance bc ≈ √

0.8 [see Fig. 2(a)]. This
is demonstrated by the discontinuity in the slope of h vs b2.
From Eq. (3), and extrapolating the Fermi-liquid behavior to
the zero-temperature and spin-balanced limits, we measure the
T = 0 dimensionless pressure of the spin-balanced unitary gas
in the normal phase ξ

−3/2
N . In the first limit (t → 0, b = 0) we

find ξN = 0.48(2), while in the second one (t = 0, b → 0), we
extract ξN = 0.53(2) [see (red) X’s in Figs. 1 and 2(a)]. The
proximity of these values, taken for two very different limiting
regimes, is remarkable and further supports the accurate
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FIG. 2. (Color online) Pressure of the spin-imbalanced gas in
the BEC-BCS crossover at t = 0. The position of the first-order
phase transition to the superfluid is shown by the vertical dashed
black line. (a) Unitary limit. The Fermi-liquid fit is shown by the
solid red line; the t = 0 equation of state in the superfluid phase, by
the solid horizontal blue line. The pressure of the noninteracting
gas is displayed as the dotted gray line. The t = 0 and b = 0
extrapolation of the normal phase pressure is shown by the (red)
X; the condensation pressure, by the double-arrows. (a–c) Results of
the ladder approximation for the normal phase are shown in green for
δ = 0, −0.58, and +0.2, respectively.
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description of the normal phase of the unitary gas as a Fermi
liquid. This value is in good agreement with the experimental
value, 0.46(1) [15], and close to the values calculated using
Monte Carlo methods: 0.54 [19], 0.56, [20], and 0.52 [21].

III. COMPARISON TO THE LADDER
APPROXIMATION THEORY

The problem of the zero-temperature balanced superfluid
Fermi gas has been the subject of thorough theoretical
investigations [22]. However, much less work has been devoted
to the EoS of the zero-temperature normal phase [20]. We
show below that our experimental results can be quantitatively
reproduced using the ladder approximation [23,24]. This
theory includes the repeated two-body scattering between
particle 1 and particle 2 described by the scattering length a. In
particular, for a−1 > 0, it contains the physics of a molecular
state. We use the finite-temperature formalism and take the
zero-temperature limit. The self-energy for particles 2, which
physically describes the effect of interaction between particles,
is given by (we take h̄ = 1)

�2(k,iω) =
∫

d3K
(2π )3

∫
iR

d	

2πi


(K,	)[
	 − iω + μ1 − (K−k)2

2m

] , (4)

where the two-particle vertex 
 is given by


(K,	)−1 = m

4π a
+ �(K,	), (5)

where �(K,	) is the pair bubble [24]. At zero temperature,
�(K,	) can be calculated analytically. The pairing instability,
signaling a second-order phase transition, is found using the
Thouless criterion 
−1(0,0) = 0. For given μ1 and a, this
happens for a critical value of the chemical potential μ2c of
particles 2. In order to stay in the normal phase, we have
performed our calculations for μ2 < μ2c. The integration on
	 can be performed by deforming the integration contour in
the half-plane Re(	) < 0. In this way, we pick the singularities
of the integrand in Eq. (4) and get three contributions
corresponding to the pole of (	 − iω + μ1 − (K−k)2

2m
)−1 (�L),

the branch cut of 
(K,	) (�
), and the molecular pole 	0(K)
(for a−1 > 0) of 
(K,	) (�m) [24]. 	0(K) + 2μ represents
physically the energy of a molecule of momentum K. We
find that in the normal phase 	0(K) > 0. As a consequence,
when we deform the integration contour in Re(	) < 0, we
do not get any contribution from the molecular pole of 
,
and therefore we have �m = 0. This is consistent with the
physical argument in favor of the absence of molecules in the
normal phase. Indeed, if we had some molecules in the system,
they would be condensed at zero temperature. Therefore the
system would be superfluid, and we would no longer be entitled
to use Eq. (4). We deduce the minority density n2 using the
Fermi-liquid-type relation due to Landau,

μ2 = k2
F,2

2m
+ �2(kF,2,0), (6)

where, by definition, kF,2 ≡ (6π2 n2)1/3, is the Fermi wave
vector of particles of type 2. For given μ1, μ2, and a, this is an
implicit equation for kF,2 and, hence, n2. Another approach to
calculation of the minority density relies on the interpretation

of the momentum distribution obtained from the self-energy,
Eq. (4). These two methods give very similar results (see
Appendix A for details). As found in [25], we find a no
zero density n2 for a chemical potential μ2 larger than the
polaron [25,26] chemical potential μp(μ1). In practice, we
fix μ1 > 0, then solve Eq. (6) for a given μ2 � μp(μ1). The
pressure is determined by integrating the density using the
Gibbs-Duhem relation,

P (μ1,μ2) = P0(μ1) +
∫ μ2

μp

dμ′
2

1

6π2
[kF,2(μ1,μ

′
2)]3. (7)

For a fixed μ1, we calculate the minority density for increasing
minority chemical potential between μp(μ1) and μ2. For a
sufficiently large chemical potential difference, the system
is normal (the pairing susceptibility does not diverge). For
sufficiently low b, we calculate the dimensionless EoS h(δ,b),
where δ is the grand-canonical interaction strength, δ =
h̄/

√
2mμa. For all values of δ � 0, we find a linear behavior of

h as a function of b2. The comparison between experiment and
theory is shown for δ = 0 (unitary limit), δ = −0.58 (BCS side
of the crossover), and δ = 0.2 (BEC side) in Figs. 2(a), 2(b),
and 2(c), respectively. The agreement is very good. However,
for increasing a−1 > 0, the values of b in the normal phase
become larger and larger, and as a consequence, the linear fit
of h as a function of b2, valid at low b, is worse. Still, for
δ = 0.2 the experimental EoS h(δ,b) is in good agreement
with the ladder approximation calculation above bc [diagonal
(green) line in Fig. 2(c)]. Within the ladder approximation we
have determined the critical spin polarizing field bc at which
a pole appears in the vertex function 
 at zero frequency and
zero wave vector (Thouless criterion). We found that bc was
always smaller than the experimental value of the first-order
transition. Our calculation is therefore free of any instability
singularity in the normal phase. For the spin susceptibility, we
also find a good agreement among the ladder approximation,
experiments, and Monte Carlo simulations of [18].

Gathering the results from Fig. 2, we now extract the zero-
temperature dimensionless pressure hN of the normal phase
as a function of δ [18]. The resulting EoS of the normal phase
hN (δ) is plotted in Fig. 3 as open (red) squares together with
the ladder approximation calculation [thick lower solid (green)
line], showing excellent agreement in the explored crossover.
For comparison, the previously measured EoS of the low-
temperature gas in the superfluid phase hS(δ) is shown as the
blue points and upper solid (blue) line fit [14]. The difference
between the superfluid and the normal pressure at T = 0 thus
represents the condensation pressure. The superfluid pressure
is higher than the normal phase pressure, hS(δ) > hN (δ),
hence the grand potential is lower and the superfluid state is
the stable phase at low temperature. Turning to the canonical
ensemble the superfluid and normal phase energies ξS and ξN

as a function of the canonical interaction strength 1/kF a can
be computed from the pressure measurement in Fig. 3 using a
Legendre transform [27]. The measured condensation energy
ξN − ξS is shown as the solid black line in Fig. 4.

IV. COMPARISON TO THE BCS RESULT

In the BCS regime, the condensation energy Ec can be
explicitly calculated from the energy of the superconducting
and normal states, yielding the well-known result Ec = 3

8N �2

EF
,
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FIG. 3. (Color online) Pressure of the normal hN [open (red)
squares] and superfluid hS [filled (blue) circles] phases at low
temperature in the BEC-BCS crossover measured in [14]. The thick
lower solid (green) line is the result of the ladder approximation. The
upper solid (blue) line is a guide for the eye, while the lower solid
(red) line is the result of fixed-node Monte Carlo calculations [18].
The difference between the blue and the red or green lines is the
condensation pressure.

where � is the single-particle excitation gap, and EF the Fermi
energy. Since E = 3

5NEF ξα(1/kF a) (where α = S,N ), the
BCS equation becomes

ξN − ξS = 5

8

(
�

EF

)2

. (8)
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FIG. 4. (Color online) Relation between the condensation energy
and the superfluid pairing gap. Dimensionless condensation energy
ξN − ξS versus interaction strength 1/kF a extracted from the b → 0
extrapolation (solid black line). Filled (red) circles represent the BCS
expression, (8), using the values of � measured in [28]. The prediction
from mean-field BCS theory is shown by the dashed (blue) line, and
the open (green) circle with a vertical bar is the t → 0 extrapolation
of Fig. 1. A fixed-node Monte Carlo calculation [18] coincides with
the solid black line. Inset: Rratio of the condensation energy ξN − ξS

to 5
8 ( �

EF
)2.

Strictly speaking, this formula is valid only in the weakly
attractive limit � → 0. For an arbitrary interaction, the
condensation energy is given by a more involved function
of the gap, and based on dimensional arguments, it should be
written as

ξN − ξS = 5

8

(
�

EF

)2

F (�/EF ), (9)

where F is a (yet) unknown function with F (0) = 1 to satisfy
the BCS prediction. In the spirit of Landau’s theory, the U (1)
invariance suggests that F can be expanded with (�/EF )2

instead of kF a, and as such, the first beyond-BCS correction
should be proportional to |�/EF |2. At unitarity, where � �
0.5EF [19], this leads to a moderate 25% correction to the BCS
prediction, which suggests that the range of validity of Eq. (8)
should extend beyond the strict weakly interacting limit [21].

In order to test the BCS expression, (8), in the BEC-BCS
crossover, we compare our measurement of the condensation
energy to 5

8 ( �
EF

)2 using the values of � measured by radio-
frequency spectroscopy in [28] [filled (red) circles in Fig. 4.
The agreement shown in Fig. 4 indicates that, even in the
strongly interacting regime, the BCS expression is remarkably
valid. A more stringent test is provided by plotting the ratio
between the left-hand and the right-hand sides of Eq. (8) (inset
in Fig. 4), and we indeed find a ratio close to unity. Note that
calculating this ratio using BCS mean-field theory provides a
reasonable estimate [dashed (blue) line in Fig. 4 inset], even
though the absolute values of the condensation energy [dashed
(blue) line in Fig. 4] or of the pairing gap are both quantitatively
inaccurate in the strongly interacting regime.

V. CONCLUSION

In summary, we have measured the condensation energy
of a two-component Fermi gas with tunable interactions.
The temperature and spin-polarizing field dependence of
the normal phase pressure are in good agreement with
a Fermi-liquid description. A simple ladder approximation
calculation quantitatively reproduces experimental data at zero
temperature in the normal phase. Future work will explore the
critical region and search for exotic phases such as the FFLO
phase [22].
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APPENDIX A: CALCULATION
OF THE MINORITY DENSITY

Another way to calculate the minority density n2 is to
integrate on the frequency and wave vector the one-particle
Green’s function,

nk,2 =
∫

iR

dω

2πi
eωδ 1[

ω + μ2 − k2

2m
− �2(k,ω)

] , (A1)
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n2 = 1

2π2

∫ +∞

0
k2dk nk,2, (A2)

where nk,2 is the occupation number of minority fermions at
wave vector k, δ → 0+, and we have used the isotropy of nk,2.
In practice, in order to have a more rapidly converging integral,
we add and subtract the free particle Green’s function, and
we calculate analytically the free particle occupation number.
This method is of course much more lengthy than the Landau
method, since one has to perform two additional integrations.
In the case of a negative chemical potential of the minority
particles μ2 < 0, we find that the Green’s function has, for
Re(ω) < 0, a single quasiparticle pole at an energy Ek < 0
with a residue Zk . Therefore we find nk,2 = Zk for Ek < 0
or, equivalently, k < kF,2 and nk,2 = 0 for k > kF,2. This
transforms the integration on frequency into finding a root
Ek and computing Zk = [1 − ∂�2(k,ω = Ek)/∂ω]−1, which
is easier numerically.

Furthermore, we find that for μ2 < 0, �2(k,ω; μ1,

μ2,a
−1) = F (k,ω + μ2; μ1,a

−1). This can be shown by study-
ing the location of the singularities of 
(K,	) in the complex
	 plane and by deforming the integration contour in Eq.(4).
As a consequence, the residue Zk does not depend on μ2. This
simplifies the calculation of the pressure in Eq. (7). Indeed we
find

P (μ1,μ2; a−1) − P0(μ1) =
∫ μ2

μP

dμ′
2 n2(μ1,μ

′
2; a−1)

=
∫ μ2

μP

dμ′
2

∫ kF,2(μ′
2)

0

dk

2π2
k2Zk

=
∫ kF,2(μ2)

0

dk

2π2
k2Zk (μ2 −μF (k)) ,

where we have permuted the integration order between the
second and the third lines. We have defined μF (k) such
that μF (k) = k2/(2m) + �2(k,ω = 0; μ1,μ2 = μF (k)) (μF is
basically the inverse function of kF,2). We are left with a single
integral and numerical calculation of μF and Zk . The quantities
μP (polaron chemical potential), n2(μ′

2) (minority density),
kF,2(μ′

2) (minority Fermi wave vector), and Zk (quasiparticle
residue) depend on the majority chemical potential μ1 and the
inverse scattering length a−1.

For the unitary limit, we show in Fig. 5 the results for
the reduced EoS h(b) using the two methods [Landau and
Eqs. (A1) and (A2)]. We see that the difference between the
two methods is small. Due to its simplicity, we therefore use
the Landau method.

APPENDIX B: SCATTERING LENGTH CORRECTION
OF THE EQUATION OF STATE

While the original data were taken at a magnetic field
of 834 G, corresponding to a previous determination of the
position of the wide Feshbach resonance between the two
lowest energy states of 6Li [29], a more refined measurement
involving radio-frequency spectroscopy of a few molecules
led to a small downshift of the resonance position, to B0 =
832.18(8) [10]. The influence of this scattering length change
on the thermodynamics can be estimated using the Tan
contact I, since it verifies the following relation (the so-called
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FIG. 5. (Color online) Dimensionless pressure of the spin-
imbalanced gas in the unitary limit (δ = 0). Experimental results
are shown as filled black circles. The theory using Eq. (6) (Landau’s
method) is shown by the thick solid (green) line, while the result of
Eqs. (A1) and (A2) is shown as the dashed (red) line. The horizontal
(blue) line shows the value of the dimensionless pressure in the
superfluid state.

adiabatic sweep theorem):

dE

d(−1/a)
= h̄2

4πm
I. (B1)

The contact can be expressed in the grand-canonical ensemble
using the relation

(
∂E

∂(−1/a)

)
S,V,N

=
(

∂	

∂(−1/a)

)
T ,V,μ

, (B2)

where 	 = −PV is the grand potential. Using the contact
density C = I/V , we can write to lowest order in a−1,

P (μ,T ,a−1) = P (μ,T ,0) + a−1 h̄2

4πm
C(μ,T ,0), (B3)

where the contact density at unitarity is a function of βμ only.
We can thus write the finite a correction to the dimensionless
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FIG. 6. (Color online) Pressure of the unpolarized unitary Fermi
gas. The original data taken at 834 G are shown as open black
circles [13], while the corrected EoS at 832.18 G is displayed as
filled black circles (see text). Measurements from MIT and Tokyo
are shown as filled (blue) squares [15] and open (red) triangles [31],
respectively, and the bDMC calculation from Amherst, as the solid
(green) line [16]. At the lowest temperatures, we find a corrected
Bertsch parameter, ξS = 0.40(2).
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pressure,

P (μ,T )

P0(μ,T )
= P (μ,T ,a−1)

P0(μ,T )
+ 1

8π2

λdB

a

C̃(βμ)

Li5/2( − exp(βμ))
,

(B4)

where P0(μ,T ) is the pressure of the noninteracting Fermi
gas, and C̃(βμ) = Cλ4

dB is the dimensionless contact density.
C̃(βμ) has recently been calculated by the diagrammatic
Monte Carlo method [30]. We compute the small a cor-

rection by applying Eq. (B4) to the pressure extracted
from each 6Li density profile used in the measurement of
the EoS. The temperature in Eq. (B4) is determined from
the 7Li thermometer, and the full EoS is reconstructed
by first adjusting μ0 for each high-temperature image to
match the virial expansion and then progressively connecting
lower temperature images to high-βμ ones, as originally
done in [13]. The result for the pressure is shown in
Fig. 6.
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