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Stability criterion for superfluidity based on the density spectral function
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We study a stability criterion hypothesis for superfluids expressed in terms of the local density spectral
function In(r,ω) that is applicable to both homogeneous and inhomogeneous systems. We evaluate the local
density spectral function in the presence of a one-dimensional repulsive or attractive external potential within
Bogoliubov theory, using solutions for the tunneling problem. We also evaluate the local density spectral function
using an orthogonal basis, and calculate the autocorrelation function Cn(r,t). When superfluids in a d-dimensional
system flow below a threshold, In(r,ω) ∝ ωd holds in the low-energy regime and Cn(r,t) ∝ 1/td+1 holds in the
long-time regime. However, when superfluids flow with the critical current, In(r,ω) ∝ ωβ holds in the low-energy
regime and Cn(r,t) ∝ 1/tβ+1 holds in the long-time regime with β < d . These results support the stability criterion
hypothesis recently proposed.
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I. INTRODUCTION

The study of superfluids has revealed a cornucopia of
fascinating phenomena as well as important concepts in the
physics of condensed matter. Interesting phenomena related
to superfluidity, such as phase slips and a persistent current,
continue as topics of interest [1,2] despite their long history
of investigation. Since one notable feature is dissipationless
flow below a threshold, the stability of superfluids is a very
important issue.

Although the Landau criterion provides the critical velocity
and predicts that an ideal Bose gas is an unstable superfluid,
many experimental results [3–8] and numerical simulations
[9–17] have shown that the critical velocity is actually smaller
than Landau’s critical velocity. (In cases where impurities are
comparable in size to atoms, the critical velocity approaches
Landau’s critical velocity [18–20].) As is well known, the
dissipation of superfluids at a smaller velocity than Landau’s
critical velocity is caused by emissions of phase defects,
such as quantized vortices and solitons. Since the Landau
criterion is based on the Galilean transformation, this criterion
is applicable only to uniform systems. We thus need a stability
condition for a superfluid flowing through an obstacle, in which
case the translation invariance is broken.

A feature of superfluids is the suppression of the density
fluctuation. Although the compressibility diverges in an ideal
Bose gas, it does not diverge in a Bose gas with a repulsive in-
teraction. When we observe a two-body distribution function,
the ideal Bose gas exhibits spatial density fluctuations and
tends to form particle clusters due to the Bose statistics alone
[21]. On the other hand, a Bose gas with a repulsive interaction
exhibits the “density homogenization” effect [21] and its
density fluctuations are suppressed in the long-wavelength
regime [22]. In the Gross-Pitaevskii equation [23,24], this
homogenization effect may be included through the nonlinear
effect on the macroscopic wave function [25]. When the dis-
sipation occurs in the superfluid above a threshold, emergent
phase defects such as quantized vortices and solitons are often
featured, but the density also fluctuates. In fact, the phase and
density are canonical variables.

Thus, we expect that the suppression of density fluctuations
with respect to a perturbation characterizes the stability of
superfluids. On the basis of this idea, we recently proposed a
stability criterion hypothesis based on the local density spectral
function In(r,ω) or the autocorrelation function Cn(r,t)
[26,27]. The former function is defined as

In(r,ω) =
∑

l

|〈l|δn̂(r)|g〉|2δ(ω − ωl + ωg), (1)

where |g〉 is the ground state vector or a stable superflow
state vector with the energy h̄ωg and δn̂(r) is the density
fluctuation operator. (|l〉 is a state vector of an excited state
l with the energy h̄ωl .) The autocorrelation function is the
Fourier transform of this function,

Cn(r,t) =
∫

dω In(r,ω) cos(ωt). (2)

When a superflow current is J � Jc, where Jc is the critical
current, the local density spectral function in a d-dimensional
system behaves as

lim
ω→0

In(r,ω) ∝
{

ωβ (J = Jc)

ωd (J < Jc)
(3)

and the autocorrelation function behaves as

lim
t→∞ Cn(r,t) ∝

{
1/tβ+1 (J = Jc)

1/td+1 (J < Jc)
(4)

with β < d. We have gathered only a few pieces of evidence
for this criterion hypothesis [26,27].

In this paper, we discuss the validity of the criterion
by calculating the density spectral function not only for a
one-dimensional repulsive potential barrier, but also for a one-
dimensional attractive external potential using the tunneling
solutions of Bogoliubov theory. In the latter case, the critical
current Jc is equal to Landau’s critical current. The density
spectral function is enhanced at J = Jc in the low-energy
regime far from the attractive potential; this is in marked
contrast to the case with the repulsive potential barrier. We
also numerically demonstrate the validity of (4) in the repulsive
potential barrier case.
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We also discuss and numerically evaluate the density
spectral function with the use of an orthogonal basis in the
Bogoliubov approximation. An orthogonal basis is generally
employed to calculate the spectral function, and tunneling
solutions do not always satisfy the Bogoliubov orthonor-
malization condition. The tunneling solutions far from the
potential barrier consist of the superposition of plane waves
that satisfy the Bogoliubov normalization condition in the
momentum space. Even if we use the orthogonal set, the
low-energy behavior of the local density spectral function is
qualitatively unchanged.

Section II serves as an introduction to the local density
spectral function. In Sec. III, we calculate the local density
spectral function in the presence of the one-dimensional
external potential. We calculate the density spectral function
in a uniform system using Bogoliubov theory, and discuss
the Landau instability in Sec. IV. Section V also examines
the density spectral function in Feynman’s single-mode ap-
proximation and for an ideal Bose gas. Based on the results
described in these sections, in Sec. VI, we discuss the validity
of the stability criterion hypothesis for superfluids in light of
the density spectral function.

We highlight results that were not addressed in the earlier
short reports [26,27]: (i) the comparative study of the local
density spectral function for the repulsive or attractive potential
barrier (Sec. III); (ii) the explicit formulas of the local density
spectral function in the low-energy regime for the repulsive
potential barrier case, obtained from the tunneling solutions
at the critical current (Sec. III); (iii) the spectral function
calculated with an orthogonal basis, and a comparative study
between this result and the spectral function obtained from the
tunneling solutions (Sec. III); (iv) the numerically calculated
density spectral function in the uniform system using the
Bogoliubov theory (Sec. IV); (v) the application of the stability
criterion hypothesis to an ideal Bose gas (Secs. V and VI); and
(vi) numerical evidence for the hypothesis in terms of the
autocorrelation function (Sec. VI).

II. LOCAL DENSITY SPECTRAL FUNCTION

The density correlation function measured at x1 = (r1,t1)
and x2 = (r2,t2) is provided by

Cn(x1; x2) = 〈g|δn̂(x1)δn̂(x2)|g〉, (5)

where δn̂(x) is a density fluctuation operator

δn̂(x) = n̂(x) − 〈g|n̂(x)|g〉, (6)

and |g〉 is a ket vector of the ground state or a stable superflow
state of a Hamiltonian Ĥ satisfying Ĥ |g〉 = h̄ωg|g〉. Using the
Fourier transformation, we obtain the spectral function

In(r1,r2; ω) = 1

2π

∫ ∞

−∞
d(t2 − t1)Cn(x1; x2)e−iω(t2−t1)

=
∑

l

〈g|δn̂(r1)|l〉〈l|δn̂(r2)|g〉δ(ω − ωl + ωg).

(7)

Here, |l〉 is a ket vector of an excited state with an index l of
the Hamiltonian Ĥ satisfying Ĥ |l〉 = h̄ωl|l〉 with h̄ωl > h̄ωg .

The local density spectral function In(r,ω) and the auto-
correlation function Cn(r,t) are local functions at r = r1 = r2,
given by

In(r,ω) = In(r,r; ω) (8)

=
∑

l

|〈l|δn̂(r)|g〉|2δ(ω − ωl + ωg), (9)

Cn(r,t) = CS
n (r,t ; r,0) =

∫
dω In(r,ω) cos(ωt), (10)

where CS
n is the symmetrized correlation function

CS
n (x1; x2) = 1

2 [〈g|δn̂(x1)δn̂(x2)|g〉 + 〈g|δn̂(x2)δn̂(x1)|g〉].
(11)

In the uniform system, the local density spectral function is
related to the Fourier transformation of the dynamic structure
factor as

In(r1,r2; ω) =
∫

dq
(2π )d

S(q,ω)eiq·(r1−r2) (12)

for dimensionality d. In this case, the equal point local density
spectral function does not have r dependence, and is given by

In(ω) = In(r,r; ω) =
∫

dq
(2π )d

S(q,ω). (13)

When we consider the fluctuations in the Bogoliubov
level, the density fluctuation operator δn̂(r,t) and the phase
fluctuation operator that satisfy the canonical commutation
relation [δn̂(r′),δθ̂ (r)] = iδ(r − r′) are given by

δn̂(r,t) = A(r)
∑

j

[Gj (r)e−iEj t/h̄âj + G∗
j (r)eiE∗

j t/h̄â
†
j ], (14)

δθ̂ (r,t) = 1

2iA(r)

∑
j

[Sj (r)e−iEj t/h̄âj − S∗
j (r)eiE∗

j t/h̄â
†
j ],

(15)

where âj is the annihilation operator of the Bogoliubov
excitation. A(r) is the amplitude of the condensate wave
function �0(r) = A(r)eiθ0(r) that satisfies the stationary Gross-
Pitaevskii equation

Ĥ0�0(r) = 0, (16)

where

Ĥ0 = − h̄2

2m
∇2 + Vext(r) − μ + g|�0(r)|2. (17)

Here, m is the atomic mass, Vext(r) is the external potential, μ

is the chemical potential, and g is the interaction strength.
The functions Gj (r) and Sj (r) are given by

Gj (r) = uj (r)e−iθ0(r) − vj (r)eiθ0(r), (18)

Sj (r) = uj (r)e−iθ0(r) + vj (r)eiθ0(r), (19)

where uj (r) and vj (r) satisfy the Bogoliubov equation( Ĥ0 + g|�0|2 −g�2
0

g[�∗
0 ]2 −Ĥ0 − g|�0|2

)(
uj

vj

)
= Ej

(
uj

vj

)
. (20)
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The orthonormalization condition in Bogoliubov theory is∫
dr[u∗

i (r)uj (r) − v∗
i (r)vj (r)] = δij . (21)

This relation holds when Ei 
= E∗
j . In Bogoliubov theory, the

local density spectral function can be reduced to

In(r,ω) = n0(r)
∑

l

|Gl(r)|2δ(ω − El/h̄), (22)

where the condensate density is given by

n0(r) = A2(r). (23)

The density and phase operators are discussed in [28] for
θ0(r) = 0. Both (14) and (15) are extensions of these operators
to the current carrying state case. Relations between these
fluctuations and (S,G), which are nonquantized versions, are
discussed in [29,30].

The energy and the length are scaled, respectively, by the
Hartree energy gn0 and the healing length ξ = h̄/

√
mgn0,

where n0 is the condensate density in a uniform regime. The
current density J is scaled by Landau’s critical current J0 =
csmn0. Here, cs is the speed of the Bogoliubov phonon cs =√

gn0/m, which scales the fluid velocity v = h̄∇θ0(r)/m.
We use r = r/ξ , ∇ = ξ∇, �0(r) = �0(r)/

√
n0, V ext(r) =

Vext(r)/(gn0), E = E/(gn0), J = J/J0, and v = v/cs. For
simplicity, we omit the bar below.

III. LOCAL DENSITY SPECTRAL FUNCTION
IN BOGOLIUBOV THEORY

We discuss a stationary superfluid state in the presence of a
one-dimensional external potential. The external potential has
x dependence and the translational invariance holds in the y

and z directions. The superfluid flows along the x direction,
i.e., the current density J in the y and z directions is absent
(Jy = Jz = 0). In this case, the Gross-Pitaevskii equation can
be reduced to [14,31–33]

ĤA(x) = 0, A2(x)
dθ0(x)

dx
= J, (24)

where

Ĥ = −1

2

d2

dx2
+ J 2

2A4(x)
+ Vext(x) − μ + A2(x). (25)

An external potential Vext(x) is localized around x = 0,
i.e., Vext(|x| → ∞) = 0. We solve the first equation in (24)
with the boundary conditions A(x) = 1 and dA(x)/dx = 0
at x = ±∞. The Gross-Pitaevskii equation at |x| = ∞ gives
μ = 1 + J 2/2. According to the second equation in (24), the
phase θ0(x) and the phase difference ϕ [31] are given by

θ0(x) = θ0(0) + Jx + J

∫ x

0
dx ′

(
1

A2(x ′)
− 1

)
, (26)

ϕ = J

∫ ∞

−∞
dx

(
1

A2(x)
− 1

)
. (27)

The current can flow without dissipation, when the phase is
twisted (ϕ 
= 0) and the current is below the critical current Jc.
In the repulsive barrier case, stable branches (thick lines) and
unstable branches (thin lines) merge at the maximum value
of the stable supercurrent Jc with dJ/dϕ = 0 [Fig. 1(a)].
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FIG. 1. (Color online) J -ϕ relation. The δ-function potential
Vext(x) = V0δ(x) is used. Red points represent the critical current
Jc. (a) A repulsive potential case. Thick and thin lines are stable
and unstable solutions, respectively, according to saddle-node
bifurcation theory [10], and they merge at the critical current Jc.
(b) An attractive potential case. The current J is an odd-function of
the phase difference ϕ. The vertical axes in (a) and (b) are scaled by
Landau’s critical current J0 = csmn0. V0 is scaled by gn0/ξ .

The value Jc is less than the critical current of Landau’s
criterion J = 1. This current phase relation can be also seen in
Refs. [31,34–36]. On the other hand, in an attractive potential
case, the critical current Jc is always equal to Landau’s critical
current Jc = 1 [Fig. 1(b)] [14]. (To illustrate the current-phase
relation in Fig. 1, we used the δ-function potential barrier.)

A local Landau criterion is occasionally quoted as the
criterion giving the dissipation threshold in an inhomogeneous
system that is less than the value in Landau’s criterion. In
this instability, excitations could be emitted if the velocity of
the superfluid exceeded a threshold determined by the local
density. In Bogoliubov theory, Landau’s critical velocity is
given by the speed of the Bogoliubov excitation cs. According
to the local Landau’s criterion, superfluidity would break at
the position where the fluid speed v(r) satisfies v(r) > cs(r) ≡√

n0(r).
This statement is not correct, however. Landau’s criterion

is applicable to the uniform system because it is based on
a Galilean transformation. Furthermore, even if the speed of
the fluid v(r) is larger than cs(r), the state is stable. Indeed,
in the stable superfluid state J < Jc, we find v(x) > cs(x)
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FIG. 2. Velocity of superfluid v(x) (solid line) and local speed of
the Bogoliubov phonon cs(x) = √

gn0(x)/m (dashed line), where the
superfluid passes through the δ-function potential barrier Vext(x) =
V0δ(x) without dissipation. This result is obtained from the Gross-
Pitaevskii equation. The current J = 0.05 is used, where the critical
current in this case (V0 = 7 is taken) is Jc = 0.0707 . . . . The vertical
axis is scaled by the speed of the Bogoliubov phonon in the uniform
system cs = √

gn0/m. The horizontal axis is scaled by the healing
length ξ . V0 is scaled by gn0/ξ .

(Fig. 2). (In Fig. 2, we employed the δ-function potential
barrier.) According to the local Landau criterion, this state
is wrongly regarded as an unstable state. The local Landau
criterion works well only in the system locally homogeneous
inside the barrier [36–39].

In the one-dimensional potential barrier case, the local
density spectral function in the d-dimensional system is
given by

In(x,ω) = n0(x)
∫

dkin

(2π )d
|G(x; kin)|2δ(ω − E(J,|kin|,θ )).

(28)

In the tunneling problem, the incident momentum kin =
(kin

x ,ky,kz) characterizes a state. The energy E obtained from
the Bogoliubov equation is

E(J,|k|,θ ) = |k|J cos θ +
√

k2

2

(
k2

2
+ 2

)
, (29)

where θ is the angle between the wave vector k and the
direction of the supercurrent density J.

The wave function in the tunneling problem is given by(
u

v

)
= ũ∓

(
x,k(1)

x

) + rũ∓
(
x,k(2)

x

)
+ aũ∓(x,k∓

x ) (x → ∓∞), (30)(
u

v

)
= t ũ±

(
x,k(1)

x

) + bũ±(x,k±
x ) (x → ±∞), (31)

where

ũ±(x,k) ≡
(

ũ(k)e+i(Jx±ϕ/2)

ṽ(k)e−i(Jx±ϕ/2)

)
eikx, (32)

with(
ũ(k)

ṽ(k)

)
= N−1

(
1

−E + ( k2

2 + kJ + k2
⊥
2 + 1

)
)

. (33)

In fact, the solution of the Bogoliubov equation in the uniform
system is given by

(
u

v

)
= e(ikyy+ikzz)eikxx

(
ũ(kx)e+i[Jx+sgn(x)ϕ/2]

ṽ(kx)e−i[Jx+sgn(x)ϕ/2]

)
. (34)

N is the normalization coefficient determined from |ũ|2 −
|ṽ|2 = 1. t and r are the amplitude transmission and reflection
coefficients, respectively. k(1),(2),±

x are the four solutions of

k4
x + (2k2

⊥ + 4 − 4J 2)k2
x + 8EJkx + k4

⊥ + 4k2
⊥ − 4E2 = 0,

(35)

with respect to kx , which comes from a dispersion relation

E = Jkx +
√

k2
x + k2

⊥
2

(
k2
x + k2

⊥
2

+ 2

)
, (36)

where k⊥ =
√

k2
y + k2

z . k(1)
x is a real solution satisfying

k(1)
x = kin

x , and k(2)
x is the other real solution. The k±

x satisfy
sgn[Im(k±

x )] = ±1. The coefficients t , r , a, and b are de-
termined by solving (20) with the boundary conditions (30)
and (31). Details of the tunneling problem of the Bogoliubov
excitation are summarized in Appendix A.

When the superfluid flows through the barrier, an anomaly
of the density spectral function emerges around the region
where the density is a minimum (Figs. 3 and 4). In the repulsive
potential barrier case (Fig. 3), the enhancement of the local
density spectral function appears around the barrier, which is
located at x = 0. This enhancement arises as the current J

approaches Jc. (In Fig. 3, we used the δ-function potential
barrier. We have numerically checked the same behavior in
the Gaussian-shaped potential barrier case.) For the attractive
potential barrier (Fig. 4, where we also used the δ-function
potential barrier), the enhancement of the local density spectral
function also occurs as the current J approaches Jc. However,
it is located in a different region. The enhancement appears far
from the attractive external potential, where the density is at a
minimum and is also uniform.

The exponent of the local density spectral function in the
low-energy regime in the state at J = Jc differs from the
other states at J < Jc (Fig. 5). In a d-dimensional system
at J < Jc, the relation In(x,ω) ∝ ωd holds. At J = Jc, on
the other hand, the relation In(x,ω) ∝ ωd−2 holds. (In Fig. 5,
we used the repulsive δ-function potential barrier. We have
numerically checked the same exponent with respect to the ω

dependence in the Gaussian-shaped potential barrier case.)
The anomaly of the local density spectral function for an
attractive potential case originates essentially from the Landau
instability. The exponent of the local density spectral function
will be discussed in Sec. IV.

At J = Jc(< 1) in the repulsive potential case, we can
derive an analytic form of the local density spectral function
in the low-energy regime. For dimensionality d, we have

In(ω,x) � Fd

π
ωd−2[∂ϕn0(x)]2, (37)
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(a) J = Jc

(b) J = 0.0497

(c) J = 0.049

(d) J = 0

FIG. 3. (Color online) Local density spectral function In(x,ω) as
functions of ω and x in the three-dimensional case, in the presence
of a repulsive δ-function potential barrier Vext(x) = V0δ(x) with
V0 = 10. In this case, the critical current Jc is Jc = 0.049 753 . . . .

Here, In(x,ω), ω, x, and J are scaled by h̄n0/g, gn0/h̄, ξ , and J0,
respectively. V0 is scaled by gn0/ξ .

where

Fd =

⎧⎪⎪⎨
⎪⎪⎩

2J 2
c

J 2
c +η2 (d = 1)

1 − η√
J 2

c +η2
(d = 2)

1
π

[
1 − η

Jc
tan−1

(
Jc
η

)]
(d = 3)

(38)

with

η =
∫ ∞
−∞ dx A(x)Aϕ(x)∫ ∞

−∞ dx Aϕ(x)/A3(x)
(39)

and Aϕ(x) = ∂A(x)/∂ϕ. Derivations may be found in Ap-
pendix C. Here, the barrier was assumed to be strong, leading
to Jc � 1. We also assumed |η| � 1, because η = O(J ) as
discussed in Appendix B. The spatial dependence of the

ω

ω

ω

ω

x

x

x

x

In(x, ω)

In(x, ω)

In(x, ω)

In(x, ω)

(a) J = Jc = 1

(b) J = 0.99

(c) J = 0.97

(d) J = 0

FIG. 4. (Color online) Local density spectral function In(x,ω) as
functions of ω and x in the one-dimensional case, in the presence of an
attractive δ-function potential barrier Vext(x) = V0δ(x) with V0 = −2.
In this case, the critical current Jc is equal to Landau’s critical current
Jc = 1. Here, In(x,ω), ω, x, and J are scaled by h̄n0/g, gn0/h̄, ξ ,
and J0, respectively. V0 is scaled by gn0/ξ .

local density spectral function In(x,ω) is consistent with our
analytical result (37) (Fig. 6). When ω decreases, our analytical
and numerical results agree over the wider range of x.

In Fig. 6, we used the δ-function potential barrier. We have
numerically checked the agreement between the numerical
results and our analytical result (37) in the Gaussian-shaped
potential barrier case. Equation (37) is applied to the potential
barrier with the general shape. In fact, to derive (37), we
employed the wave function obtained without assuming the
specific shape of the potential barrier (see Appendices B
and C).

The use of the tunneling solutions facilitates the evaluation
of the local density spectral function at the thermody-
namic limit. However, generally speaking, we should use an
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FIG. 5. (Color online) Local density spectral function In(x,ω)
at x = 0, in the presence of a repulsive δ-function potential
barrier Vext(x) = V0δ(x) with V0 = 10. (a), (b), and (c) are for
the one-, two-, and three-dimensional systems, respectively. We
used the set of the current J = Jc(= 0.049 753 . . .), 0.04975,

0.0497, 0.049, 0.045, 0.04, 0.03, 0.02, 0.01, and 0. Red and blue
lines are respectively for J = Jc and J = 0. The functions are shifted
from J = 0 to J = Jc with an increase in the current J . The vertical
and horizontal axes are scaled by h̄n0/g and gn0/h̄, respectively. The
current J is scaled by Landau’s critical current J0. V0 is scaled by
gn0/ξ .

orthogonal set when we evaluate the spectral functions. As
shown below, even if we use the orthogonal set, our main
results for the low-energy behavior of the local density spectral
function are unchanged.

The local density spectral function in the d-dimensional
system is reduced to

In(x,ω) =
∑

l

M(x,El)
1

Ld
δ(ω − El), (40)

where M(x,El) is the squared matrix element given by

M(x,El) = Ld |ul(x)�∗
0 (x) − vl(x)�0(x)|2 (41)

= Ldn0(x)|Gl(x)|2. (42)

Here, L is the system size. To obtain M(x,El), we solve (20)
with the periodic boundary conditions
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FIG. 6. (Color online) The spatial dependence of the local
density spectral function In(x,ω) at ω = 10−4 in the presence of a
repulsive δ-function potential barrier Vext(x) = V0δ(x) with V0 = 10.
(a), (b), and (c) are for the one-, two-, and three-dimensional
systems, respectively. We used the set of the current J = Jc(=
0.049 753 . . .), 0.04975, 0.0497, 0.049, 0.045, 0.04,0.03,0.02,0.01,
and 0. Red and blue lines are for J = Jc and J = 0, respectively.
The functions are shifted from J = 0 to J = Jc as the current J

increases. Red dotted lines are analytical results from (37). The
vertical and horizontal axes are scaled by h̄n0/g and ξ , respectively.
The current J is scaled by Landau’s critical current J0. V0 is scaled
by gn0/ξ .

ul(L/2) = ul(−L/2), ∂xul(L/2) = ∂xul(−L/2), (43)

vl(L/2) = vl(−L/2), ∂xvl(L/2) = ∂xvl(−L/2), (44)

and the normalization condition∫ L/2

−L/2
dx[|ul(x)|2 − |vl(x)|2] = 1. (45)

To determine the spectral function, a calculation is needed
at the thermodynamic limit. Although it is difficult to solve
the Bogoliubov equation numerically at this limit, we have
analytic solutions for a one-dimensional system with the δ-
function potential barrier Vext(x) = V0δ(x) [33]. The solution
u+ ≡ (u+,v+)T at x � 0 [u− ≡ (u−,v−)T at x < 0] are now
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given by

u±(x) =
∑

k = k
(1)
x ,k

(2)
x ,k+

x ,k−
x

c±,kU±(x,k), (46)

where

U±(x,k) =
( {[1 + k2/(2E)]γ (x) ∓ iKu(x,k)}ei[(k+J )x±ϕ/2]

{[1 − k2/(2E)]γ (x) ± iKv(x,k)}ei[(k−J )x∓ϕ/2]

)
(47)

with

Ku,v(x,k) = J + k

2E
[1 − J 2 − γ 2(x)] + k3

4E
± k

2
. (48)

For (48), the upper (lower) sign is for Ku (Kv). Here, γ (x)
is related to the amplitude of the condensate wave function
A(x) =

√
J 2 + γ 2(x) given by

γ (x) =
√

1 − J 2 tanh[
√

1 − J 2(|x| + x0)]. (49)

x0 is determined from the boundary condition of �0(x) at
x = 0 [33].

We determine eight coefficients c±,k and eigenenergy El

using (43), (44), (45), and the boundary conditions at x = 0
given by

u+(0) = u−(0), ∂xu+(0) − ∂xu−(0) = 2V0u+(0). (50)

Since U±(x,k) are solutions of the Bogoliubov equation, (46)
satisfies the orthogonality (21) when El 
= El′ .

The relation between the eigenenergy El and the squared
matrix element M(x = 0,El) reveals two types of excitations
(Fig. 7). The type-I excitation dominantly contributes the
density fluctuations at J 
= 0, whose matrix element becomes
larger for lower energies, in particular at J = Jc. The contri-
butions of the type-II excitation to the density fluctuations are
smaller than those of type I at J 
= 0, whose matrix element
becomes smaller for lower energies at an arbitrary J (�Jc).
The first excitation is always type I. The parity rule holds in
the low-energy regime; the odd (even)-numbered excitations
belong to type I (II). In higher-energy regimes, it is difficult to
distinguish between the two types of excitations. At J = 0, we
cannot distinguish type I from type II because of degeneracy.
(In Fig. 7, we used the δ-function potential barrier.)

When we plot the squared matrix element for several system
sizes, the type-I excitation produces a smooth line in the low-
energy regime (Fig. 7). We can thus introduce an interpolation
function M̃(x,ω) satisfying two conditions:

M̃(x,El) = M(x,El) (l ∈ type I) (51)

and

|∂M̃(x,ω)/∂ω|E � |M̃(x,ω)|. (52)

M̃(x,ω) traces the squared matrix element M(x,ω) of the type-
I excitation, and is a slowly varying function of ω compared to
the energy interval E = |El+2 − El|, where l ∈ type I. In this
expression, the type-I excitation is labeled with l = 1,3,5, . . .

in order of increasing El , using the parity rule.
Exponents of M̃(x,ω) [and also M(x,ω) for the type-I

excitation] with respect to ω are different between the cases at
J = Jc and those at J < Jc (Fig. 7). These are ω−1 at J = Jc

and ω at J < Jc. In the stable superfluid state at J < Jc,
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FIG. 7. (Color online) Squared matrix element M(x,El) of the
local density spectral function at x = 0 as a function of eigenenergy
El in the one-dimensional case. We used the barrier Vext(x) =
V0δ(x) with V0 = 10. (a) J = Jc = 0.049 753 . . . . (b) J = 0.045.
(c) J = 0.03. The system sizes we used are (a) (L1,L2,L3,L4) =
(696,570,444,317), (b) (L1,L2,L3,L4) = (630,490,351,211), and
(c) (L1,L2) = (525,316), where the decimal point is suppressed.
These Li are determined from the periodic boundary conditions of the
condensate wave function with a given J . The type-I is the excitation
which makes a significant contribution to the matrix element at J 
= 0
for low El . The vertical and horizontal axes are scaled by ξn2

0 and
gn0, respectively. J,ω,L1,2,3,4 and V0 are scaled by J0,gn0/h̄, ξ , and
gn0/ξ , respectively.

the zero-energy mode is only the phase mode, so that the
low-energy solution is given by

(
Sj (x)

Gj (x)

)
= c√

Ej

[(
A(x)

0

)
+ Ej

(
S̃(x)

G̃(x)

)
+ O

(
E2

j

)]
.

(53)

Here, c/
√

Ej is the normalization coefficient, and S̃(x) and
G̃(x) are higher orders of Ej . At J = Jc, however, the density
mode related to G(x) appears even at the zero-energy limit
[29], given by

Gj (x) = cc√
Ej

∂A(x)

∂ϕ
. (54)

Details are provided in Appendix B. Here, cc/
√

Ej is also the
normalization coefficient. Using these solutions, we obtain the
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squared matrix element as

M̃(x,ω) �
{

ωn0(x)|G̃(x)|2 (J < Jc)

ω−1[∂ϕn0(x)]2 (J = Jc),
(55)

at the low-energy regime up to a constant factor.
When we introduce the coarse-grained density of states

D̃d (ω) = 1

δ

∫ ω+δ/2

ω−δ/2
dω′ 1

Ld

∑
l

δ(ω′ − El), (56)

the local density spectral function in the low-energy regime
for d = 1 is reduced to

In(x,ω) = M̃(x,ω)D̃d=1(ω). (57)

Here, δ satisfies an arbitrarily small value satisfying E �
δ � 1 for large L. D̃d (ω) is a smooth function, and we consider
it to be the density of states at the thermodynamic limit. At
this limit, we approximate D̃d (ω) as

D̃d (ω) =
∫

dkin

(2π )d
δ(ω − E(J,|kin|,θ )). (58)

When J < 1, the excitation is a phonon, i.e., |kin| ∝ ω, so that
we obtain D̃d (ω) ∝ ωd−1. As a result, for the dimensionality
d = 1, In ∝ ω holds at J < Jc. At J = Jc, In ∝ ω−1 holds.

For d = 2, we classify the eigenstates l by θ ∈
[−π/2,π/2]. We introduce infinitesimally small inter-
vals θm ≡ [mθ,(m + 1)θ ] for m ∈ [−N/2,(N/2) − 1],
where 1 � π/θ ≡ N and m ∈ Z. In this case, the eigenstate
can be labeled as El = El′,m. The density spectral function is
given by

In(x,ω) =
∑
l′,m

M(x,El′,m)
1

L2
δ(ω − El′,m). (59)

We can discuss the case for d = 3 in a similar way. Since k⊥ =
O(E), the Bogoliubov equation with k2

⊥ can be reduced to that
for the one-dimensional case within O(E). In the low-energy
regime, the solution has the same structure as (53) at J < Jc

or (54) at J = Jc. As a result, the ω dependence of the squared
matrix element is also the same as (55). The excitation is a
phonon at J < 1, so that the ω dependence of the remaining
factor of In is proportional to ωd−1. We thus end with

In(x,ω) �
{

ωdn0(x)|G̃(x)|2 (J < Jc)

ωd−2[∂ϕn0(x)]2 (J = Jc)
(60)

at the low-energy regime up to a constant factor. This ω

dependence is consistent with the results obtained from the
tunneling solutions in the presence of the repulsive potential
barrier.

In the low-energy regime, the local density spectral function
In constructed from the tunneling solutions reproduces well
the ω dependence of M(x = 0,El)D̃d=1(El) for l ∈ type I
(Fig. 8). (In Fig. 8, we used the δ-function potential barrier.)
On this basis, we can use the solutions of the tunneling problem
to effectively calculate the local density spectral function at the
thermodynamic limit, and to discuss the ω dependence of the
local density spectral function at the low-energy limit.

Hakim discussed the soliton instability as a saddle-node
bifurcation, where the stable and unstable branches merge
at the bifurcation point J = Jc [10]. Near the saddle-node

0 9

10 7

10 5

J = Jc
J = 0.045
J = 0.03
J = 0

10−3

10−5

10−7

10−9

×10−2105210.5
ω

I n
(x

=
0,

ω
)

FIG. 8. The local density spectral function at x = 0 as a
function of energy ω. Each symbol represents M(x = 0,ω)D̃1(ω) for
J = Jc(= 0.049 753 . . .) (circle), 0.045 (square), 0.03 (triangle),
and 0 (inverted triangle) at ω = El for l ∈ type-I. We used the
barrier Vext(x) = V0δ(x) with V0 = 10. These results are obtained
from several system sizes. For J = Jc, 0.045, and 0.03, we took
the system sizes used in Fig. 7. For J = 0, we used the same
system sizes L1,2,3,4 as the case at J = Jc. The solid lines show the
local density spectral function produced from the solutions of the
tunneling problem. The vertical and horizontal axes are scaled by
h̄n0/g and gn0/h̄, respectively. The current J is scaled by Landau’s
critical current J0. V0 is scaled by gn0/ξ .

bifurcation point, a dynamical scaling relation can be found.
An example of a dynamical scaling relation is the emission
rate � of the gray soliton given by � ∝ √|V − Vc| [13]. Here,
V is the strength of the potential barrier and Vc is its critical
strength. The scaling law also holds between the scaling factor√

Jc − J and the peak frequency ωpeak that gives the peak of
the local density spectral function at x = 0 [Fig. 9(a)].

The scaling function Fd (x,ω∗ = ω/
√

Jc − J ) describes the
universal behaviors of the local density spectral function near
the critical current. For the dimensionality d, it is given by

In(x,ω) = ωd−2Fd (x,ω|J − Jc|−1/2). (61)

In each dimension, the local density spectral functions near
the critical current collapse onto a single curve, which implies
a dynamical scaling law [Fig. 9(b)].

These results in Fig. 9 are obtained in the δ-function
potential barrier case. This dynamical scaling law may hold
in the repulsive potential barrier case with the general shape
and the arbitrary strength. In fact, this scaling law is a general
property around the bifurcation point.

IV. LANDAU INSTABILITY IN BOGOLIUBOV THEORY

We evaluate the local density spectral function in Bogoli-
ubov theory for the uniform system. We consider a local
density spectral function given by (28), where n0(x) = 1
and |G(x; k)|2 is also independent of x. In the low-energy
regime, the local density spectral function is enhanced when
J increases (Fig. 10). The exponent of In(ω) with respect to
ω changes at J = Jc.

In the d-dimensional system for the stable superfluid state
at J < Jc, the low-energy dependence is given by

In(ω) � �d

2π

d + J 2

(1 − J 2)(d+3)/2
ωd, (62)
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FIG. 9. (Color online) (a) The frequency ωpeak giving the peak of
the local density spectral function In(x,ω) at x = 0 as a function of
the scaling factor

√
Jc − J in the one-dimensional system. The data

are taken from the result in Fig. 5(a). The vertical and horizontal axes
are scaled by gn0/h̄ and

√
J0, respectively. (b) The scaling function

Fd (x,ω∗) = ω2−dIn(x,ω) at x = 0 as a function of the scaled energy
(frequency) ω∗ = ω/

√
Jc − J , in one-, two-, and three-dimensional

systems. Each symbol represents data at J = 0.04975 (circle), 0.0497
(square), and 0.049 (triangle). The result (b) is referred from [26].
The vertical and horizontal axes are scaled by (g/h̄)1−dn3−d

0 and
gn0/(h̄

√
J0), respectively. In both (a) and (b), we used the δ-function

potential barrier Vext(x) = V0δ(x) with V0 = 10, and its critical
current is Jc = 0.049 753 . . . . Here, V0 and J is scaled by gn0/ξ

and J0, respectively.

where

(�1,�2,�3) =
(

1,
1

4
,

1

6π

)
. (63)

On the other hand, at J = Jc(=1), the density spectral func-
tion shows completely different behaviors. The low-energy
behavior for the dimensionality d is given by

In(ω) � �′
d

3π
ω(2d−3)/3, (64)

where

(�′
1,�

′
2,�

′
3) =

(
1,

2
√

3

π
,

1

π

)
. (65)

Derivations may be found in Appendix D.
In a stable superfluid state J < Jc(=1), the energy spectrum

is a phonon, i.e., E = (1 + J cos θ )k. In the critical current
state, E � k3/8 holds for low k when the momentum of the
excitation is antiparallel to the supercurrent. The change of the
energy spectrum from E ∝ k to E ∝ k3 increases the density
of states, so that the density spectral function is enhanced at
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FIG. 10. (Color online) Numerically-calculated density spectral
function In(ω) in the uniform system within Bogoliubov theory.
(a), (b), and (c) are for the one-, two-, and three-dimensional
systems, respectively. We used the set of the current J = Jc = 1,

0.999, 0.99, 0.9, 0.8, 0.6, 0.4, 0.2, and 0. Red and blue lines are
for J = Jc and J = 0, respectively. The functions are shifted from
J = 0 to J = Jc with an increase in the current J . The vertical and
horizontal axes are scaled by h̄n0/g and gn0/h̄, respectively. The
current J is scaled by Landau’s critical current J0.

J = Jc. This leads to the change of the exponent of the density
spectral function with respect to ω.

V. LANDAU INSTABILITY IN FEYNMAN’S
SINGLE-MODE APPROXIMATION

Apart from mean-field theory, we reconsider the local
density spectral function in the uniform system. We employ
Feynman’s single-mode approximation [40]. We take h̄ = 1.

The dynamic structure factor in Feynman’s single-mode
approximation is given by

S(q,ω) = q2

2Eq
δ(ω − Eq). (66)

In fact, the relation between the energy of the elementary
excitation Eq and the static structure factor S(q) is given by
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Eq = q2/[2S(q)], and we have a relation∫ ∞

0
dω S(q,ω) = q2

2Eq
. (67)

Even in the current flowing state, the strength of the
dynamic structure factor is the same as that in the current
free state because of translational invariance. In the current
carrying state that flows along the x direction, we end with

In(ω) =
∫

dq
(2π )d

q2

2Eq
δ(ω − Eq − Jqx), (68)

where we used (13) and

S(q,ω) = q2

2Eq
δ(ω − Eq − Jqx). (69)

For low q = |q|, we suppose that

Eq � c1q + c3q
3 + O(q5) (70)

holds, where c1 and c3 are positive coefficients. The analysis
here focuses on the phonon regime, i.e., c1q � c3q

3. When
ω− � ω [where ω− =

√
(c1 − J )3/c3], we have

In(ω) � �d

2πc1

dc2
1 + J 2(

c2
1 − J 2

)(d+3)/2 ωd. (71)

On the other hand, when ω− � ω � ω+ (where ω+ =√
c3

1/c3), we obtain

In(ω) � �′
d

3πc1

ω(2d−3)/3

2(d+3)/2J (d−1)/2c
(d+3)/6
3

. (72)

Details are provided in Appendix D.
We finally discuss the local density spectral function for an

ideal Bose gas, with the energy spectrum

Ek = k2

2m
. (73)

Let |g; N〉 be the N -particle ground state of the ideal Bose gas,
where the N particles occupy the single-particle ground state
with k = 0, and let |l; N〉 be an excited state in the N -particle
system. The matrix element is given by 〈l; N |n̂(r = 0)|g; N〉 =√

N/�, only when the excited state l has momentum k;
otherwise, it becomes zero. Here, � is the system volume.
This is because we have

〈l; N |n̂(r = 0)|g; N〉 = 〈l; N | 1

�

∑
k,k′

â
†
kâk′ |g; N〉 (74)

=
√

N

�

∑
k

〈l; N |â†
k|g; N − 1〉, (75)

where âk is the annihilation operator of bosons and we
used âk′ |g; N〉 = δk′,0

√
N |g; N − 1〉. As a result, the density

spectral function of the ideal Bose gas is proportional to the
density of states D(ω); that is,

In(ω) = N

�2
D(ω), D(ω) =

∑
k

δ(ω − Ek). (76)

We thus end with

In(ω) = N

�

Cdm
d

2(d+2)/2πd
ω(d−2)/2 (77)

in the d-dimensional system, where

(C1,C2,C3) = (2,2π,4π ). (78)

VI. STABILITY CRITERION HYPOTHESIS

We discuss the stability criterion hypothesis for superfluid-
ity in light of the density spectral function In [26,27], which
is applicable to both the Landau instability and the instability
of saddle-node bifurcation.

We examined uniform systems in Secs. IV and V. The
critical current Jc is equal to Landau’s critical current. For
the stable superfluid (J < Jc) in the system dimensionality d,
In ∝ ωd holds. On the other hand, at J = Jc, In ∝ ω(2d−3)/3

holds, in which the exponent is less than the system dimen-
sionality d. In the attractive external potential case discussed
in Sec. III, the critical current is also equal to Landau’s critical
current. The low-ω behavior of In is the same as the results in
this uniform system, although In involves an x dependence.

We also examined the local density spectral function in the
presence of a repulsive potential wall in Sec. III. For a stable
superfluid, the exponent of this function with respect to ω in the
low-energy regime is equal to the system dimensionality d. On
the other hand, for the critical current state, In ∝ ωd−2 holds,
in which the exponent is less than the system dimensionality
d. Even if we calculate the density spectral function using
an orthogonal basis instead of the tunneling solutions, these
exponents will be unchanged as discussed in Sec. III.

In all cases discussed above, the exponent is equal to the
system dimensionality for the stable superfluid state. For the
critical current state, however, the exponent is less than
the dimensionality, and this leads to the enhancement of
the local density fluctuations in the low-energy regime. For
the Landau instability, this enhancement originates from
an anomaly in the energy spectrum, which leads to the
enhancement of the density of states. For the soliton emission
instability, the enhancement originates from an anomaly in
the matrix element of the density fluctuations. All the results
support the criterion [26,27]

lim
ω→0

In(r,ω) ∝
{

ωβ (J = Jc)

ωd (J < Jc)
(79)

with β < d. The local density spectral function In(r,ω) thus
measures the vulnerability of superfluids.

We briefly discuss an ideal Bose gas. The ideal Bose gas
is not a stable superfluid according to Landau’s criterion. As
examined in Sec. V, the density spectral function of an ideal
Bose gas is proportional to ω(d−2)/2. The exponent is less than
the dimensionality d, so that the ideal Bose gas with J = 0
can be regarded as the critical current state according to our
criterion. This is consistent with the Landau criterion.

The local density spectral function In(r,t) is linked to
the autocorrelation function Cn(r,t) according to (10). An
exponent of ω in the local density spectral function changes
in the low-energy regime at J = Jc. An exponent of t in
the autocorrelation function also changes in the long-time
regime. From the viewpoint of dimensional analysis, the
autocorrelation function at large t is given by

lim
t→∞ Cn(r,t) ∝

{
1/tβ+1 (J = Jc)

1/td+1 (J < Jc).
(80)

To demonstrate this behavior explicitly, we evaluate the
autocorrelation function. We introduce the coarse-grained
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local density spectral function InCG (r,ω) to eliminate un-
wanted high-frequency behavior. This function InCG (r,ω)
and the coarse-grained autocorrelation function CnCG (r,t) are
respectively given by

InCG (r,ω) =
∑

l

|〈l|δn̂CG(r)|g〉|2δ(ω − ωl + ωg), (81)

CnCG (r,t) =
∫

dω InCG (r,ω) cos(ωt). (82)

Here, δn̂CG(r) is the coarse-grained local density fluctuation
operator

δn̂CG(r) =
∫

dr′fa(r − r′)δn̂(r′), (83)

where we take
∫

dr fa(r) = 1 and fa(r) � 0 for |r| � a. One
of the functions satisfying the above conditions is

fa(r) = 1

πd/2ad
exp (−|r|2/a2). (84)

The long-time behavior of the coarse-grained autocorrela-
tion function for the critical current state is different than those
for the other states at J < Jc (Fig. 11). The long-time behavior
at J (=Jc) is t−2 and that at J (<Jc) is t−4. This is consistent
with our criterion hypothesis (80). In Fig. 11, we used the
Gaussian-shaped potential barrier.

We briefly comment on a related issue. In Tomonaga-
Luttinger liquids, the autocorrelation function is given by [41]

Cn(r,t) ∼ A0

t2
+ A1

t2K
+ A2

t8K
+ · · · . (85)

A0,1,2 are coefficients, and K is the Tomonaga-Luttinger
parameter. In the superconducting phase (K > 1), Cn(r,t) ∝
1/t2 holds for t → ∞, and the exponent of t−1 is 2. On the
other hand, in the charge-density wave (CDW) phase (K < 1),
Cn(r,t) ∝ 1/t2K holds for t → ∞, and the exponent of t−1

is 2K(< 2). In a one-dimensional system, the conductance
in the superconducting phase is not infinity even when a
small but nonzero voltage is applied [41], so that this does
not completely correspond to the superfluidity discussed here.
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FIG. 11. The coarse-grained autocorrelation function CnCG (x,t)
at x = 0 in the three-dimensional system with Bogoliubov theory. We
employed the one-dimensional Gaussian potential barrier Vext(x) =
V0 exp(−x2) with V0 = 2. The critical current in this case is Jc =
0.057 40 . . . . We used (84) with a = 1. The vertical and horizontal
axes are scaled by n2

0 and h̄/(gn0), respectively. J, x, a, and V0 are
scaled by J0, ξ, ξ , and gn0, respectively.

However, when we read the superconducting phase as the
stable supercurrent state, and the CDW phase as the critical
current state, the classification between the superconducting
phase and the CDW phase is common to (80).

VII. CONCLUSIONS

A superflow through defects without dissipation is one
of the most interesting superfluidity phenomena. Landau’s
criterion for superfluidity is developed by considering the
elementary excitation energy on the basis of the Galilean
transformation. Another mechanism of dissipation is the
emissions of quantized vortices or solitons from an external
potential. Through numerical calculations, these instabilities
were categorized as a saddle-node bifurcation. Thus, we
aimed to understand the stability of superfluidity in both cases
in an equal manner.

In this paper, we studied the validity of the stability criterion
hypothesis [26,27]. This criterion states that the superfluid state
is stable if an exponent of the local density spectral function
In with respect to the energy (frequency) ω in the low-energy
regime is equal to the system dimensionality d (i.e., In ∝ ωd );
however if it is less than d (i.e., In ∝ ωβ with β < d), it is
in the critical current state. This criterion indicates that the
suppression of density fluctuations in the low-energy regime
is a feature of a stable superfluid.

Using Bogoliubov theory in the presence of a
one-dimensional repulsive or attractive external potential, we
evaluated the local density spectral function. Our numerical
calculation using solutions of the tunneling problem and the
orthogonal set supports the validity of the stability criterion hy-
pothesis. Beyond Bogoliubov theory, we discussed the validity
of this hypothesis in Feynman’s single-mode approximation.

We can translate this criterion into autocorrelation function
language. The criterion states that if the t dependence of this
function in the long-time regime is equal to 1/td+1, then the
superfluid state is stable. If it shows 1/tβ+1 with β < d, it
is in the critical current state. Evaluating the autocorrelation
function in Bogoliubov theory, we numerically demonstrated
this behavior in the presence of a one-dimensional repulsive
potential wall.

We summarize interesting subjects for future studies. We
have restricted ourselves to consider the system where the
translational invariance holds in the y and z directions and
these sizes are infinite. For the superfluid flowing in a capillary
(or a channel), excitations at the surface are important for
instabilities [42,43]. Although numerical results for d > 1
demonstrated in this paper would not simply apply to such
a realistic system, the enhancement of density fluctuations
may appear at surface. We need to study the local density
spectral function in the system with the transverse confinement
(e.g., the system in Ref. [8]).

Other prospective studies include confirming the criterion
hypothesis for the vortex emission instability and applying
the criterion to supersolidity in which translation invariance
is broken. One may also ask whether the transport coef-
ficients as well as other spectral and correlation functions
(e.g., the current-current correlation function) show anomalous
behavior in the critical current state. It would also be of interest
to discuss the relation between the present criterion and the
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drag force [44], and to study autocorrelation functions in a
strongly interacting Bose system beyond Bogoliubov theory
in the presence of the potential barrier.
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APPENDIX A: PROCEDURE TO OBTAIN
TUNNELING SOLUTIONS

We summarize the procedure for how to obtain the tunnel-
ing solutions of the Bogoliubov excitation. The tunneling of
excitations in Bose-Einstein condensates through a potential
barrier is referred to as the anomalous tunneling. These have
been intensively and extensively studied for scalar Bose-
Einstein condensates [29,30,33,45–53], and for Bose-Einstein
condensates with internal degrees of freedom [54–58].

We here consider the superfluid flowing through a one-
dimensional potential barrier Vext(x) with the current density
J . The superflow is along the x axis. The translational
invariance holds in the y and z directions, and the potential
barrier Vext(x) is assumed to be localized around x = 0.

In the tunneling problem, at the position far from the po-
tential barrier, the wave function consists of the superposition
of solutions in the homogeneous case. We first fix the incident
energy E as well as the incident angle θ . This θ is an angle
between the incident wave vector kin = (kin

x ,ky,kz) and the
direction of the supercurrent density. After fixing E and θ , we
determine the modulus of the incident wave vector kin = |kin|
from a dispersion relation of the Bogoliubov excitation

E = kinJ cos θ +
√

(kin)2

2

[
(kin)2

2
+ 2

]
. (A1)

Here, the modulus kin is a positive and real solution of this
equation. After the determination of kin, we fix (kin

x ,k⊥) =
kin(cos θ, sin θ ), where k⊥ ≡

√
k2
y + k2

z .

Once E and k⊥ are fixed, we can determine k(1),(2),±
x

by solving (35). k(1)
x is a real solution satisfying k(1)

x = kin
x , and

k(2)
x is the other real solution. The k±

x satisfy sgn[Im(k±
x )] =

±1. We obtain a tunneling solution by solving the Bogoliubov
equation (20) with the boundary conditions (30) and (31). A
practical approach to solving the Bogoliubov equation (20) is
to employ the finite element method [53]. Indeed, we used this
method to obtain the result of the autocorrelation function in
Fig. 11, where a one-dimensional Gaussian-shaped potential
barrier is employed. We have numerically calculated the
local density spectral function in a one-dimensional Gaussian-
shaped potential barrier case. The main results are the same as
the δ-function potential case as shown in this paper.

The one-dimensional δ-function potential barrier case
[i.e., Vext(x) = V0δ(x)] is the simplest case to determine the

tunneling solution. We can use an analytic solution (47). The
wave function involving the incident and reflection waves is
given by

u∓(x) = U∓
(
x,k(1)

x

) + rU∓
(
x,k(2)

x

) + aU∓(x,k∓
x ). (A2)

The wave function involving the transmission wave is
given by

u±(x) = tU±
(
x,k(1)

x

) + bU±(x,k±
x ). (A3)

Here, r(t) is the amplitude reflection (transmission) coefficient,
and u+ (u−) is a solution at x � 0 (x < 0). The solution
with the upper (lower) index is for the case at 0 � θ < π/2
(π/2 < θ � π ). We determine the coefficients (r,t,a,b) from
the boundary conditions (50).

We briefly note that when the real solutions k(1)
x and k(2)

x

have the same sign, no reflection wave (i.e., double refraction)
occurs. This condition can be reduced to

E <

√
k2
⊥
2

(
k2
⊥
2

+ 2

)
, (A4)

because one of the relations between the solutions and
coefficients with respect to (35) is given by k(1)

x k(2)
x |k+

x |2 =
k4
⊥ + 4k2

⊥ − 4E2, where we used (k+
x )∗ = k−

x . The region of θ

satisfying (A4) is very narrow, and exists around θ = π/2. In
this case, we change the boundary conditions from (30) and
(31) to(

u

v

)
= ũ∓

(
x,k(1)

x

) + aũ∓(x,k∓
x ) (x → ∓∞), (A5)

(
u

v

)
= t ũ±

(
x,k(1)

x

) + rũ±
(
x,k(2)

x

)
+ bũ±(x,k±

x ) (x → ±∞). (A6)

In the δ-function potential case, at 0 � θ < π/2, we set

u−(x) = U−
(
x,k(1)

x

) + aU−(x,k−
x ),

(A7)
u+(x) = tU+

(
x,k(1)

x

) + rU+
(
x,k(2)

x

) + bU+(x,k+
x ).

At π/2 < θ � π , we exchange the index ± in u, U, and kx

for ∓.

APPENDIX B: WAVE FUNCTIONS OF CRITICAL
CURRENT STATE IN THE PRESENCE

OF AN IMPURITY POTENTIAL

Here we derive the low-energy behavior of the function
G(x) in the critical current state. At the end of this appendix
we obtain

lim
E→0

G(x) = −2
√

2i√
k

C
(0)
III Aϕ(x). (B1)

The technique for its derivation is based on [29,30].
For the representation (S,G), the equations in the presence

of the one-dimensional potential barrier are given by

Ĥ⊥S(x) − iJ

A(x)

d

dx

[
G(x)

A(x)

]
= EG(x), (B2)

[Ĥ⊥ + 2A2(x)]G(x) − iJ

A(x)

d

dx

[
S(x)

A(x)

]
= ES(x), (B3)

063612-12



STABILITY CRITERION FOR SUPERFLUIDITY BASED . . . PHYSICAL REVIEW A 88, 063612 (2013)

where Ĥ⊥ = Ĥ + k2
⊥/2. Here, we used the translational

invariance in the y and z directions, that is,(
S(r)

G(r)

)
=

(
S(x)

G(x)

)
ei(kyy+kzz). (B4)

We are considering the supercurrent through a repulsive
potential barrier, which corresponds to the condition Jc < 1.
In this case, the modulus of the incident momentum in the
low-energy regime is linear in E, so that we have kin = O(E)
as well as k⊥ = O(E). When we expand S(x) and G(x) with
respect to the energy E,

S(x) =
∞∑

n=0

EnS(n)(x), G(x) =
∞∑

n=0

EnG(n)(x), (B5)

we obtain equations for n = 0:

ĤS(0)(x) − iJ

A(x)

d

dx

[
G(0)(x)

A(x)

]
= 0, (B6)

[Ĥ + 2A2(x)]G(0)(x) − iJ

A(x)

d

dx

[
S(0)(x)

A(x)

]
= 0, (B7)

and those for n = 1:

ĤS(1)(x) − iJ

A(x)

d

dx

[
G(1)(x)

A(x)

]
= G(0)(x), (B8)

[Ĥ + 2A2(x)]G(1)(x) − iJ

A(x)

d

dx

[
S(1)(x)

A(x)

]
= S(0)(x). (B9)

In this expansion (B5), we assumed that S and G start with
O(E0), and omitted the normalization factor.

We now consider the solutions (S(0),G(0)). It is given by(
S(0)(x)

G(0)(x)

)
=

∑
j=I,II,III,IV

Cj

(
Sj (x)

Gj (x)

)
, (B10)

where CI,II,III,IV are coefficients, and (Sj (x),Gj (x))
for j = I,II,III,IV are given by(

SI

GI

)
=

(
A

0

)
,

(
SII

GII

)
=

(
P̂A(1) − 2iJ P̂A (GII/A)

−2iJ P̂B (A3)

)
,

(B11)

(
SIII

GIII

)
=

(−2iqAA3

B

)
,

(
SIV

GIV

)
=

(−2iJ P̂A (GIV/A)

P̂B (1)

)
.

(B12)

Here, A(x) is the amplitude of the condensate wave function
determined by (24), and B(x) is an even parity solution of[

Ĥ + 2A2(x) − 2
J 2

A4(x)

]
B(x) = 0. (B13)

We introduced

A3(x) ≡
∫ x

0
dx ′ B(x ′)

A3(x ′)
(B14)

and

P̂X(Y ) ≡ X(x)
∫ x

0
dx ′ Y (x ′)

X2(x ′)
. (B15)

Indeed, S(0)(x) and G(0)(x) are obtained as follows. The
solution S(0)(x) is given by

S(0)(x) = CIS1(x) + CIIS2(x) + fS(x). (B16)

Here, S1 and S2 are the general solutions of ĤS(0)(x) = 0,
given by

S1(x) = A(x), S2(x) = A(x)
∫ x

0

dx ′

A2(x ′)
. (B17)

A particular solution fS is

fS(x) = −2iJA(x)
∫ x

0
dx ′ G

(0)(x ′)
A3(x ′)

, (B18)

where we used

fS = −2

(
−S1

∫
dx ′ FSS2

S

+ S2

∫
dx ′ FSS1

S

)
(B19)

with

FS = iJ

A(x)

d

dx

[
G(0)(x)

A(x)

]
(B20)

and the Wronskian S = S1(dS2/dx) − (dS1/dx)S2 = 1.
Substituting this result into (B7), we obtain

[
Ĥ + 2A2(x) − 2

J 2

A4(x)

]
G(0) = CII

iJ

A3(x)
≡ FG(x). (B21)

The solution G(0)(x) is given by

G(0)(x) = CIIGII(x) + CIIIG1(x) + CIVG2(x). (B22)

Here, G1 and G2 are the general solutions of (B21), given by

G1(x) = B(x), G2(x) = B(x)
∫ x

0

dx ′

B2(x ′)
. (B23)

A particular solution fG is

fG(x) = −2iqCIIB(x)
∫ x

0
dx ′ A3(x ′)

B2(x ′)
, (B24)

where we used

fG = −2

(
−G1

∫
dx ′ FGG2

G

+ G2

∫
dx ′ FGG1

G

)
(B25)
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and the Wronskian G = 1. For GII, we defined GII ≡
fG/CII. Substituting this solution G(0)(x) into (B16), we
obtain (B10).

At J = Jc, we find

B(x) = ∂A(x)

∂ϕ
≡ Aϕ(x). (B26)

In fact, (B13) has the same form as[
Ĥ + 2A2(x) − 2J 2

c

A4(x)

]
∂A(x)

∂ϕ
= Jc

dJ

dϕ

[
A(x) − 1

A3(x)

]
= 0. (B27)

This equation is obtained from (24), where we took the
derivative with respect to ϕ. We also used the relation ∂J/

∂ϕ = 0 which is correct only at J = Jc. Since(
−1

2

d2

dx2
+ 2 − 2J 2

)
B(x) = 0, (B28)

at |x| � 1, B(x) is given by

B(x) = βe−κ|x|, (B29)

at |x| � 1 with β being a constant and κ = 2
√

1 − J 2.
Note that (SI,III,GI,III) converge, but (SII,IV,GII,IV) exponen-

tially diverge at |x| → ∞. Indeed, we obtain

(SII,GII) �
(

−2
J 2α3

βκ2
eκ|x|sgn(x), − iJα3

βκ
eκ|x|

)
, (B30)

(SIV,GIV) �
(

− iJ

κ2β
eκ|x|,

eκ|x|

2κβ
sgn(x)

)
, (B31)

where

α1 ≡ A1(∞), α3 ≡ A3(∞), η ≡ α1/α3, (B32)

with

A1(x) =
∫ x

0
dx ′A(x ′)B(x ′). (B33)

At |x| � 1, we have Aj = sgn(x)[αj − (β/κ)e−κ|x|] for j = 1
and 3.

However, as shown below, the particular solutions for
n = 1, generally given by

S(1)
p (x) = −2P̂A

(∫ x

0
dx ′A(x ′)G(0)(x ′)

)
− 2iJ P̂A

(
G(1)

p

/
A

)
,

(B34)

G(1)
p (x) = −2P̂B

(∫ x

0
dx ′B(x ′)

×
[
S(0)(x ′) − 2iq

A3(x ′)

∫ x ′

0
dx ′′A(x ′′)G(0)(x ′′)

])
,

(B35)

cancel out the divergences in (SII,IV,GII,IV).
We first consider a set of particular solutions (G(1)

p,I,S
(1)
p,I )

where (S(0),G(0)) is given by (SI,GI). At |x| � 1, we have

(
S

(1)
p,I ,G

(1)
p,I

) �
(

−2iJα1

κ2β
sgn(x)eκ|x|,− α1

κβ
eκ|x|

)
, (B36)

where we used

G
(1)
p,I(x) = −2B(x)

∫ x

0
dx ′ A1(x ′)

B2(x ′)
, (B37)

S
(1)
p,I (x) = −2iJA(x)

∫ x

0
dx ′ G

(1)
p (x ′)

A3(x ′)
. (B38)

In the case where (S(0),G(0)) is given by (SIII,GIII), a set of
particular solutions (G(1)

p,III,S
(1)
p,III) at |x| � 1 is given by

(
S

(1)
p,III,G

(1)
p,III

) �
(

4J 2α1α3

βκ2
eκ|x|,

2iJα1α3

βκ
eκ|x|sgn(x)

)
,

(B39)

where we used

G
(1)
p,III(x) = 4iJ P̂B (A1A3), (B40)

S
(1)
p,III(x) = −2P̂A(A1) − 2iJ P̂A

(
G

(1)
p,III

/
A

)
. (B41)

As a result, from the combination of (SII,IV,GII,IV) and
(S(1)

p,I,III,G
(1)
p,I,III), we can construct solutions without exponen-

tial divergences, given by(
S

(1)
I (x)

G
(1)
I (x)

)
=

(
S

(1)
p,I (x)

G
(1)
p,I(x)

)
− η

iJ

(
SII(x)

GII(x)

)
, (B42)

(
S

(1)
III (x)

G
(1)
III (x)

)
=

(
S

(1)
p,III(x)

G
(1)
p,III(x)

)
− 4iJα1α3

(
SIV(x)

GIV(x)

)
. (B43)

Indeed, (S(1)
I,III,G

(1)
I,III) at |x| � 1 are given by

S
(1)
I � − η

iJ
[x + γ sgn(x)] − iJ (1 − η)

1 − J 2
[x + ν sgn(x)],

G
(1)
I � 1 − η

2(1 − J 2)
, G

(1)
III � −α3

iJ (1 + η)

1 − J 2
sgn(x),

S
(1)
III � α3

[
−2η(|x| + λ) − 2

J 2(1 + η)

1 − J 2
(|x| + ν)

]
.

Here, λ is a constant, and γ and ν are respectively given by γ ≡
A(x)

∫ ∞
0 dx ′[A−2(x ′) − 1] and ν ≡ ∫ ∞

0 dx ′[A−3(x ′) − 1].
As a result, the solutions with the first order of E without

exponential divergences are given by(
S total

I,III

Gtotal
I,III

)
=

(
S

(0)
I,III

G
(0)
I,III

)
+ E

(
S

(1)
I,III

G
(1)
I,III

)
+ O(E2). (B44)

In particular, S total
I,III behave as

S total
I = 1 + E

[
J 2 − η

iJ (1 − J 2)
x + γ̃ sgn(x)

]
, (B45)

S total
III

−2iJα3
= sgn(x) + J 2 + η

iJ (1 − J 2)
E|x| + λ̃E (B46)

with

γ̃ = − 1

iJ

[
ηγ − J 2(1 − η)

1 − J 2
ν

]
, (B47)

λ̃ = 1

iJ

[
ηλ + J 2(1 + η)

1 − J 2
κ

]
. (B48)
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We replace CIII by CIII/(−2iJα3). In fact, CIII is just a
coefficient to be determined later. In this case, we end with(

S(x)

G(x)

)
= CI

(
S total

I (x)

Gtotal
I (x)

)
− CIII

2iJα3

(
S total

III (x)

Gtotal
III (x)

)
. (B49)

A3 at Jc and the phase difference ϕ are given by

A3(x) =
∫ x

0
dx ′ Aϕ(x ′)

A3(x ′)
= −1

2

∂

∂ϕ

∫ x

0
dx ′

[
1

A2(x ′)
− 1

]
,

(B50)

ϕ = J

2

∫ ∞

0
dx ′

[
1

A2(x ′)
− 1

]
. (B51)

We then obtain

α3 = A3(∞) = −1

2

∂

∂ϕ

(
ϕ

2J

)
= − 1

4J
. (B52)

As a result, the factor −2iJα3 can be reduced into −2iJα3 =
i/2. η = O(J ) also holds.

At |x| � 1, the low-energy behavior of S is

S = C
(0)
I + C

(0)
III sgn(x)

+E
[
C

(1)
I + C

(0)
I γ̃ sgn(x) + C

(1)
III sgn(x) + λ̃C

(0)
III

]
+Ex

[
C

(0)
I

J 2 − η

iJ (1 − J 2)
+ C

(0)
III

J 2 + η

iJ (1 − J 2)
sgn(x)

]
.

(B53)

We here expanded CI,III by energy E, i.e., CI,III = C
(0)
I,III +

EC
(1)
I,III + O(E2). This form will be used to determine the

coefficients in the tunneling problem, which will be examined
in Appendix C.

So far, we have assumed that the wave function in the
low-energy regime starts with O(E0). However, S and G in
the uniform system are given by(

S(x)

G(x)

)
=

(
αkx

βkx

)
eikxx,

(B54)(
αkx

βkx

)
= 1√

Re[M]

(
1

M

)
,

where the normalization coefficient M is

M = k2
x + k2

⊥
2(E − Jkx)

, (B55)

so that (B54) satisfies (SG∗ + S∗G)/2 = 1. In the low-

momentum regime, S � √
2/k holds where k =

√
k2
x + k2

⊥.

Although G ∝ √
k/2 holds, this is true only for the uniform

system. According to (B49), G(x) in the critical current state
starts with the same order as S(x) with respect to E. As
a result, when we calculate physical quantities, such as the
density spectral function, we should multiply (B49) by the
factor

√
2/k. At the critical current, limE→0 Gtotal

I (x) = 0 and
limE→0 Gtotal

III (x) = B(x) = Aϕ(x) hold. We then end with

lim
E→0

G(x) =
√

2

k

C
(0)
III

−2iJα3
Aϕ(x). (B56)

This leads to (B1).

APPENDIX C: LOCAL DENSITY SPECTRAL
FUNCTION IN THE CRITICAL CURRENT STATE

FOR SOLITON INSTABILITY

We evaluate the local density spectral function in the
critical current state in the presence of a repulsive potential
barrier at the low-energy limit. The goal in this appendix is to
derive (37).

We start with the case of a system dimensionality d = 1.
When the incident excitation is the right (left)-moving one, we
find

k(1)
x = ± E

1 ± J
, k(2)

x = ∓ E

1 ∓ J
. (C1)

The boundary condition at |x| � 1 with incident and reflection
waves and that with a transmission wave can be reduced to

S(x) = exp
[
ik(1)

x x
] + r exp

[
ik(2)

x x
]

� 1 + r (0) + Er (1) + Ex

[
i

±1 + J
+ ir (0)

∓1 + J

]
, (C2)

S(x) = t exp
[
ik(1)

x x
] � t (0) + Et (1) + Ex

it (0)

±1 + J
. (C3)

Here, we expanded coefficients as t � t (0) + Et (1) + O(E2)
and r � r (0) + Er (1) + O(E2). Comparing coefficients in
(B53) with those in the above equations, we end with

(
t (0)

r (0)

)
=

( ∓2Jη

η2+J 2

J 2−η2

η2+J 2

)
,

(
C

(0)
I

C
(0)
III

)
=

(
J (J±η)
J 2+η2

∓ J (J∓η)
J 2+η2

)
.

The coefficients in the case of the right-moving incident
excitation C

(0)
III,R and the left-moving incident excitation C

(0)
III,L

can be summarized as

C
(0)
III,R = −J (J − η)

J 2 + η2
, C

(0)
III,L = J (J + η)

J 2 + η2
. (C4)

As a result, the local density spectral function in the one-
dimensional system is given by

In(ω) = n0(x)

2π

∫ 0

−∞
dkx

∣∣∣∣∣
√

2

|kx |
C

(0)
III,L

−2iJα3
Aϕ(x)

∣∣∣∣∣
2

× δ(ω − |kx | − Jkx) (C5)

+ n0(x)

2π

∫ ∞

0
dkx

∣∣∣∣∣
√

2

|kx |
C

(0)
III,R

−2iJα3
Aϕ(x)

∣∣∣∣∣
2

× δ(ω − |kx | − Jkx)

= 2J 2

π (J 2 + η2)

1

ω
[∂ϕn0(x)]2. (C6)

This is just (37) for a dimensionality d = 1.
Next, we consider the two- and three-dimensional systems.

In the low-energy regime, the energy spectrum is given by

E � Jkin cos θ + kin. (C7)

As a result, we obtain

kin = E

1 + J cos θ
, kin

x = E cos θ

1 + J cos θ
, (C8)
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and k⊥ = kin sin θ. In the low-energy regime, we also have

E = Jkx +
√

k2
x + k2

⊥. (C9)

Solving this equation with respect to kx , we obtain kx �
±E cos θ . Here, we assumed that the potential barrier is
strong, which leads to J = Jc � 1. We also considered the
low-energy regime, so that we can take JE � 1.

The incident and reflection momenta k(1)
x and k(2)

x are now
given by

k(1)
x = +E cos θ, k(2)

x = −E cos θ. (C10)

In the low-energy regime, the boundary condition at |x| � 1
with incident and reflection waves and that with a transmission
wave can be reduced to

S(x) � 1 + r (0) + Er (1) + Exi[1 − r (0)] cos θ, (C11)

S(x) � t (0) + Et (1) + Exit (0) cos θ. (C12)

Comparing coefficients in (B53) with those in the above
equations, we find(

t (0)

r (0)

)
=

( 2ηJ cos θ

J 2 cos2 θ+η2

J 2 cos2 θ−η2

J 2 cos2 θ+η2

)
, (C13)

(
C

(0)
I

C
(0)
III

)
=

(
J cos θ(η+J cos θ)

J 2 cos2 θ+η2

± J cos θ(η−J cos θ)
J 2 cos2 θ+η2

)
, (C14)

where the upper sign is for 0 � θ < π/2 and the lower sign is
for π/2 < θ � π .

In the two- and three-dimensional systems for a low-energy
regime, In(x,ω) can be reduced to

In(x,ω) � 2[∂ϕn0(x)]2W (ω), (C15)

where

W (ω) =
∫

dk
(2π )d

1

k

∣∣C(0)
III

∣∣2
δ(ω − k − kJ cos θ ). (C16)

In the two-dimensional system, we have

W (ω) � 2
∫ ∞

0

dk

(2π )2
k

∫ π

0
dθ

1

k

∣∣C(0)
III

∣∣2

× 1

1 + J cos θin
δ

(
k − ω

1 + J cos θin

)
(C17)

� 1

2π

(
1 − η√

J 2 + η2

)
. (C18)

In the three-dimensional system, we have

W (ω) � 2π

∫ ∞

0

dk

(2π )3
k2

∫ π

0
dθ sin θ

1

k

∣∣C(0)
III

∣∣2

× 1

1 + J cos θ
δ

(
k − ω

1 + J cos θ

)
(C19)

� ω

2π2

[
1 − η

J
tan−1

(
J

η

)]
. (C20)

In conjunction with (C15), we obtain (37) for the dimension-
alities d = 2 and 3.

APPENDIX D: SPECTRAL FUNCTIONS IN FEYNMAN’S
SINGLE-MODE APPROXIMATION

We evaluate the local density spectral function in a d-
dimensional system within Feynman’s single-mode approx-
imation

In(ω) =
∫

dq
(2π )d

q2

2Eq
δ(ω − Eq − Jqx). (D1)

At the end of this appendix, we will discuss the local density
spectral function within Bogoliubov theory in a uniform
system for dimensionality d.

We first evaluate the one-dimensional system, where the
spectral function is given by

In(ω) = 1

2π

∫ ∞

−∞
dqx

q2
x

2Eqx

δ
(
ω − Eqx

− Jqx

)
. (D2)

Let k±(ω) be solutions of

ω = Eq ± Jq = f±(q). (D3)

In this case, we obtain

In(ω) = 1

2π

∫ ∞

−∞
dqx

∑
j=±

q2
x

2Eqx

δ(qx − jkj )

∣∣∣∣∂fj

∂q

∣∣∣∣
−1

q=kj

= 1

4π

∑
j=±

k2
j (ω)

Ekj (ω)

dkj (ω)

dω
, (D4)

where we used

∣∣∣∣∂fj

∂q

∣∣∣∣
−1

q=kj (ω)

= dkj (ω)

dω
. (D5)

We suppose that the energy spectrum Eq is given by (70)
for low q = |q|, and the low-energy excitation is a phonon,
i.e., c1q � c3q

3. In this case, we obtain

Eq = c1q, k+(ω) � ω

c1 + J
. (D6)

We thus end up with

In(ω) = 1

8πc1

∑
j=±

dk2
j (ω)

dω
. (D7)

When q− � q with q− = √
(c1 − J )/c3, we obtain

k−(ω) � (ω/c3)1/3 . (D8)

The condition q− � q can be reduced to ω− � ω with ω− =√
(c1 − J )3/c3. On the other hand, when q− � q, we obtain

k−(ω) � ω/(c1 − J ). (D9)

The condition q− � q can be reduced to ω− � ω.
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As a result, when ω− � ω, we obtain

I(ω) = 1

8πc1

d

dω

[(
ω

c1 − J

)2

+
(

ω

c1 + J

)2]
(D10)

= ω

2πc1

(
c2

1 + J 2
)

(
c2

1 − J 2
)2 . (D11)

On the other hand, when ω− � ω � ω+ with ω+ =
√

c3
1/c3,

we obtain

I(ω) = 1

8πc1

d

dω

[(
ω

c3

)2/3

+
(

ω

c1 + J

)2]
(D12)

� 1

12πc1

ω−1/3

c
2/3
3

. (D13)

We evaluate the spectral function in the two-dimensional
system where

In(ω) = 1

(2π )2

∫
dq q

∫ 2π

0
dθ

q2

2Eq

δ(ω − Eq − Jq cos θ ).

The condition where the equation in the δ-function is zero is
given by |(ω − Eq)/(Jq)| � 1. This condition can be reduced
to k+(ω) � q � k−(ω). Then, we obtain

In(ω) = 2

(2π )2

∫ k−(ω)

k+(ω)
dq q

∫ π

0
dθ

q2

2Eq

δ(θ − θ0)

|Jq sin θ | , (D14)

where θ0 satisfies cos θ0 = (ω − Eq)/(Jq). As a result, we
obtain

In(ω) = 1

4π2c1

∫ k−

k+
dq

q2

√
(f+ − ω)(ω − f−)

, (D15)

where we used Jq sin θ0 = √
(f+ − ω)(ω − f−).

When ω � ω−, k± � ω/(c1 ± J ) holds. As a result, we
obtain

In(ω) = ω2

4π2c1

∫ 1/(c1−J )

1/(c1+J )

x2dx√
[(c1 + J )x − 1][1 − (c1 − J )x]

= ω2

8πc1

2c2
1 + J 2(

c2
1 − J 2

)5/2
. (D16)

When ω− � ω � ω+, the main contribution to the integral
comes from q � k−(ω). In this case, we obtain ω � Ek− −
Jk−, and

f+ − ω � 2Jk−, ω − f− � ∂f−
∂q

∣∣∣∣
k−

(k− − q). (D17)

Introducing a proper cutoff � = O(ω), and using

∂f−
∂q

∣∣∣∣
k−

= ∂ω

∂k−
, (D18)

we obtain

In(ω) � 1

4π2c1

∫ k−

�

q2dq
√

2Jk−
√

∂f−
∂q

∣∣
k−

(k− − q)
(D19)

� 1

4π2c1

√
2J

∫ k−

�

dq k
3/2
−

√
dk−
∂ω

1√
k− − q

(D20)

= 1

4π2c1

√
2J

k
3/2
−

√
dk−
dω

2
√

k− − � (D21)

� 1

4π2c1

√
2

J

√
dk−
dω

k2
−. (D22)

Since k− � (ω/c3)1/3, we end up with

In(ω) � 1

4π2c1

√
2

3J

ω1/3

c
5/6
3

. (D23)

We evaluate the spectral function in the three-dimensional
system, which is given by

In(ω) = 2π

(2π )3

∫
dq q2

×
∫ 1

−1
d(cos θ )

q2

2Eq

δ(ω − Eq − Jq cos θ )

= 1

(2π )2

∫ k−

k+
dq

q2

2c1J
(D24)

= 1

24π2Jc1
(k3

− − k3
+). (D25)

When ω � ω−, we find

In(ω) = 1

24π2vc1

[
ω3

(c1 − J )3
− ω3

(c1 + J )3

]
(D26)

= ω3

12π2c1

3c2
1 + J 2(

c2
1 − J 2

)3 . (D27)

When ω− � ω � ω+, we find

In(ω) � 1

24π2Jc1

ω

c3
. (D28)

We close this appendix with a summary of the low-energy
behavior of the density spectral function within Bogoliubov
theory in a uniform system. The concepts are totally different
between the Feynman’s single-mode approximation and the
Bogoliubov approximation. However, if we set c1 = 1 and
c3 = 1/8, the approximations are mathematically equivalent
in the low-energy regime. In fact, we have |G|2 = k/2 and√

(k2/2)(k2/2 + 2) � k + k3/8 in a low-energy regime. When
the system is stable, J < Jc(=1), we can take the low energy
such that ω � ω− =

√
8(1 − J )3. In this case, according to

(D11), (D16), and (D27), we end up with (62). At the critical
current J = Jc(= 1), we obtain ω− = 0, so that we consider
the case ω− � ω. According to (D13), (D23), and (D28), we
end up with (64).
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