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Precision measurements of temperature and chemical potential of quantum gases
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We investigate the sensitivity with which the temperature and the chemical potential characterizing quantum
gases can be measured. We calculate the corresponding quantum Fisher information matrices for both fermionic
and bosonic gases. For the latter, particular attention is devoted to the situation close to the Bose-Einstein
condensation transition, which we examine not only for the standard scenario in three dimensions, but also
for generalized condensation in lower dimensions, where the bosons condense in a subspace of Hilbert space
instead of a unique ground state, as well as condensation at fixed volume or fixed pressure. We show that
Bose-Einstein condensation can lead to sub-shot-noise sensitivity for the measurement of the chemical potential.
We also examine the influence of interactions on the sensitivity in three different models and show that mean-
field and contact interactions deteriorate the sensitivity but only slightly for experimentally accessible weak
interactions.
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I. INTRODUCTION

The use of gases for measurements of temperature and
pressure has a long history, going back at least as far as
Galileo Galilei in the 16th century, who built a thermoscope
based on a glass pipe filled with air and sealed with a water
surface. Variations in temperature show up as variations of
the level of the water: Depending on the contraction of the
air, water gets sucked up to different levels [1]. Still today,
gas thermometry plays an important role for the calibration
of other thermometers, even though a lot of effort has to
be spent to compensate for many effects of real working
substances [2]. A high-precision solid-state thermometer for
temperatures spanning four orders of magnitude based on the
noise properties of an electron gas was developed by Spietz
et al. [3]. Shot-noise thermometry of an electron gas was also
applied recently to quantum Hall edge states [4].

The chemical potential is, besides temperature, the only
other independent parameter that characterizes ideal quantum
gases, and one may legitimately ask how sensitively both
parameters can be measured, in principle. For charged gases,
such as the electron gas responsible for electrical conduc-
tance in a metal or semiconductor, the chemical potential is
directly linked to voltage. More precisely, without current
flow, the voltage drop between two parts of a sample is
given by the difference between the chemical potentials
divided by the electron charge, V = (μ2 − μ1)/e, such that
the precision of a measurement of the chemical potential
translates directly into the precision of voltage measurement
[5]. Voltage measurements, on the other hand, are at the
basis of a huge variety of modern sensors, such that knowing
the ultimate precision with which chemical potentials can
be measured is of fundamental importance. For instance,
voltage measurements can be employed in magnetometry
in the presence of Hall effects or magnetoresistances as an
alternative to other metrological schemes [6–13].

Establishing the ultimate bounds on sensitivity of mea-
surements is one of the major goals of parameter estimation

theory. This theoretical framework was developed in classical
statistical analysis [14] and later generalized to the quantum
world [15–17]. It leads to the (quantum) Cramér-Rao bound
that establishes that under suitable regularity conditions and
for unbiased estimators the best sensitivity with which a
parameter x can be measured is given by the inverse of the
(quantum) Fisher information. In classical statistical analysis,
the classical Fisher information characterizes the probability
distribution of the measurement results Ai of the measured
quantity A (which may be different from x) given the
parameter x. The corresponding bound is optimized over
all estimator functions. In the quantum world, all statistical
information is coded in the quantum state (density matrix) of
the system characterized by the parameter x, and the quantum
Cramér-Rao bound is obtained from the classical Cramér-Rao
bound by additionally optimizing over all possible positive
operator-valued measure (POVM) measurements. For unbi-
ased estimators the bound is tight. As a result, it represents the
best sensitivity with which a parameter can be measured, no
matter what the measurement strategy, data analysis, feedback
schemes, etc.

In the quantum physics community interest has recently
arisen in the question whether quantum mechanical effects
may be used for enabling or improving temperature measure-
ments [18–20]. In [18] it was shown that for any thermalizing
thermometer with extensive internal energy the sensitivity
scales as 1/

√
N , corresponding to a linear scaling of the

quantum Fisher information with N . This scaling is called
shot-noise limit or standard quantum limit (SQL). On the
other hand, it is well known for the measurement of other
quantities that, by using quantum effects, one can beat, in
principle, the SQL. Examples include the use of squeezed
states [21] (which allow one to change the prefactor of the
linear scaling of the quantum Fisher information with N , a
strategy implemented in Advanced-LIGO), or entangled states
[22–24], which can enable reaching the so-called Heisenberg
limit (HL) characterized by a Fisher information that scales as
N2. A popular entangled state is the NOON state [25]. It was
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shown in [18] that the principles of interferometric quantum-
enhanced metrology can be applied to the measurement of
temperature, allowing one, at least in principle, to achieve HL
scaling. In several other systems the sensitivity of quantum
mechanical interference to thermal noise was already used
for thermometry [26,27], but no attempts were made for
establishing the ultimate sensitivity of such an approach.

Few experiments using entangled states have surpassed the
SQL, and all experiments have been limited to small values of
N , due to the extreme sensitivity of such states to decoherence.
Indeed, it has become clear that the smallest amount of
Markovian decoherence leads back to the SQL [28–31],
limiting the method to short time analyses [32] or niche
applications [33–35]. On the other hand, while an entangled
state of distinguishable particles is needed for beating the
SQL in interferometric metrology, a HL-like scaling can be
reached by feeding interferometers with unentangled states of
identical particles that cannot be distinguished by any degree
of freedom [36–40]. Another strategy is the use of interactions
between the N particles [41–43]. With k-body interactions one
may even surpass the HL, but interactions between all particles
are required, which makes such models unphysical for large
particle numbers due to the resulting nonextensive character
of the total energy. In [44] a method of “coherent averaging”
was proposed for reaching the HL, in which the N constituents
interact with a common “quantum bus,” which is then read out.
The quantum bus can even be an environment of which one
has no full control, leading to the possibility of using collective
decoherence effects for precision measurements [45].

In the present paper, we discuss the scaling of the Fisher
matrix characterizing measurements of both temperature and
chemical potential of ideal quantum gases with the average
number of particles, as well as of three different models
of interacting particles, which will establish the ultimate
sensitivity with which these parameters can be measured. We
pay particular attention to the influence of the Bose-Einstein
condensation (BEC) phase transition in bosonic gases. Indeed,
it is well known that phase transitions can lead to enhanced
susceptibilities, as is witnessed by large fluctuations [46], and,
closely related, to large quantum Fisher information. Discon-
tinuities in the quantum Fisher information were proposed
before as a tool for detecting phase transitions in the absence of
knowledge of an order parameter [47]. We will see that indeed
the onset of BEC can improve the sensitivity of a measurement
of the chemical potential beyond the shot-noise limit. We
carefully analyze several scenarios of BEC: the standard case
of fixed density in the thermodynamic limit, the case of cooling
at fixed volume, the case of isobaric cooling, as well as
generalized BEC in lower dimensions, where condensation
occurs in a subspace of Hilbert space, instead of only in the
ground state. We also examine the influence of interactions on
the sensitivity in the framework of three different models and
show that interactions can be detrimental for the sensitivity
with which the chemical potential can be measured.

The paper is organized as follows. In Secs. II and III
preliminary discussions respectively on quantum metrology
and quantum gases are presented. Our results, based on
these preliminary notions, are reported in Sec. IV for gases
in the continuum approximation, in Sec. V for BEC, and
in Sec. VI for bosonic interacting gases. Conclusions are

discussed in Sec. VII, and some technical details are given
in the Appendices.

II. METROLOGY WITH QUANTUM GASES

We start by introducing the formalism of parameter estima-
tion in the context of quantum gases. Consider the Hamiltonian
H and the total number of particles is described by the operator

N =
∑

k

a
†
kak, (1)

where a
†
k and ak are the creation and annihilation operators of

the kth mode. In condensed-matter systems, the Hamiltonian
and the total number of particles commute with each other, and
the common eigenvectors are |N,EN 〉 with particle number
eigenvalues N and Hamiltonian eigenvalues EN . The grand-
canonical thermal state is

ρβ,μ = e−β(H−μN)

ZG

=
∑
N,EN

ρ
(N,EN )
β,μ |N,EN 〉〈N,EN |,

(2)

ρ
(N,EN )
β,μ = e−β(EN −μN)

ZG

,

where we have defined the grand-canonical partition function
ZG = ∑

N,EN
ρ

(N,EN )
β,μ .

In statistical mechanics, the inverse temperature β and
the chemical potential μ are the Lagrange multipliers of
the average energy and the average total number of particle,
respectively. These two latter quantities fix (β,μ). Therefore,
one way of estimating (β,μ) is through measuring the average
energy and the number of particles. We discuss how this is
related to the best sensitivity for the estimation of (β,μ).

Quantum estimation theory [16,17] provides a bound for the
covariance matrix of the parameter estimators. The ingredients
are the symmetric logarithmic derivatives with respect to the
parameters λ1 = β, λ2 = μ,

Lλj
=

∑
N,EN

∂λj
ρ

(N,EN )
β,μ

ρ
(N,EN )
β,μ

|N,EN 〉〈N,EN |

=
{

μN − H − 〈μN − H 〉 if j = 1,

β (N − 〈N〉) if j = 2,
(3)

and the quantum Fisher matrix has entries

Fλj ,λl
= 1

2
tr
(
ρ
{
Lλj

,Lλl

})

=
∑
N,EN

[
∂λj

ρ
(N,EN )
β,μ

][
∂λl

ρ
(N,EN )
β,μ

]
ρ

(N,EN )
β,μ

, (4)

where {,} denotes the anticommutator. The covariance matrix
of any estimator of λ is bounded by the quantum Cramér-Rao
bound, (

var(β) cov(β,μ)

cov(β,μ) var(μ)

)

� F−1 =
⎛
⎝ Fμ,μ

Fμ,μFβ,β−F 2
μ,β

Fμ,β

F 2
μ,β−Fμ,μFβ,β

Fμ,β

F 2
μ,β−Fμ,μFβ,β

Fβ,β

Fμ,μFβ,β−F 2
μ,β

⎞
⎠, (5)
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where var and cov are the variances and the covariance of
the estimation problem, and A � B means that A − B is a
semipositive definite matrix.

If one parameter, say β (μ), is known, the inverse of
the diagonal entry Fμ,μ (Fβ,β) is the best sensitivity for
the estimation of μ (β). A nondiagonal Fisher matrix, i.e.,
Fμ,β �= 0, means that estimations of β and μ are correlated.
Thus, the diagonal entries of the inverse Fisher matrix F−1

are the optimal sensitivities of each parameter in a joint
measurement, and the off-diagonal term is the corresponding
covariance.

Denoting with �2 and Cov, respectively, the variance and
the covariance in the grand-canonical state, the Fisher matrix
explicitly reads

Fμ,μ = β2�2N, (6)

Fβ,β = �2(μN − H ), (7)

Fμ,β = Fβ,μ = β Cov(N,μN − H ), (8)

The latter equations can be computed by the standard relations

�2N = 1

β2

∂2

∂μ2
ln ZG = 1

β

∂

∂μ
〈N〉, (9)

�2(μN − H ) = ∂2

∂β2
ln ZG = ∂

∂β
〈μN − H 〉, (10)

Cov(N,νN − H ) = ∂

∂β

1

β

∂

∂μ
ln ZG = ∂

∂β
〈N〉. (11)

The optimal measurement is a projective measurement onto the
eigenstates of its symmetric logarithmic derivatives [16,17].
For the grand-canonical thermal states considered here, the
symmetric logarithmic derivatives commute with each other.
Hence, the two parameters can be simultaneously mea-
sured, contrary to the general case of multivariate quantum
metrology. Our problem is a very special case of quantum
estimation, where only the eigenvalues of the state depend
on the parameters (β,μ), and the estimation problem be-
comes a classical problem in the representation of the Fock
basis (31).

For a temperature measurement which is known to be
difficult, different approaches have been proposed. One is
based on the measurement of a spin gradient between two
domains of a spin mixture separated by a magnetic field
gradient [48]. In [49], where a temperature of 500 pK was
reached, temperature was calibrated to the BEC transition
temperature by measuring trap frequency and average particle
number. Zhou and Ho proposed the use of local particle
number fluctuations which are related to temperature through a
generalized dissipation fluctuation theorem [50]. Temperature
measurements based on fluctuations of the total particle
number were realized in [51,52]. Our results show that the
measurement of the particle number fluctuations is optimal
for the estimation of chemical potential. Particle counting has
been implemented for fermionic [51,52] and bosonic [53–56]
gases, but, to our knowledge, measurement of the chemical
potential based on this technique has not been implemented
yet.

Some general remarks are in order. The variance of the
number of particles is directly connected to the thermodynamic

stability, through the isothermal compressibility κT [46],
which measures how the system responds to variations of the
pressure:

κT = − 1

V

(
∂V

∂P

)
T

= β�2N

	 〈N〉 . (12)

Hence, any superlinear scaling of the Fisher information
Fμ,μ implies thermodynamical instability via (6); i.e., the
compressibility grows with the number of particles, diverges
in the thermodynamic limit [46], and ceases to be an intensive
quantity. The thermodynamic instability of superlinear particle
number fluctuations in the grand-canonical state has been used
for claiming that the inappropriate application of the grand-
canonical ensemble may give rise to unphysical results [57].
However, the grand-canonical thermal is a physically meaning-
ful state for the following reasons: First, the grand-canonical
state naturally arises as the equilibrium state when particles
can be exchanged with the thermal bath [46,58]. Second, it has
been argued that the unique correct definition of the chemical
potential for finite systems is provided by the grand-canonical
state, even if there are other inequivalent definitions converging
to the same quantity in the thermodynamic limit [59]. Finally,
superlinear fluctuations can be stabilized and observed within
mesoscopic sizes [53–56]. For these reasons we base our
analysis on the grand-canonical ensemble.

A. Optimal measurements

We now derive the joint measurement of the chemical
potential and the inverse temperature that attains the quantum
Cramér-Rao bound (5). As we mentioned, the two symmetric
logarithmic derivatives commute with each other. This al-
lows the unusual situation where the two parameters (β,μ)
can be measured simultaneously. In this case, applying the
transformation which diagonalizes the matrix F−1 to the
inequality (5), we find two uncorrelated estimations, i.e.,
with vanishing covariance, of linear combinations of the
parameters (β,μ). At this aim, it is convenient to consider
dimensionless parameters which can be summed without is-
sues about physical dimensions. The dimensionless parameters
are (β̄ = β/β0,μ̄ = μ/μ0), where β0 and μ0 are constant
values. Examples for the case of fixed volume are μ0 =
β−1

0 = 2π2h̄2/(mV
2/d

d ) for homogeneous gases and μ0 =
β−1

0 = h̄�d for harmonically trapped gases; if the density is
fixed, one can choose μ0 = β−1

0 = 2π2h̄2ρ2/d/m for homoge-
neous gases and μ0 = β−1

0 = h̄ρ̃1/d for harmonically trapped
gases. The quantum Cramér-Rao bound for the dimensionless
parameters is

(
var(β̄) cov(β̄,μ̄)

cov(β̄,μ̄) var(μ̄)

)
�

⎛
⎝ Fμ̄,μ̄

Fμ̄,μ̄Fβ̄,β̄−F 2
μ̄,β̄

Fμ̄,β̄

F 2
μ̄,β̄

−Fμ̄,μ̄Fβ̄,β̄

Fμ̄,β̄

F 2
μ̄,β̄

−Fμ̄,μ̄Fβ̄,β̄

Fβ̄,β̄

Fμ̄,μ̄Fβ̄,β̄−F 2
μ̄,β̄

⎞
⎠,

(13)

with

Fβ̄,β̄ = β2
0Fβ,β, Fμ̄,μ̄ = μ2

0Fμ,μ,
(14)

Fβ̄,μ̄ = β0μ0Fβ,μ.
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The right-hand-side of the inequality (13) is diagonalized by the following orthogonal matrix:

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

Fβ̄,β̄−Fμ̄,μ̄−
√

4F 2
β̄,μ̄

+(Fβ̄,β̄−Fμ̄,μ̄)2√
4F 2

β̄,μ̄
+
[
Fβ̄,β̄−Fμ̄,μ̄−

√
4F 2

β̄,μ̄
+(Fβ̄,β̄−Fμ̄,μ̄)2

]2

2Fβ̄,μ̄√
4F 2

β̄,μ̄
+
[
Fβ̄,β̄−Fμ̄,μ̄−

√
4F 2

β̄,μ̄
+(Fβ̄,β̄−Fμ̄,μ̄)2

]2

Fβ̄,β̄−Fμ̄,μ̄+
√

4F 2
β̄,μ̄

+(Fμ̄,μ̄−Fβ̄,β̄ )2√
4F 2

β̄,μ̄
+
[
Fβ̄,β̄−Fμ̄,μ̄+

√
4F 2

β̄,μ̄
+(Fβ̄,β̄−Fμ̄,μ̄)2

]2

2Fβ̄,μ̄√
4F 2

β̄,μ̄
+
[
Fβ̄,β̄−Fμ̄,μ̄+

√
4F 2

β̄,μ̄
+(Fβ̄,β̄−Fμ̄,μ̄)2

]2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (15)

The quantum Cramér-Rao bound (13) is then transformed into(
var(λ̄1) cov(λ̄1,λ̄2)

cov(λ̄1,λ̄2) var(λ̄2)

)
= R

(
var(β̄) cov(β̄,μ̄)

cov(β̄,μ̄) var(μ̄)

)
RT

�
(

F−1
λ̄1

0

0 F−1
λ̄2

)
,

with(
λ̄1

λ̄2

)
= R

(
β̄

μ̄

)
,

Fλ̄j
= 1

2

[
Fβ̄,β̄ + Fμ̄,μ̄ + (−1)j

√
4F 2

β̄,μ̄
+ (Fβ̄,β̄ − Fμ̄,μ̄)2

]
.

(16)

The symmetric logarithmic derivatives with respect to the
parameters λ̄1,2 are

Lλ̄j
=

∑
N,EN

∂λ̄j
ρ

(N,EN )
β,μ

ρ
(N,EN )
β,μ

|N,EN 〉〈N,EN | (17)

and, explicitly,(
Lλ̄1

Lλ̄2

)
= R

(
β0 0

0 μ0

)(
Lβ

Lμ

)

= R

(
β0 0

0 μ0

)(
μN − H − 〈μN − H 〉

β (N − 〈N〉)
)

. (18)

According to quantum estimation theory [16,17], the optimal
estimation is then given by measuring the following observ-
ables:(

Oλ̄1

Oλ̄2

)
=

⎛
⎝ λ̄11 + Lλ̄1

Fλ̄1

λ̄21 + Lλ̄2
Fλ̄2

⎞
⎠

= R

(
β0 0

0 μ0

)( β

β2
0
1 + μN−H−〈μN−H 〉

Fλ̄1
μ

μ2
0
1 + β(N−〈N〉)

Fλ̄2

)
. (19)

For the single parameter estimation of β or μ, when the
other parameter in known, the optimal estimations are given,
respectively, by the measurement of the following observables:

Oβ = β1 + Lβ

Fβ,β

= β1 + μN − H − 〈μN − H 〉
�2(μN − H )

, (20)

Oμ = μ1 + Lμ

Fμ,μ

= μ1 + N − 〈N〉
β�2N

. (21)

It is straightforwad to show that the above estima-
tors are unbiased and attain the quantum Cramér-Rao

bound (16):

〈
Oλ̄j

〉 = λ̄j , �2Oλ̄j
= 1

Fλ̄j

, Cov
(
Oλ̄1

,Oλ̄2

) = 0, (22)

〈Oβ〉 = β, �2Oβ = 1

Fβ,β

, (23)

〈Oμ〉 = μ, �2Oμ = 1

Fμ,μ

. (24)

This optimal joint estimation can be realized, e.g., by mea-
suring the energy and the number of particles. In general,
in quantum parameter estimation the optimal measurement
depends of the parameters to be estimated, and thus is called
local estimation. Interestingly, the optimal sensitivities for
single parameter estimation of μ and β, when the other
parameter is known, are achieved by a global estimation, in
the sense that the optimal measurement can be implemented
with an operator that does not depend on the parameter to be
estimated. The optimal estimators themselves do depend on the
parameters to be estimated, but that prior knowledge is needed
only on the level of the data analysis, not for the choice of
the measurement itself. This unusual situation is reminiscent
once more of the situation in classical estimation theory, where
the measurement is fixed from the beginning, and can be
tracked back to the exponential form of the density matrix
as function of β(H − μN ), which makes the logarithmic
derivatives depend only on these operators, but not anymore
on the corresponding parameter.

Another joint optimal estimation can be derived from
the consideration that our estimation problem reduces to
a classical problem in the joint eigenbasis of H and of
N . Consequently, the quantum Fisher information is the
classical Fisher information of the probability distribution
ρ

(N,EN )
β,μ . It is known that the maximum likelihood estimator

is asymptotically biased and optimal, in the sense of achieving
the classical Cramér-Rao bound, in the limit of infinitely
many measurements [16,17]. The Cramér-Rao bound for M

measurements reads

(
var(β) cov(β,μ)

cov(β,μ) var(μ)

)
� (MF )−1. (25)

Consider the outcomes of particle number and energy measure-
ments {N (i),E

(i)
N (i)}i=1,...,M . The maximum likelihood estima-

tion consists in maximizing the average logarithmic likelihood

L = 1
M

ln
∏

i ρ
[N (i),E

(i)

N (i) ]

β,μ with respect to the parameters to be
estimated. This maximization problem is equivalent to impose

063609-4



PRECISION MEASUREMENTS OF TEMPERATURE AND . . . PHYSICAL REVIEW A 88, 063609 (2013)

vanishing derivatives,

∂L
∂β

= 1

M

M∑
i=1

[
μN (i) − E

(j )
N (i)

] − 〈μN − H 〉 = 0,

(26)
∂L
∂μ

= β

M

M∑
i=1

N (i) − β〈N〉 = 0,

provided a negative Hessian matrix(
∂2L
∂β2

∂2L
∂β∂μ

∂2L
∂β∂μ

∂2L
∂μ2

)∣∣∣∣∣
∂L
∂β

=0, ∂L
∂μ

=0

=
(

Fβ,β Fβ,μ

Fβ,μ Fμ,μ

)
. (27)

Equations (26) imply that the maximum likelihood estimator
consists in finding the parameters (β,μ) for which the
experimental averages 1

M

∑M
i=1 N (i) and 1

M

∑M
i=1 E

(i)
N (i) equal

the theoretical quantities 〈N〉 and 〈H 〉, respectively. The
advantage of this estimator is that it does not require the a
priori knowledge of the parameters (β,μ) even in the data
analysis, although this property as well as the optimality hold
true only in the limit M → ∞.

Interestingly, the maximum likelihood estimator of single
parameters, e.g., inverting 1

M

∑M
i=1[μN (i) − E

(i)
N (i) ] = 〈μN −

H 〉 for β or 1
M

∑M
i=1 N (i) = 〈N〉 for μ, achieves the

Cramér-Rao bound (25) for any finite M . Indeed, 〈N〉 and
〈μN − H 〉 are estimated from a finite sample of i.i.d. cou-
ples [N (i),E

(i)
N (i) ] by 1

M

∑M
i=1 N (i) and 1

M

∑M
i=1[μN (i) − E

(i)
N (i) ]

with standard deviations 〈[ 1
M

∑M
i=1 N (i) − 〈N〉]2〉 = 1

M
�2N

and 〈{ 1
M

∑M
i=1[μN (i) − E

(i)
N (i) ] − 〈μN − H 〉}2〉 = 1

M
�2(μ −

H ), respectively. The variance of the estimation of μ (β) can
be computed through simple laws of error propagation from
the measurement of 〈N〉 (〈μN − H 〉):

var(μ) =
(

∂μ

∂〈N〉
)2

�2N

M
= 1

Mβ2�2N
, (28)

var(β) =
(

∂β

∂〈μN − H 〉
)2

�2(μN − H )

M

= 1

M�2(μN − H )
. (29)

B. Ideal gases

We now focus on ideal gases of fermions or bosons. The
Hamiltonian in second quantization is

H =
∑

k

εka
†
kak, (30)

where εk is the energy of a single particle filling the kth mode.
The eigenvectors of both the Hamiltonian and the total number
of particles are the Fock states

|{nk}〉 =
∏
k

(a†
k)nk

√
nk!

|0〉 =
⊗

k

|nk〉, (31)

where |0〉 = ⊗
k |0k〉 is the vacuum, and we have used the

tensor decomposition in terms of the single-mode Fock states

|nk〉 = (a†
k)nk /

√
nk!|0k〉. The grand-canonical thermal state is

ρβ,μ = e−β(H−μN)

ZG

=
⊗

k

∑
nk

ρ
(nk )
β,μ |nk〉〈nk|,

(32)

ρ
(nk )
β,μ = e−βnk (εk−μ)

Zk

,

where we have defined the grand-canonical partition function
ZG = ∏

k Zk ,

Zk =
{

1 + e−β(εk−μ) for fermions,
1

1−e−β(εk−μ) for bosons.
(33)

The sums over nk run from zero to one for fermions and
from zero to infinity for bosons.

The average total number of particles and the average
energy are, respectively,

〈N〉 =
∑

k

1

eβ(εk−μ) ± 1
, (34)

〈H 〉 =
∑

k

εk

eβ(εk−μ) ± 1
, (35)

where the plus signs hold for fermions and the minus signs for
bosons.

The symmetric logarithmic derivatives with respect to the
parameters λ1 = β, λ2 = μ are

Lλj
=

⊗
k

∑
nk

(∑
k′

∂λj
ρ

(nk′ )
β,μ

ρ
(nk′ )
β,μ

)
|nk〉〈nk|

=
{

μN − H − 〈μN − H 〉 if j = 1,

β (N − 〈N〉) if j = 2,
(36)

and the quantum Fisher matrix F = [Fλj ,λl
] with entries

Fλj ,λl
= 1

2
tr
(
ρ
{
Lλj

,Lλl

})

=
∑

k

∑
nk

[
∂λj

ρ
(nk )
β,μ

][
∂λl

ρ
(nk )
β,μ

]
ρ

(nk )
β,μ

, (37)

namely,

Fμ,μ = β2�2N = β2
∑

k

eβ(εk−μ)

[eβ(εk−μ) ± 1]2
, (38)

Fβ,β = �2(μN − H ) =
∑

k

(μ − εk)2 eβ(εk−μ)

[eβ(εk−μ) ± 1]2
, (39)

Fμ,β = Fβ,μ = β Cov(N,μN − H )

= β
∑

k

(μ − εk)
eβ(εk−μ)

[eβ(εk−μ) ± 1]2
, (40)

where the plus signs hold for fermions and the minus signs
hold for bosons.

The tensor product in the grand-canonical state (32), the
tensor product in the symmetric logarithmic derivatives (36),
and the sum over the modes in the entries of the Fisher
matrix (37) witness the lack of correlations in the mode
representation [60–65]. The estimation of (β,μ) looks like
a classical problem, but the classical scaling of the Fisher
information may no longer hold, because the number of
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particles is not fixed. For instance, since the state (32) is
separable with respect to the modes, standard arguments imply
that the Fisher information scales linearly with the number of
modes, as the sum in (37) suggests. However, this scaling does
not correspond to a linear scaling in the average number of
particles. Indeed, the state (32) is not in the convex hull of
products of single-particle density matrices, because of the
symmetrization or antisymmetrization of the Hilbert space.
Therefore, the estimation of (β,μ) with ideal quantum gases
can be viewed as an abstract classical estimation problem with
a fluctuating number of particles. We show that this estimation
is characterized by superlinear scalings of the Fisher matrix,
which cannot result from the same estimation performed with
classical gases.

III. BOSONIC AND FERMIONIC GASES

In this section, we present the basic physical quantities of
quantum gases, that will be employed later in the discussion
of estimating (β,μ) within several settings. We focus on non-
condensed bosonic and fermionic ideal gases in d dimensions
spatially confined (=1,2,3) either by a box with flat potential
and periodic boundary conditions or by a harmonic potential.
Bose-Einstein condensation is discussed in Sec. V.

A. Homogeneous ideal gases

Homogeneous ideal gases in d (=1,2,3) dimensions
are confined in a parallelepiped shaped box of volume
Vd , where V1 = Lx , V2 = LxLy , and V3 = LxLyLz with

periodic boundary conditions. The single-particle energies are
εk = (k2

x + k2
y + k2

z )/(2m), with kx,y,z = 2πh̄
Lx,y,z

nx,y,z, and nx,y,z

running over all the integers. In the limit of large volume
Lx,y,z → ∞, the vector k is approximated by a continuous
variable p, and the sum over the modes is approximated by an
integral ∑

k

= Vd

(2πh̄)d

∫ ∞

0
ddp. (41)

This replacement is exactly the definition of the Riemann
integral for infinity volumes Vd , since the energy spacings
are vanishingly small, and is a good approximation at large
but finite size. However, the continuum approximation breaks
down when bosonic gases approach the phase transition to
BEC [46,66,67] from high temperatures.

The average total number of particles and the average
energy are, respectively,

〈N〉hom
d =

{− Vd

λd
T

Li d
2
(−eβμ) for fermions,

Vd

λd
T

Li d
2
(eβμ) for bosons,

(42)

〈H 〉hom
d =

{− dVd

2βλd
T

Li d
2 +1(−eβμ) for fermions,

dVd

2βλd
T

Li d
2 +1(eβμ) for bosons,

(43)

where λT =
√

2πh̄2β/m is the thermal wavelength and
Liα(z) = ∑∞

k=1 zk/kα is the polylogarithm [68]. The entries of
the Fisher matrix can be calculated using (38)–(40), relations
(9)–(11), and the property of the polylogarithm z ∂Liα(z)

∂z
=

Liα−1(z). The final results are

(
F hom

d

)
μ,μ

=
⎧⎨
⎩

− β2Vd

λd
T

Li d
2 −1(−eβμ) for fermions,

β2Vd

λd
T

Li d
2 −1(eβμ) for bosons,

(44)

(
F hom

d

)
β,β

=
⎧⎨
⎩

Vd

β2λd
T

[−β2μ2Li d
2 −1(−eβμ) + dβμLi d

2
(−eβμ) − d2+2d

4 Li d
2 +1(−eβμ)

]
for fermions,

Vd

β2λd
T

[
β2μ2Li d

2 −1(eβμ) − dβμLi d
2
(eβμ) + d2+2d

4 Li d
2 +1(eβμ)

]
for bosons,

(45)

(
F hom

d

)
μ,β

=
{

Vd

λd
T

[−βμLi d
2 −1(−eβμ) + d

2 Li d
2
(−eβμ)

]
for fermions,

Vd

λd
T

[
βμLi d

2 −1(eβμ) − d
2 Li d

2
(eβμ)

]
for bosons.

(46)

Notice that the two-dimensional case can be a bit simplified, realizing that Li1(z) = − ln(1 − z). For example,

〈N〉hom
2 =

⎧⎨
⎩

LxLy

λd
T

ln(1 + eβμ) for fermions,

−LxLy

λd
T

ln(1 − eβμ) for bosons,
(47)

and, for instance, the Fisher information relative to the chemical potential can be explicitly written as a function of the average
number of particles

(
F hom

2

)
μ,μ

=

⎧⎪⎨
⎪⎩

β2LxLy

λ2
T

1
1+e−βμ = β2LxLy

λ2
T

(
1 − e

−λ2
T

〈N〉hom
2

LxLy

)
for fermions,

β2LxLy

λ2
T

1
e−βμ−1 = β2LxLy

λ2
T

(
e
λ2

T

〈N〉hom
2

LxLy − 1
)

for bosons.
(48)

In the next sections we discuss these general formulas in
different regimes. In particular, we elucidate limitations and
implications of the apparent exponential scaling in (48).

B. Harmonically trapped ideal gases

Now we discuss ideal gases confined in a harmonic
potential in d (=1,2,3) dimensions, with frequencies ωx,y,z
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in the three directions. The single-particles energies are
εk = h̄(ωxnx + ωyny + ωznz), with integers nx,y,z � 0. We
define the geometric average of the frequencies, �1 = ωx ,
�2 = √

ωxωy , and �3 = (ωxωyωz)1/3. For small frequencies
ωx,y,z, the vector n can be approximated by a continu-
ous variable x and the sum over the modes becomes an
integral, ∑

n

= 1

(h̄�d )d

∫ ∞

0
ddx. (49)

As for homogeneous gases, the continuum limit is the exact
definition of the Riemann integral for a vanishing confinement
volume ωx,y,z → 0. It is a good approximation at large but

finite size and breaks when BEC occurs [66,69,70]. Bose-
Einstein condensation is discussed in the next section. The
average total number of particles and the average energy are,
respectively,

〈N〉harm
d =

{
−Lid (−eβμ)

(βh̄�d )d for fermions,
Lid (eβμ)
(βh̄�d )d for bosons,

(50)

〈H 〉harm
d =

{
− d Lid+1(−eβμ)

βd+1(h̄�d )d for fermions,
d Lid+1(eβμ)
βd+1(h̄�d )d for bosons.

(51)

The entries of the Fisher matrix can be calculated similarly to
the homogeneous gases, resulting in

(F harm
d )μ,μ =

{
−Lid−1(−eβμ)

βd−2(h̄�d )d for fermions,
Lid−1(eβμ)
βd−2(h̄�d )d for bosons,

(52)

(
F harm

d

)
β,β

=
{

1
βd+2(h̄�d )d [−β2μ2Lid−1(−eβμ) + 2dβμLid (−eβμ) − (d2 + d)Lid+1(−eβμ)] for fermions,

1
βd+2(h̄�d )d [β2μ2Lid−1(eβμ) − 2dβμLid (eβμ) + (d2 + d)Lid+1(eβμ)] for bosons,

(53)

(
F harm

d

)
μ,β

=
{

1
(βh̄�d )d [−βμLid−1(−eβμ) + dLid (−eβμ)] for fermions,

1
(βh̄�d )d [βμLid−1(eβμ) − dLid (eβμ)] for bosons.

(54)

For one-dimensional gases, the average number of particles and the Fisher information (F harm
1 )μ,μ can be written as elementary

functions, by means of Li1(z) = − ln(1 − z). Thus, we can explicitly write the dependence of the Fisher matrix on 〈N〉harm
1 : For

instance,

〈N〉harm
1 =

{ ln(1+eβμ)
βh̄ωx

for fermions,

− ln(1−eβμ)
βh̄ωx

for bosons,
(55)

(
F harm

1

)
μ,μ

=
{

β

h̄ωx

1
1+e−βμ = β

h̄ωx

(
1 − e−βh̄ωx 〈N〉harm

1
)

for fermions,
β

h̄ωx

1
e−βμ−1 = β

h̄ωx

(
eβh̄ωx 〈N〉harm

1 − 1
)

for bosons.
(56)

As for homogeneous gases, the general formulas for the
Fisher matrix are discussed in the next sections within different
physical regimes.

IV. FISHER MATRIX IN THE CONTINUUM
APPROXIMATION

In this section we describe the sensitivity of the estimation
of (β,μ) for quantum gases. In statistical mechanics, the
thermodynamic limit is usually considered, meaning an infinite
number of particles and an infinite confinement volume such
that the density is fixed. We discuss how the Fisher matrix
scales with the average number of particles, approaching the
thermodynamical limit.

A different assumption is to fix the confinement volume,
rather than the density, which is natural in mesoscopic systems,
such as in experiments with atomic gases, as reported in [53–
56,71–73]. In particular, when a gas is confined in one or
two dimensions with strong confinements in the remaining
directions, the number of particles is limited [71] but still large
(∼104,105) for quantum metrological applications. Moreover,
the above-mentioned experiments were performed with finite

confinement volumes which provide high particle densities. In
this framework, all the results are formally the same as in the
thermodynamic limit. The only difference is that the density
appears not just as a prefactor but enters in the scalings, as it
is proportional to the number of particles.

A. Homogeneous ideal gases

The thermodynamic limit of homogeneous gases is defined
as 〈N〉hom

d → ∞ and Lx,y,z → ∞ with 	 = 〈N〉hom
d /Vd finite.

All the quantities (42)–(46) are linear in the volume. Therefore,
all the entries of the Fisher matrix scale linearly with 〈N〉hom

d .
In order to discuss the prefactors (F hom

d )#,#/〈N〉, we recall that
there are no restrictions for μ ∈ [−∞,∞] and β ∈ [0,∞] for
fermions, while for bosons in the noncondensed phase μ ∈
[−∞,0) and β is larger than the critical inverse temperature.
The polylogarithms involved are bounded for all finite values
of their argument, except Liα(z) with Re(α) < 1 that diverges
for z = 1. Thus, the prefactors (F hom

d )#,#/〈N〉hom
d are finite

almost always but for some exceptional points that we are
going to discuss.
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FIG. 1. Log-log-plot of the optimal relative error 1/[β
√

(F hom
d )β,β ] for a homogenous gas of 6Li atoms in three dimensions as function of

temperature: L = 20 μm (left) and L = 500 μm (right); and 〈N〉hom
3 = 10 (circles), 〈N〉hom

3 = 1000 (squares), and 〈N〉hom
3 = 10 000 (diamonds).

Dotted [dashed] lines are the corresponding small temperature limits (59) [classical limits (57) and (58)]. For a given temperature, we computed
the chemical potential inverting the equation of state (42) with the Newton’s method, then we used this result in (45) and plotted the corresponding
values of 1/[β

√
(F hom

d )β,β ].

Classical limit. First we show that in the classical limit,
i.e., high temperature and low density implying eβμ � 1, the
shot-noise regime typical of classical statistics is recovered.
With the help of the asymptotics Liα(z) � z for all α and
|z| � 1, we easily compute statistical averages and the Fisher
matrix in the classical limit:

〈N〉hom
d � Vd

λd
T

eβμ, 〈H 〉hom
d � dVd

2βλd
T

eβμ,

(57)(
F hom

d

)
μ,μ

� β2〈N〉hom
d ,

(
F hom

d

)
β,β

� 〈N〉hom
d

(
μ2 − d

μ

β
+ d2 + 2d

4β2

)
,

(58)(
F hom

d

)
μ,β

� 〈N〉hom
d

(
βμ − d

2

)
.

The entries of the Fisher matrix scale linearly with the
average number of particles and are exactly the same as those
of homogeneous classical gases derived in Appendix A.

The polylogarithms in the Fisher matrix continuously and
monotonically increase when eβμ increases, i.e., going away
from the classical limit. If the polylogarithms are bounded, the
corresponding change in the Fisher matrix, and thus in the sen-
sitivity of the measurements, is only a numerical prefactor that
does not modify the scaling with the average number of parti-
cles. In the following, we discuss limits where the Fisher matrix
deviates from the shot noise typical of the classical limit.

Low temperatures: Fermionic gases. The small tem-
perature limit of fermionic gases, β → ∞ and μ →
EF , where EF is the Fermi energy, together with
the property Liα(−ex) = −xα/�(α + 1) − π2xα−2/(6�[α −
1]) + O(xα−4) for Re(x) 
 1 [68], provides the following
Fisher matrix:

(
F hom

d

)
μ,μ

� dβ

2μ
〈N〉hom

d ,
(
F hom

d

)
β,β

� dπ2

6β3μ
〈N〉hom

d ,

(59)(
F hom

d

)
μ,β

� (2 − d)dπ2

12β2μ2
〈N〉hom

d .

Hence, the temperature can be measured only with a very
bad sensitivity which is bounded by the inverse of the Fisher
information (F hom

d )β,β , according to the Cramér-Rao bound
(5). The Fisher information per particle (F hom

d )β,β/〈N〉hom
d

vanishes as T 3 and the relative error of the optimal estimation
1/[β

√
(F hom

d )β,β] �
√

var(β)/β = �T/T diverges as 1/
√

T

for T → 0. In spite of this limit for arbitrary small temper-
atures, the best relative error 1/[β

√
(F hom

d )β,β] is small for
experimentally relevant settings, as shown as a function of the
temperature and the size in Figs. 1 and 2 for three-dimensional
homogeneous gases of 6Li atoms. These values fit the small
temperature (59) [classical (57) and (58)] scaling for large
(small) temperatures and sizes and bound the relative errors of
actual thermometry experiments: The optimal relative errors
are one order of magnitude smaller than those obtained
in experiments with similar physical settings [51,52]. It is
noticeable that the best relative error in the classical limit is
much smaller than that in the quantum regime for very small
temperatures. However, quantum effects at those temperatures
cannot be neglected, and the consideration of classical gases
is just an academic problem.

On the other hand, the chemical potential can be mea-
sured with almost no error due to the divergence of
(F hom

d )μ,μ/〈N〉hom
d as 1/T for small T . If the temperature

is exactly zero, all the fermions are frozen in the lowest
energies up to the Fermi energy. The smallest change in
the chemical potential equals the spacing between the Fermi
energy and the next excited state, keeping the temperature
fixed. The state consequently changes into an orthogonal state
with a different number of particles. This nonsmooth change
is in contrast with the assumptions upon which the standard
quantum Cramér-Rao bound (5) is based and requires the
generalization to nondifferentiable models [74]. However, this
gives an intuition for the divergence of (F hom

d )μ,μ/〈N〉hom
d in

the regime of small temperatures. In this context, remember
that temperature and chemical potential can be jointly mea-
sured. We discuss the zero-temperature case in more detail
in Appendix B.
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FIG. 2. Log-log plot of the optimal relative error 1/[β
√

(F hom
d )β,β ] for a homogenous gas of 6Li atoms in three dimensions: T = 1 pK (top

left), T = 1 nK (top right), T = 1 μK (bottom left), and T = 1 mK (bottom right); and 〈N〉hom
3 = 10 (circles), 〈N〉hom

3 = 1000 (squares), and
〈N〉hom

3 = 10 000 (diamonds). Dotted [dashed] lines are the corresponding small temperature limits (59) [classical limits (57) and (58)]. For a
given L, we computed the chemical potential inverting the equation of state (42) with Newton’s method, then we used this result in (45) and
plotted the corresponding values of 1/[β

√
(F hom

d )β,β ].

Low temperatures: Bosonic gases. In the low-temperature
bosonic case (but above the condensation temperature),
some of the polylogarithms diverge as Liα(ex) = �(1 −
α)(−x)α−1 + O(1) for x → 0 and Re(α) < 1. Thus, the
prefactors (F hom

d )β,β/〈N〉hom
d and (F hom

d )μ,β/〈N〉hom
d are finite

or zero for all values of the fugacity eβμ in [0,1], while
(F hom

d )μ,μ/〈N〉hom
d diverges when the fugacity approaches

one, namely its value at the critical temperature [46,66,67],
implying a very precise measurement of the chemical potential.
These divergences are ruled by the way the chemical potential
approaches zero. In this limit, we derive upper bounds
for the Fisher information (F hom

d )μ,μ and the corresponding
scaling with 〈N〉hom

d . Since the polylogarithms are continuous
functions, the Fisher information (F hom

d )μ,μ assumes all values
between (57) in the classical limit and the following bounds [up
to inequality (69)] which are saturated at the onset of the BEC.

The value of the chemical potential is constrained by two
conditions. The first one is implied by the application of
the continuum approximation (41). Indeed, approximating the
sum with the integral is valid only for very small momentum
spacings, namely small 2πh̄/Lx,y,z, which is the quantity that
becomes infinitesimal in the continuum limit. Since βμ is

always subtracted from βεk , the validity of the continuum
approximation requires that −βμ cannot be smaller than the
energy spacing, i.e.,

−βμ � β(2πh̄)2

2mV
2
d

d

= λ2
T 	

2
d(〈N〉hom

d

) 2
d

, (60)

for homogeneous gases. If at low temperatures (60) is violated
one should set −βμ = 0 in all thermodynamical quantities
which do not diverge under this replacement in the continuum
approximation. For thermodynamical quantities that would
diverge when setting −βμ = 0 one has to estimate the exact
sums over the modes without the continuum approximation,
in order to carefully estimate their scaling with the average
number of particles.

A second bound is given by the occupation of the ground
state:

〈a†
0a0〉 = 1

e−βμ − 1
� 〈N〉hom

d

⇒ −βμ � ln

(
1 + 1

〈N〉hom
d

)
� 1

〈N〉hom
d

. (61)
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In three dimensions, the continuum approximation through
(60) bounds the Fisher information to

(
F hom

3

)
μ,μ

� β2

λ4
T 	

4
3

(〈N〉hom
3

) 4
3 � β2

ζ
(

3
2

) 4
3

(〈N〉hom
3

) 4
3 , (62)

where the last inequality follows from λ3
T ρ � ζ (3/2) for

small chemical potentials. Smaller chemical potentials, ln(1 +
1/〈N〉hom

3 ) � −βμ � o(〈N〉hom
3 )−2/3, are practically zero in

the continuum approximation and (F hom
3 )μ,μ diverges. From

the computation of the discrete sums in this regime, the leading
contribution yields

(
F hom

3

)
μ,μ

� 1

μ2
+ β2V

4
3

3

π2λ4
T

∑
(nx,ny ,nz)�=(0,0,0)

1(
n2

x + n2
y + n2

z

)2

� 1

μ2
+ 16.5β2

π2λ4
T 	

4
3

(〈N〉hom
3

) 4
3

� 1

μ2
+ 16.5 β2

π2ζ
(

3
2

) 4
3

(〈N〉hom
3

) 4
3 (63)

for isotropic gases [67,75], in agreement with the limiting scal-
ing in the continuum approximation, and where the constant
16.5 was estimated from numerical summation ranging from
−256 to 256. The last inequality follows from λ3

T ρ � ζ (3/2)
for small chemical potentials.

In one and two dimensions, the finiteness of the density
	 implies the finiteness of the chemical potential μ �= 0,
and thus the finiteness of the prefactors (F hom

1,2 )μ,μ/〈N〉hom
1,2 .

However, (F hom
1,2 )μ,μ exhibits a superlinear scaling with the

average number of particles if the volume is fixed rather
than the density; similarly, allowing large densities 	 gives
large prefactors (F hom

1,2 )μ,μ/〈N〉hom
1,2 . For the two-dimensional

case, the explicit dependence of this prefactor is given by
(47) and (48). The conditions (60) and (61) give the same
scaling for the chemical potential, which constrains the density,
using the estimation of (47) for small chemical potentials:
λ2

T 	 � ln〈N〉hom
2 . The resulting Fisher information is

(
F hom

2

)
μ,μ

� β2〈N〉hom
2

eλ2
T 	

λ2
T 	

� β2

(〈N〉hom
2

)2

ln〈N〉hom
2

. (64)

For extremely high densities in d = 2 (λ2
T 	 > 1), the condition

(60) is more stringent than (61). Both the average number of
particles and (F hom

2 )μ,μ diverge at zero chemical potentials. For
isotropic gases with intermediate chemical potentials between
(60) and (61), the dominant contributions of the discrete sums
are

〈N〉hom
2 � − 1

βμ
+ V2

πλ2
T

O( V2
πλ2

T

)∑
nx,ny = 0

(nx,ny ) �= (0,0)

1

n2
x + n2

y

� − 1

βμ
+ V2

2λ2
T

ln

(
V2

πλ2
T

)
, (65)

(
F hom

2

)
μ,μ

� 1

μ2
+ β2V 2

2

π2λ4
T

∑
(nx,ny )�=(0,0)

1(
n2

x + n2
y

)2

� 1

μ2
+ 6.03 β2

π2λ4
T 	2

(〈N〉hom
2

)2

� 1

μ2
+ 6.03 β2

π2

(〈N〉hom
2

)2

ln2〈N〉hom
2

, (66)

where the last inequality holds under the condition λ2
T 	 �

ln〈N〉hom
2 , opposite to that in the continuum approximation.

In one dimension and at not too large densities λT 	 �√
〈N〉hom

1 , the continuum approximation gives a more stringent
constraint (60) than the physical requirement (61). In the
continuum approximation, the limit of large density and μ

close to zero, together with the above bound of the density,
give

(
F hom

1

)
μ,μ

� β2

2π
λ2

T 	2〈N〉hom
1 � β2

2π

(〈N〉hom
1

)2
. (67)

For higher densities λT 	 �
√

〈N〉hom
1 , there is an intermediate

regime between (60) and (61), where the chemical potential
should be set to zero for a consistent application of the
continuum approximation. However, since both the average
number of particles and (F hom

1 )μ,μ diverge at zero chemical
potentials, they are estimated by the dominant contributions of
the respective discrete sums,

〈N〉hom
1 � − 1

βμ
+ L2

x

πλ2
T

∞∑
nx=1

1

n2
x

= − 1

βμ
+ πL2

x

6λ2
T

, (68)

(
F hom

1

)
μ,μ

� 1

μ2
+ β2L4

x

π2λ4
T

∞∑
nx=1

1

n4
x

= 1

μ2
+ π2β2

90λ4
T ρ4

(〈N〉hom
1

)4

� 1

μ2
+ π2β2

90

(〈N〉hom
1

)2
, (69)

where the last inequality comes from the above high-density

condition λT 	 �
√

〈N〉hom
1 .

In Fig. 3, we plot the upper bounds (62), (64), and (67)
of the Fisher information (F hom

d )μ,μ within the continuum
approximation versus the average number of particles in
double logarithmic scale. Since the slope represents the
exponent of the dependence of (F hom

d )μ,μ on 〈N〉hom
d , we

notice that decreasing the dimensionality, the sensitivity of
the chemical potential increases. We compare the curves with
the linear scaling (shot noise) reproduced by the classical limit
and the zero temperature case, where all the particles occupy
the ground state (see Sec. V).

B. Harmonically trapped ideal gases

For gases confined in a harmonic potential, the thermo-
dynamic limit is defined as 〈N〉harm

d → ∞ and ωx,y,z → 0.
In order to have a finite density, either the quantity 〈N〉harm

d �d
d

[70,76] or 〈N〉harm
d �

d
2
d [77] is fixed. This choice affects the ther-

modynamics of the gas, such as the phase transition towards
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FIG. 3. Log-log plot of the upper bounds of the rescaled Fisher
information (F hom

d )μ,μ/β2 for homogenous Bose gas above the
condensation temperature against the average number of particles
within the continuum approximation in three dimensions (dot-dashed
line) (62), two dimensions (dashed line) (64), and one dimension
(dotted line) (67). The continuous line is the shot noise reproduced
by the classical gas [Eq. (57)]. The thick line is the Fisher information
if all particles are in the ground state, namely the zero-temperature
case [Eq. (81)].

a Bose-Einstein condensate [76,77]. We follow the physical
arguments presented in [70,76] and define 	̃ ≡ 〈N〉harm

d �d
d .

Since all the quantities (50)–(54) are proportional to �−d
d , the

entries of the Fisher matrix scale linearly with 〈N〉harm
d . As

before, μ ∈ [−∞,∞] and β ∈ [0,∞] for fermions, while μ ∈
[−∞,0) and β is larger than the critical inverse temperature for
bosons in the noncondensed phase. With the above-mentioned
properties of the polylogarithms, we can study when the
prefactors (F harm

d )#,#/〈N〉harm
d diverge.

Classical limit. In the classical limit, i.e., eβμ � 1, the
statistical averages and the Fisher matrix are

〈N〉harm
d � eβμ

(βh̄�d )d
, 〈H 〉harm

d � d eβμ

βd+1(h̄�d )d
,

(70)(
F harm

d

)
μ,μ

� β2〈N〉harm
d ,

(
F harm

d

)
β,β

� 〈N〉hom
d

(
μ2 − 2d

μ

β
+ d2 + 2d

β2

)
,

(71)(
F harm

d

)
μ,β

� 〈N〉harm
d (βμ − d).

The entries of the Fisher matrix scale linearly with the average
number of particles and equal those of classical gases derived
in the Appendix A.

As for the homogenous gases, we now investigate physical
regimes where the Fisher matrix overcomes the linear scaling
with 〈N〉harm

d , which characterizes the classical limit.
Low temperatures: Fermionic gases. At small temperatures

β → ∞, the chemical potential of fermionic gases is close to
the Fermi energy μ → EF , and

(
F harm

d

)
μ,μ

� dβ

μ
〈N〉harm

d ,
(
F harm

d

)
β,β

� dπ2

3β3μ
〈N〉harm

d ,

(72)(
F harm

d

)
μ,β

� (1 − d)dπ2

3β2μ2
〈N〉harm

d .

As for homogeneous gases, the sensitivity of a temperature
measurement is very bad, whereas the chemical potential can
be measured with infinitely high sensitivity. The interpretation
of the divergence of (F harm

d )μ,μ is the same as for homogeneous
fermionic gases: At zero temperature, all the fermions are
frozen in the lowest energies up to the Fermi energy, the
smallest change of the chemical potential is the spacing
between the Fermi energy and the next excited state, and
the state suddenly changes into an orthogonal state with a
different number of particles. Quantum estimation theory for
nondifferentiable models [74] needs to be applied when the
temperature is exactly zero, as discussed in the Appendix B.

Low temperatures: Bosonic gases. For bosonic gases at
low temperature (but above the condensation temperature),
the prefactors (F harm

d )β,β/〈N〉harm
d and (F harm

d )μ,β/〈N〉harm
d are

always finite or zero. However, (F harm
d )μ,μ/〈N〉harm

d can diverge
when the temperature approaches the critical temperature
[66,69,70], corresponding to μ → 0. This stems from the di-
vergence of the polylogarithms already mentioned for bosonic
homogeneous gases. Also for harmonic gases, we derive upper
bounds of the scaling of (F harm

d )μ,μ/〈N〉harm
d with respect

to 〈N〉harm
d , which are saturated at the onset of BEC. The

Fisher information (F harm
d )μ,μ varies continuously between

its classical limit (70) and the following bounds, due to the
continuity of the polylogarithms.

As for the homogeneous gases, the chemical potential is
bounded by the energy spacing in the continuum approxima-
tion, i.e.,

−βμ � βh̄�d = βh̄

(
	̃

〈N〉harm
d

)1/d

, (73)

for isotropic confinements. The other bound is given by the
occupation of the ground state, i.e.,

〈a†
0a0〉 = 1

e−βμ − 1
� 〈N〉harm

d

⇒ −βμ � ln

(
1 + 1

〈N〉harm
d

)
� 1

〈N〉harm
d

. (74)

Therefore, for ln(1 + 1/〈N〉harm
2 ) � −βμ � o(〈N〉harm

2 )−1/d ,
the continuum approximation can break and the discrete sums
must be computed, as discussed for the homogeneous gases.

In three dimensions, both 〈N〉harm
3 and (F harm

3 )μ,μ remain
finite, and for small chemical potentials

(
F harm

3

)
μ,μ

� π2β2

6ζ (3)
〈N〉harm

3 . (75)

In two dimensions, the Fisher information relative to
the chemical potential diverges as (F harm

2 )μ,μ/〈N〉harm
2 �

− 6
π2 β

2 ln(−βμ). The condition (73) from the continuum
approximation yields

(
F harm

2

)
μ,μ

� 3β2

π2
〈N〉harm

2 ln〈N〉harm
2 . (76)

Chemical potentials that go to zero faster than (73) for
large 〈N〉harm

2 vanish in the continuum approximation, and
(F harm

2 )μ,μ diverges. The dominant contributions of the discrete
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sum is

(
F harm

2

)
μ,μ

� 1

μ2
+ 1

h̄2�2
2

O( 1
βh̄�2

)∑
nx,ny = 0

(nx,ny ) �= (0,0)

1

(nx + ny)2

= 1

μ2
+ 〈N〉harm

2

2h̄2	̃
ln

( 〈N〉harm
2

β2h̄2	̃

)
. (77)

In one dimension the finiteness of 	̃ prevents the chemical
potential from vanishing. Moreover, the constraints (73) and
(74) give the same scaling for the chemical potential. These
scalings together with the estimation of (55) for small chemical
potentials imply the following bound for the density: βh̄	̃ �
ln〈N〉harm

1 . For large 	̃ the explicit equations (55) and (56)
imply

(
F harm

1

)
μ,μ

� β〈N〉harm
1

eβh̄	̃

h̄	̃
� β2

(〈N〉harm
2

)2

ln〈N〉harm
1

. (78)

For extremely high densities, there is a remarkable interme-
diate regime between (60) and (61), where the discrete sums
must be evaluated. The dominant contributions of 〈N〉harm

1 and
(F harm

1 )μ,μ are

〈N〉harm
1 � − 1

βμ
+ 1

βh̄ωx

O( 1
βh̄ωx

)∑
nx=1

1

nx

� − 1

βμ
+ 1

βh̄ωx

ln

(
1

βh̄ωx

)
, (79)

(
F harm

1

)
μ,μ

� 1

μ2
+ 1

h̄2ω2
x

∑
nx�1

1

n2
x

= 1

μ2
+ π2

6h̄2	̃2

(〈N〉harm
1

)2

� 1

μ2
+ π2β2

6

(〈N〉harm
1

)2

ln2〈N〉harm
1

, (80)

where the last inequality holds for densities larger than those
in the continuum approximation, βh̄	̃ � ln〈N〉harm

1 .
In Fig. 4, we plot the upper bounds (75), (76), and (78)

of the Fisher information (F harm
d )μ,μ versus 〈N〉harm

d within
the continuum approximation in double logarithmic scale.
As for homogeneous gases, we see that the smaller the
dimensionality, the better the sensitivity of the chemical
potential. The curves are compared with the classical limit
that exhibits shot noise, i.e., a linear scaling, and the zero
temperature case where all the particles occupy the ground
state. Figures 3 and 4 show that harmonic gases exhibit
worse sensitivities than homogeneous gases with the same
dimension, in accordance with the scalings in the formulas.

V. FISHER MATRIX IN THE PRESENCE OF
BOSE-EINSTEIN CONDENSATION

Bosonic gases experience a phase transition towards BEC.
This occurs when a macroscopic number of particles occupy
a vanishingly small number of states. These states are either
the only ground state in the case of normal BEC or a band of
states for the so-called generalized BEC.

FIG. 4. Upper bounds of the rescaled Fisher information
(F harm

d )μ,μ/β2 for harmonically trapped bosons above the conden-
sation temperature against the average number of particles in double
logarithmic scale within the continuum approximation in three
dimensions (dot-dashed line) (75), two dimensions (dashed line)
(76), and one dimension (dotted line) (78). The continuous line is
the shot noise reproduced by the classical gas. The thick line is the
Fisher information if all particles are in the ground state, i.e., the
zero-temperature case.

The conventional approach to the BEC [46,58,66,67]
consists of finding the maximum average number of particles
within the continuum limit, i.e., substituting the sum over the
modes with an integral. If the actual number of particles is
larger, the continuum limit breaks, and the sum over the modes
has to be replaced by the corresponding integral plus a singular
measure. The latter is a δ-like measure that singles out the
contribution of a zero measure subset of states. This describes
the emergence of the Bose-Einstein condensate above the
critical density 	c = maxμ 	 (	̃c = maxμ 	̃) or equivalently
below the critical temperature Tc defined by the relation
	(Tc) = 	c [	̃(Tc) = 	̃c].

Now we discuss the sensitivity in the estimation of (β,μ)
in the presence of different kinds of BECs.

A. Normal Bose-Einstein condensation

If the density is finite, homogeneous ideal gases with
isotropic confinement (Lx = Ly = Lz) exhibit a normal BEC
only in three dimensions, with critical temperature Tc =
2πh̄2

kBm
[ 	

ζ (3/2) ]
2/3 and fraction of condensate f = 1 − (T/Tc)3/2

[46,58,66,67]. Harmonically trapped ideal gases with the same
trap frequency in each direction (ωx = ωy = ωz) undergo
BEC in d = 2,3 dimensions, with critical temperatures Tc =
h̄
kB

[ 	̃

ζ (d) ]
1/d and fraction of condensate f = 1 − (T/Tc)d [70].

We now focus on the condensed phase of these gases.
Below the critical temperature T < Tc the chemical poten-

tial is very small at finite size, −βμ = O(1/〈N〉), and the con-
tribution of the ground state must be singled out in the sums.
The average number of particles below the critical temperature
is 〈N〉 = 〈N0〉 + 〈Nex〉, where N0 = a

†
0a0 is the number of

particles in the ground state, 〈N0〉 = (e−βμ − 1)−1 = f 〈N〉,
Nex = N − N0 is the number of particles in the excited states,
and 〈Nex〉 is given by (42) or (50) within the continuum
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approximation. The estimation of 〈N0〉 at small chemical
potentials gives the evaluation of the chemical potential
itself −βμ � 1/(f 〈N〉). Since the modes are independent in
the grand-canonical state, the variance of the total number
of particles is �2N = �2N0 + �2Nex, where �2N0 is the
variance of the number of particles condensed in the ground
state and �2Nex is the variance of the number of particles in
the excited states. The computation at small but finite μ, that is,
at finite size, gives �2N0 = eβμ(1 − eβμ)−2 = 〈N0〉 + 〈N0〉2.
The scaling of the chemical potential violates the conditions
(60) and (73); thus, �2Nex must be evaluated at zero chemical
potential and via the computation of the discrete sum if its
continuum approximation diverges at μ = 0. The leading
contribution is the same as (63), (75), or (77) without the term
1/μ2 and divided by β2. On the other hand, applying the theory
of spontaneous symmetry breaking, one finds that �2N0 = 0,
the mode operators of the ground states being replaced by
numbers through the Bogoliubov shift [57].

This apparent ambiguity is sorted out by noticing that
the symmetry-breaking approach can be applied only in
the thermodynamic limit. In this limit, the grand-canonical
thermal state without symmetry breaking is thermodynam-
ically unstable because the isothermal compressibility (12)
diverges. Thus, the gas splits up into two phases: One consists
of all particles in the ground state without particle-number
fluctuations, while the other is the noncondensed phase where
statistical averages equal those for the excited states. However,
the grand-canonical thermal state can be considered at finite
size, even if its instability grows with the number of particles,
as argued after Eq. (12). Moreover, the Bogoliubov shift is not
always a good approximation of exact physical behaviors [78].

The computation of the particle number variance straight-
forwardly gives the Fisher information of the chemical poten-
tial via (38). If the symmetry-breaking approach is considered,
the variance �2N and the Fisher information reduce to
that of the noncondensed phase, namely, (63), (75), or (77)
without the term 1/μ2. In particular, the Fisher information
scales superlinearly with the number of particles for the
three-dimensional homogeneous gas and the two-dimensional
harmonically trapped gas. If the grand-canonical thermal state
without the symmetry breaking is considered, the Fisher
information Fμμ is increased by the superlinear contribution
due to the ground state,

β2�2N0 = β2(f 〈N〉 + f 2〈N〉2). (81)

Equation (81) follows directly from the proportionality relation
between the Fisher information and the variance of the total
number of particles (38) and from the above considerations on
the variance. This quadratic scaling dominates over the con-
tribution of the excited states and also the three-dimensional
harmonically trapped gas exhibits sub-shot-noise.

The contributions of the ground state to the other entries of
the Fisher matrix do not scale superlinearly in the condensed
phase: The ground-state contribution to Fβ,β is β−2, and
the contribution to Fμ,β is (βμ)−1 = −f 〈N〉. Even if the
presence of the BEC does not increase the sensitivity of
the temperature estimation beyond the shot noise, it is
worthwhile to compute such sensitivity in the spirit of a recent
experiment [49]. In this experiment, a harmonically trapped
three-dimensional gas of 23Na atoms has been prepared below

the condensation critical temperature, and the lowest measured
temperature was 450 ± 80 pK. Since even in the condensed
phase the ground-state contribution to Fβ,β does not dominate,
Fβ,β is always represented by the thermal averages (45) and
(53) taken at βμ = 0. These considerations give the following
Fisher information for the homogeneous and harmonic gases
in the condensed phase:

(Fd )hom
β,β = (d2 + 2d)ζ

(
d
2 + 2

)
m

d
2 Vd

22+ d
2 π

d
2 h̄dβ2+ d

2

,

(82)

(Fd )harm
β,β = (d + d2)ζ (d + 1)

h̄dβd+2�d
d

.

First, we observe that the Fisher information given by (82)
decreases with decreasing temperature the faster the larger the
dimension. Thus, lower dimensions provide better sensitivities
for low-temperature thermometry. Remember that there is a
condensed phase at nonzero temperature only in two and three
dimensions for the harmonically trapped gas and only in three
dimensions for the homogeneous gas. Interestingly, Eqs. (82)
also provide the leading order of the expansion around
zero temperature for bosonic gases where there is no phase
transition, i.e., no condensed phase at nonzero temperature. In
order to show this, one can invert the equation of state (42)
and (50) to find the function μ(β), plug it into (45) and (53),
and then perform a single limit β → ∞ using the properties of
polylogarithms [68]. The inversion of the equation of state can
be done analytically for the two-dimensional homogeneous
gas (47) and the one-dimensional harmonically trapped gas
(55), due to the simple analytical form, while for the one-
dimensional homogeneous gas it can be done in the limit
of small chemical potential with Liα(−ex) = −xα/�(α +
1) − π2xα−2/(6�[α − 1]) + O(xα−4) for Re(x) 
 1 [68]. In-
tuitively, the fugacity eβμ and the density (42) and (50) are
infinitesimal in the limit β → ∞, approaching rather the
classical limit than the small temperature limit, unless μ → 0
such that βμ → 0. This indicates why Eqs. (80) are the leading
order of the small temperature limit in the absence of phase
transition, even if they were derived taking μ → 0 before
β → ∞.

The above Fβ,β can be used to derive a lower bound
for the relative error of the temperature estimation. Note
that, in the limit T → 0, the relative error of the optimal
estimation 1/[β

√
(Fd )β,β] �

√
var(β)/β = �T/T diverges

as 1/T d/4 for homogeneous gases and 1/T d/2 for harmonic
gases. However, the optimal relative error is small in ac-
tual experiments: For instance, in the case of the experi-
ment [49], i.e., ωx = 2π (0.65 ± 0.05) Hz, ωy = 2π (1.2 ±
0.1) Hz, ωz = 2π (1.81 ± 0.05) Hz, and T = 450 pK, we

get 1/[β
√

(F harm
3 )ββ] � 0.011. Our bound is one order of

magnitude smaller than the experimental error 80/450 � 0.18,
suggesting that the realized sensitivity can be improved.

B. Normal Bose-Einstein condensation under isobaric cooling

A different behavior of bosonic gases occurs when the
temperature is lowered at constant pressure, instead of
constant volume, in ideal homogeneous bosonic gases in two
dimensions with vanishing boundary conditions [79]:
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εk = (k2
x + k2

y)/(2m), with kx,y = π
L
nx,y and nx,y =

1,2,3, . . . . Under isobaric cooling, the density diverges,
and all the dependencies on the volume must be carefully
considered. This explains why this kind of BEC depends
on the boundary conditions, because boundary conditions
affect the scaling of the ground-state energy with respect
to the volume [79]. In this example, a transition towards

a normal BEC takes place at temperature Tc =
√

12h̄P
πmkB

.

Equations (42)–(46) hold above the critical temperature. The
volume is subextensive when it approaches Tc from above
or below Tc (i.e., the volume scales sublinearly with the
number of particles), and the density diverges. A divergent
particle density is a known mechanism to overcome no-go
theorems [80–85] for BEC in low dimensions [70,86–88].
Approaching the critical temperature, the density is

	 = 〈N〉/V2 � −
√

3mP

π3h̄2 ln(T/Tc − 1), as computed in [79].

Hence, Fμ,μ scales superlinearly with 〈N〉 as in Eq. (64), but
not Fβ,β � π2

3β2λ2
T 	

〈N〉 and Fμ,β � 〈N〉(1 − 1
λ2

T 	
).

Below the critical temperature we need to single out the
contribution of the ground state in the sums. This contribution
to Fμ,μ is β�2N0 = β2(〈N0〉 + 〈N0〉2), which would imply
a quadratic scaling in the Fisher information. However,
applying the theory of spontaneous symmetry breaking, the
variance �2N0 vanishes because the number of particles in
the condensate is approximated with a number. Moreover, the
contribution of the excited states comes from the continuum
approximation of the noncondensed gas. However, the integral
in Fμ,μ diverges,1 and we need to compute the discrete
sum, whose leading order comes from the behavior of small
momenta. This contribution is the same as (66) without
the term 1/μ2, and scales as V 2

2 . Since below the critical
temperature the nonextensive scaling of the volume is V2 =
O(

√〈N〉), the previous Fisher information scales linearly in
the average number of particles. However, at the edge of
the transition 〈N〉 = O(V2 ln V2); thus, the Fisher information
scales more than linearly with the average number of particles
Fμ,μ/〈N〉 = O(V2/ ln V2).

As pointed out before, Fβ,β and Fμ,β scale at most linearly
with the average number of particles both in the ground-state
contribution and in the excited-state contribution within the
continuum approximation.

C. Generalized Bose-Einstein condensation and dimensional
confinement

A different kind of condensation, called generalized BEC,
occurs when a band of states of zero measure is macroscopi-
cally occupied, rather than only the ground state. Examples
are ideal gases confined in anisotropic homogeneous or
harmonic potentials. If the confinement is much stronger in
some directions, the contributions of the excited energy levels
in the less confined directions dominate below the critical
temperature. In other words, the condensation occurs only

1Following the analysis of [79] at finite but large size, one can
show that substituting the sum with the integral in Fμ,μ gives a non-
negligible error.

in the ground state of the more confined directions, and an
effective lower dimensional gas is realized. A hierarchy of
condensations is possible: from a three-dimensional gas to a
two- or one-dimensional gas and from a two-dimensional gas
to a one-dimensional gas. Generalized BEC has been studied
both at finite size and in the thermodynamic limit focusing on
the mathematical structure and general properties of quantum
gases [70,76,77,87,89–98], in connection with liquid helium
in thin films [99–102], magnetic flux of superconducting rings
[86], and gravito-optical traps [103]. Experimental realizations
with trapped atoms have been reported in [53–56,71–73].
We discuss estimation sensitivity of (β,μ) in the presence
of condensation into lower dimensional gases. The scheme
is as follows. First prepare a three-dimensional gas in the
grand-canonical thermal state with a fixed density, then lower
the temperature until the onset of the generalized condensation.
Afterwards, the gas can be employed for the estimation with
sensitivity given by the Fisher matrix.

For the sake of concreteness, we consider an ideal ho-
mogeneous gas confined in a slab, namely, a box of di-
mension Lx × Ly × Lz with Lx,y 
 Lz, where condensation
in a two-dimensional gas occurs [77,86,92,97,99,102]. This
system is also analytically convenient because the average
number of particles and the Fisher information relative to the
chemical potential of the two-dimensional homogeneous gas
have simple expressions (47) and (48). Note also the formal
similarity with the ideal gas confined in a cigarlike harmonic
potential [70,76,77,96,97], because both the two-dimensional
ideal gas in a box potential and the one-dimensional ideal gas
in a harmonic potential have a constant density of states.

The critical density and the critical temperature of the
three-dimensional gas are, respectively, 	3D

c = ζ (3/2)/λ3
T =

	 (T/T 3D
c )3/2 and T 3D

c = 2πh̄2

kBm
[ 	

ζ (3/2) ]
2/3. If 	 > 	3D

c and T <

T 3D
c , a number of particles f 〈N〉, with f = 1 − (T/T 3D

c )3/2,
condenses in a small part of the modes. Since Lx,y 
 Lz,
the occupancies [eβ(εk−μ) − 1]−1 of the energy levels with
nz �= 0 are negligible compared to the others below the
critical temperature. The remaining modes form a two-
dimensional gas consisting of energy levels with nz = 0,
and the number of particles confined there is given by (42),
namely, 〈N〉hom

2 � −LxLy

λ2
T

ln(β|μ|) for small β|μ|. If these

states constitute the condensate, then 〈N〉hom
2 = f 	 LxLyLz

and β|μ| � e−f 	λ2
T Lz . Moreover, in order for the occupancies

of the modes with nz = 0 to contribute with a singular measure
in the continuum limit, the chemical potential should satisfy
βε(kx ,ky ,0) � |βμ| � e−f 	λ2

T Lz � βε(0,0,kz �=0). This implies that
Lx = Ly � γ eαLz for some constant α independent of Lz and
some function γ (Lz) that does not suppress the exponential
scaling with Lz.

In order to find the behavior of γ in the thermodynamic
limit, we now compare the chemical potential with the first
excited energy in the transversal directions, x and y, i.e.,
ε(1,0,0) = πλ2

T /(βL2
x). The number of particles in the two-

dimensional condensate 〈N〉hom
2 grows when β|μ| decreases

and is estimated in the deep two-dimensional condensate phase
by its value at β|μ| � βε(1,0,0). The latter is the condition for
the possible onset of a second condensation in the ground state
alone where the energy of all the excited states is negligible
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compared to the energy scale β|μ|. If Lx = Ly � γ eαLz ,
the gas directly condenses in the ground state without the
intermediate two-dimensional condensate, and indeed β|μ| �
βε(1,0,0) implies 〈N〉hom

2 /V3 � 2α/λ2
T − ln(πλ2

T /γ 2)/(λ2
T Lz).

This evaluation for the two-dimensional occupation is compat-
ible with the absence of a two-dimensional condensate, i.e.,
〈N〉hom

2 � 1, provided (ln γ /λT )/Lz → 0 when Lz → ∞. In
the opposite limit Lx = Ly 
 γ eαLz , 〈N〉hom

2 /V3 
 2α/λ2
T −

ln(πλ2
T /γ 2)/(λ2

T Lz) implies that the number of particles
in the two-dimensional condensate grows indefinitely with
decreasing β|μ|. In the absence of a saturation, there is no
further condensation towards the ground state. Such satu-
ration occurs if Lx = Ly = γ eαLz : 〈N〉hom

2 /V3 � 2α/λ2
T −

ln(πλ2
T /γ 2)/(λ2

T Lz) → 2α/λ2
T in the thermodynamic limit.

Thus, there is a second critical density 	2D
c = 	3D

c + 2α/λ2
T :

When the density approaches 	2D
c the chemical potential scales

as β|μ| � e−2αLz , whereas if 	 > 	2D
c a second condensation

with a macroscopic fraction of particles in the ground state
occurs and the chemical potential scales as the inverse of the
three-dimensional volume.

One can also derive the temperature T 2D
c below which the

occupation of the ground state dominates over the other modes
of the two-dimensional gas at finite size. This temperature is
found by imposing that the density equals the second critical
density: ρ(T 2D

c ) = ρ2D
c , equivalent to ζ (3/2)λ−3

T 2D
c

+ 2αλ−2
T 2D

c
=

ρ, where λT 2D
c

is the thermal wavelength evaluated at the
second critical temperature [77]. As mentioned above, a
two-dimensional gas does not condense in the ground state if
the usual thermodynamic limit is considered, with the density
fixed and finite. The reason of such a condensation here is
that the number of particles in the two-dimensional gas is
proportional to the total number of particles of the original
three-dimensional gas, thus to the three-dimensional volume,
and the two-dimensional density 〈N〉hom

2 /(LxLy) = g	Lz di-
verges in the thermodynamic limit. We will see that this is also
the reason for a superlinear scaling of the Fisher information
as soon as a condensation in a two-dimensional gas occurs.

We focus on the temperature regime T 2D
c � T � T 3D

c ,
where the number of particles in the two-dimensional gas
is 〈N〉hom

2 = 〈N〉 − ρ3D
c V3 = f 〈N〉. The macroscopic occu-

pation of a vanishingly small number of modes, namely,
the two-dimensional gas, below the first critical temperature
cannot be described by the continuum approximation of the
eigenenergies. Thus, the contributions of the condensate must
be singled out from the integral (41) in the thermodynamic av-
erages. For instance, the average number of particles is [76,77]

〈N〉 = 〈N〉hom
2 + 〈N〉hom

3

= V3

λ2
T Lz

ln(1 − eβμ) + V3

λ3
T

Li 3
2
(eβμ)

= f 	V3 + 1

λ3
T

Li 3
2
(eβμ). (83)

Similarly, the entries of the Fisher matrix are the sum of three-
and two-dimensional contributions: At the leading orders for
large Lz,

Fμ,μ = (
F hom

2

)
μ,μ

+ (
F hom

3

)
μ,μ

= β2LxLy

λ2
T

(
ef 	λ2

T Lz − 1
) + β2V3

λ3
T

Li 1
2
(eβμ), (84)

Fβ,β = (
F hom

2

)
β,β

+ (
F hom

3

)
β,β

� LxLy

3β2λ2
T

(
π2 − 3e−f 	λ2

T Lz
)

+ V3

β2λ3
T

[
β2μ2Li 1

2
(eβμ) − 3βμLi 3

2
(eβμ)

+ 15

4
Li 5

2
(eβμ)

]
, (85)

Fμ,β = (
F hom

2

)
μ,β

+ (
F hom

3

)
μ,β

� LxLy

λ2
T

(
−1 + e−f 	λ2

T Lz

2

)
− f 	 V3

+ V3

λ3
T

[
βμLi 1

2
(eβμ) − 3

2
Li 3

2
(eβμ)

]
. (86)

The entries Fβ,β and Fμ,β are linear in the volume, thus also
in the average number of particles 〈N〉. On the other hand,

Fμ,μ

〈N〉 = β2

	λ2
T Lz

(
ef 	λ2

T Lz − 1
) + β2

	λ3
T

Li 1
2
(eβμ). (87)

The two contributions, coming, respectively, from the two-
dimensional condensate and the three-dimensional bulk, di-
verge as Lz → ∞. To see the divergence of the contribution
from the three-dimensional cloud, we recall that the chem-
ical potential between the two critical temperatures satisfies
β|μ| � e−f 	λ2

T Lz . This value is larger than the minimum
energy spacing, that is, β(2πh̄)2/(2mγ 2e2αLz ); thus, the con-
tinuum approximation still holds in analogy to the discussion
of the bound (41). Therefore, for small chemical potentials the
approximation Li1/2(eβμ) = √

π/(β|μ|) + O(1) implies that

the last term of Fμ,μ/〈N〉 behaves as
√

πβ2

	λ3
T

ef 	λ2
T Lz/2.

In particular, if Lx = Ly = γ eαLz , then γ 2Lze
2αLz = V3 =

〈N〉/	 and 2αLz � ln(V3/�
3), for large Lz/�, where � is a

characteristic length, e.g., � = λT or � = 1/α. Thus,

Fμ,μ

〈N〉 = 2αβ2

	λ2
T ln 〈N〉

	 �3

[( 〈N〉
	 �3

) f 	λ2
T

2α

− 1

]
+

√
πβ2

	λ3
T

( 〈N〉
	 �3

) f 	λ2
T

4α

.

(88)

Figure 5 is the log-log plot of the Fisher information in
Eq. (88) against the average number of particles at different
temperatures between the two critical temperatures. The slopes
show increasing superlinear scalings comprised between the
classical limit exhibiting a linear scaling and the zero tempera-
ture case, i.e., all particles in the ground state. Below the second
critical temperature, a macroscopic number of particles 〈N0〉
occupy the ground state. The contribution of this second BEC
must be singled out from statistical averages. As discussed in
Sec. V A, its contribution to the Fisher information Fμ,μ is
β2(〈N0〉 + 〈N0〉2). Thus, a quadratic scaling emerges with an
increasing weight when temperature decreases.

We emphasize that the one-dimensional ideal gas trapped in
a harmonic potential has mathematically similar properties as
the two-dimensional ideal gas in an infinite square potential. In
particular, a three-dimensional harmonically trapped gas with
frequencies ωx,y,z in the three directions can be confined to
the x direction if ωx � ωy,z, as studied in [70,76,77,96,97].
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FIG. 5. Double logarithmic plot of the rescaled Fisher informa-
tion Fμ,μ/β2 of an ideal Bose gas versus the average number of
particles of a gas of 87Rb atoms in a slab with exponential anisotropy
Lx,y ∼ γ eαLz . The curves refer to different temperatures: classical
limit (continuous line, linear in 〈N〉), first critical temperature
T 3D

c = 100 nK (dotted line), T 3D
c /2 (dashed line), second critical

temperature T 2D
c = 20 nK (dot-dashed line), zero temperature (thick

continuous line, quadratic in 〈N〉 [see Eq. (81)]). The two critical
temperatures are uniquely determined by ρ = 13 × 1012 cm−3 and
α = 10 μm−1. Furthermore, � = λT .

The equations for the average number of particles and the
Fisher matrix in the condensed phase are the sum of three- and
one-dimensional contributions, similar to the above-discussed
case of homogeneous gas. For instance,

Fμ,μ

〈N〉 = βωyωz

	̃h̄
(e

h̄β	̃

ωyωz − 1) + Li2(eβμ)

	̃βh̄3 , (89)

which diverges in the thermodynamic limit. Notice that now
the contribution from the three-dimensional harmonically
trapped gas Li2(eβμ) is always bounded, unlike the analogous
contribution in the case of the square potential.

VI. FISHER MATRIX WITH INTERACTING BOSE GASES

In this section we discuss how the interactions modify the
aforementioned superlinear scaling of the Fisher information
Fμ,μ. It is already known that small interactions can wipe
out the superlinear scaling of Fμ,μ for the three-dimensional
homogeneous gas below the critical temperature [46,57]. We
now consider three models of interactions which have different
effects on the Fisher information. The first model describes
harmonic interactions which preserve the superlinear scalings
discussed above. Then we discuss mean-field interactions
for which a complete analytic solution can be computed,
resulting in the suppression of the superlinear scaling of the
Fisher information unless the interaction strength is very small.
Finally, we consider contact interactions which do not allow a
general analytic computation but can be treated perturbatively
for small interactions. This regime, which is experimentally
accessible [56], is characterized by only small deviations from
sub-shot-noise. In the latter two models, there is a tradeoff
between the smallness of the interaction and the strength
of the sub-shot-noise: The stronger the gain over the shot

noise, the weaker the interaction must be in order to preserve
sub-shot-noise.

A. Harmonic interactions

A simple model for interacting systems is given by har-
monic interactions [5]. Consider for the moment the interacting
Hamiltonian at the level of first quantization, e.g.,

H1st =
∑

j

( p2
j

2m
+ mω2r2

j

2

)
+
∑
j,l

γ (rj − rl)
2, (90)

where pj and rj are, respectively, the momentum and the
position of the j th particle. The Hamiltonian is a quadratic
form in the variables {pj ,rj }j . Therefore, via a rotation in the
phase space (p̃1,r̃1,p̃2,r̃2, . . . ) = R(p1,r1,p2,r2, . . . ), where
R is an orthogonal matrix, the Hamiltonian can be recast into

a non-interacting-like Hamiltonian H̃1st = ∑
j (

p̃2
j

2m̃
+ m̃ω̃2 r̃2

j

2 ).
Moving to the second quantization, we have a problem
formally similar to that of an ideal gas in a harmonic potential,
discussed in the previous sections. The interactions in this
model are hidden in the phase-space rotation which maps
single-particle operators and modes into collective operators
and modes. Thus, the above considerations on harmonically
trapped gases apply with the substitution ωx,y,z → ω̃x,y,z.

B. Mean-field interaction

Here, we focus on the Bose gas with mean-field interaction,
also known as imperfect Bose gas. The Hamiltonian is H =
H0 + λN2/(2Vd ), where H0 is the Hamiltonian of the ideal
gas as in (30), N is the total number operator (1), Vd is
the volume, and λ is the interaction strength. λ is positive
for repulsive interactions, which always take place at small
distances. This statistical model has been solved in [104] for
a general class of noninteracting Hamiltonians independently
of the dimensionality. The grand-canonical thermodynamic
potential, i.e., the pressure, is

pλ = 1

Vdβ
ln Z

(λ)
G = [μ − α(μ)]2

2λ
+ p0(α(μ)), (91)

where Z
(λ)
G is the grand-canonical partition function of the

mean-field model, p0 = limλ→0 pλ is the pressure of the nonin-
teracting gas, α(μ) is zero if μ � λρc and is the unique solution
of α + λ ∂αp0(α) = μ if μ < λρc, and ρc if the critical density
which coincides with that of the noninteracting Hamiltonian.
From the thermodynamic potential we can compute all the
statistical averages, for instance,

〈N〉λ = 1

β

∂

∂μ
ln Z

(λ)
G = Vd

λ
[μ − α(μ)], (92)

�2
λN = 1

β2

∂2

∂μ2
ln Z

(λ)
G

= Vd

β

∂2
αp0(α)

1 + λ ∂2
αp0(α)

= Vd�
2
0N

Vd + λβ�2
0N

, (93)

F (λ)
μ,μ = β2�2

λN = VdβF (0)
μ,μ

Vdβ + λF
(0)
μ,μ

. (94)

From these computations, we learn that the imperfect Bose
gas has the same critical density as the ideal gas with the same
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noninteracting Hamiltonian. In particular, there is the same
hierarchy of condensation mentioned in the previous section: A
three-dimensional gas condenses into a two-dimensional gas,
which may condense in the unique ground state. However, the
thermodynamic properties differ from those of the ideal gas.
For instance, the Fisher information F (λ)

μ,μ always scales at most
linearly with the volume for finite interaction strengths. Indeed,
even if F (0)

μ,μ scales superlinearly with the average number of
particles, then F (λ)

μ,μ � Vdβ/λ, i.e., is simply extensive due
to the proportionality of the volume Vd to the total particle
number, unless λ � Vdβ/F (0)

μ,μ. This happens both in the three-
dimensional bulk and in the lower dimensional condensate.

If the ideal system exhibits a superlinear scaling of the
Fisher information, the bound λ � Vdβ/F (0)

μ,μ goes to zero for
infinite size. In this limit, the superlinear scaling disappears
for any coupling constant, but at finite size there are values of
λ which do not destroy the sub-shot-noise.

C. Contact interaction

From a theoretical perspective, the study of BEC in statis-
tical mechanics becomes a highly nontrivial problem in the
presence of interactions; see [105] for a review. In particular,
the condensation is driven not only by the decreasing of
temperature but also by the presence of interactions. This
implies the coexistence of different condensates and a complex
structure of the states occupied in the condensed phases,
without a clear extension of the generalized BEC in lower
dimensional gases. On the other hand, a kinematic approach
was investigated to prove dimensional confinement [106],
later implemented in mesoscopic systems [53–56,71–73]. This
approach consists of proving that the scattering amplitudes of
a three-dimensional bosonic gas with contact interactions and
a strong harmonic confinement in two transverse dimensions
correspond to those of an effective one-dimensional gas, if the
incident wave is frozen in the transverse ground state and its
longitudinal kinetic energy is smaller than the energy spacing
of the transverse potential. The effective one-dimensional gas
is described by the Yang-Yang model, which was formally
solved in [107].

The Hamiltonian of the model is

H =
∑

k

k2

2m
a
†
kak + c

2Lx

∑
k1,k2,q

a
†
k1−qa

†
k2+qak2ak1 , (95)

and its statistical properties are relevant in a number of
experiments that realize this system [54–56,71–73]. The
peculiarity of this statistical model is that the excitations at
infinite interaction strength behave as noninteracting fermions,
while of course they are single-particle bosonic modes for
vanishing interactions. It is desirable for applications to know
the Fisher matrix in the presence of contact interaction.

The formal computation of statistical averages involves
the solution of two coupled nonlinear integral equations,
which can be solved only numerically. Nevertheless, some
analytical results were derived, such as the second-order
coherence function g(2) in different regimes perturbatively
for weak and strong interactions [108]. Thus, we focus on
the Fisher information of the chemical potential Fμ,μ which
shows sub-shot-noise in the limit of zero interaction and for
high densities or fixed volumes (67). Given the second-order

coherence function, we can compute the variance of the total
number of particles, and then the Fisher information Fμ,μ (6).
The relation between the second-order coherence function and
the total number variance is reported in (C3) and proved in
Appendix C.

Different regimes are parametrized by the two dimension-
less quantities, γ = 2πβc

λ2
T 	

and τ = 4π

λ2
T 	2 . The g(2) function for

strong interactions, γ 
 1, exhibits the typical fermionic anti-
bunching behavior, namely, 0 � g(2) � 1 [108]. This property
causes a reduction in the variance �2N , and thus of Fμ,μ,
with respect to the shot noise, as is clear from Eq. (C3). On
the other hand, bunching g(2) > 1, typical of noninteracting
bosons, is responsible of a superlinear scaling of �2N and Fμ,μ

with 〈N〉. The quantum degenerate gas with small interactions,√
γ � τ � 1, is close to the ideal bosonic gas. Therefore, the

g(2) function was derived in [108] within perturbation theory
in the coupling constant c:

g(2)(r) = 1 +
[

1 − 4γ

τ 2
(1 + 	τr)

]
e−	τr . (96)

Plugging this formula into Eq. (C3), we get the Fisher
information

Fμ,μ = β2〈N〉 + β2λ2
T 	2

2π
〈N〉 − β2λ4

T 	4

8π2

(
1 − e

− 4π

λ2
T

	2 〈N〉)
+ c

[
3β3λ6

T 	7

16π3

(
1 − e

− 4π

λ2
T

	2 〈N〉)

− β3λ4
T 	5

4π2
〈N〉(2 + e

− 4π

λ2
T

	2 〈N〉)]
. (97)

The condition
√

γ � τ is equivalent to c � 8π

βλ2
T 	3 , and τ �

1 reads λ2
T 	2 
 4π . Notice that the Fisher information Fμ,μ

scales linearly with 〈N〉, if the density 	 = 〈N〉/Lx is fixed.
Instead, if the size Lx is fixed, superlinear scaling emerges.

Let us consider the first line of (97), that is, the Fisher
information of the ideal gas. The second contribution in the

first line of (97), β2λ2
T

2πL2
x
〈N〉3, is exactly the Fisher information

already found for the one-dimensional ideal gas with small
chemical potentials, hence large number of particles. It could
seem that the third contribution in the first line of (97) scales
quartically with 〈N〉, for fixed Lx , and thus dominates. This
is impossible, since this contribution is negative and the
Fisher information is non-negative by definition. However,
condition (61) and Eq. (42) for small chemical potentials
imply λ2

T 	2 � π〈N〉. Thus, for very large numbers of particles

〈N〉 
 λ2
T 	2

4π

 1, and the absolute value of the third term is

therefore much smaller than the second one.
Now we consider the second line of (97), namely, the

corrections to the ideal gas due to small interactions. These
contributions are linear in 〈N〉 if the density is fixed, but they
scale superlinearly if the size Lx is fixed. The last term in

(97) dominates for 〈N〉 
 λ2
T 	2

4π

 1, and the leading order

of the correction due to the interactions is negative, and its
absolute value is much smaller than the leading order without
interactions:

−c
β3λ4

T

2π2L5
x

〈N〉6 � −4β2λ2
T

πL2
x

〈N〉3. (98)
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The inequality is a consequence of the condition
√

γ �
τ ⇔ c � 8π

βλ2
T 	3 . Since the corrections to the Fisher informa-

tion are negative, interactions counteract the sub-shot-noise.
However, the corrections are much smaller than the Fisher
information without interactions. Hence, the sub-shot-noise of
one-dimensional homogeneous ideal gases is robust against
the detrimental effect of small contact interactions c � 8π

βλ2
T 	3 .

Sub-shot-noise can be observed at fixed volume or high
density. This condition reduces the range of admissible
coupling constants. Moreover, the condition τ � 1 implies
λ2

T 	2 � 4π ; thus, c � 2/β. It is also interesting that the
bound 8π

βλ2
T 	3 increases with the temperature. Although (97)

is the first perturbative order, a superlinear scaling of the
particle fluctuations, thus of the Fisher information, was
experimentally observed at fixed volume even beyond the
condition

√
γ � τ [56].

In Fig. 6, we plot the perturbative formula (97) at different
interaction strengths in double logarithmic scale. The sudden
drop in the curves is a signature of the failure of the perturbative
expansion, where additional terms are required. First, we
notice that decreasing the interaction, the superlinear regime is
observed for larger average number of particles. Moreover, we
considered 87Rb atoms confined in a fixed size Lx = 4.5 μm at
temperature T = 510 nK. These are the parameters of a recent
experiment where superlinear particle number fluctuations
were observed even beyond the perturbative regime close to
the noninteracting case [56]. Our results are in agreement with
the experimental data, considering that the Fisher information
of the chemical potential is proportional to the particle
number fluctuations, and taking into account the experimental
sensitivity of the camera and the depletion of particles in
the transversal excited states as explained in the article [56].

FIG. 6. Log-log plot of the rescaled Fisher information Fμ,μ/β2 in
the perturbative regime (97) against the average number of particles.
The results are for a gas of 87Rb atoms confined in Lx = 4.5 μm at
T = 510 nK and interaction strength c = 2.93 × 10−40 J m (dotted
line), c = 2.93 × 10−38 J m (dashed line), and c = 0 (dot-dashed
line). The thin continuous line is the shot noise resulting from
the classical limit, the thick dashed line is the best scaling achievable
within the continuum approximation (67), and the thick line is
the Fisher information if all particles are in the ground state, i.e.,
the zero-temperature case.

Furthermore, this experiment implies that it is possible to check
the quantum sensitivity for the estimation of the chemical
potential in one-dimensional interacting gases.

VII. CONCLUSIONS

In summary, we have given a detailed investigation of the
sensitivity with which temperature and chemical potential of
quantum gases can be measured. This was done by calculating
the quantum Fisher information matrix first for ideal fermionic
and bosonic gases and then examining three different models
of interacting gases. In agreement with previously known
results we have shown that the best sensitivity of temperature
measurements of ideal quantum gases shows SQL-like scaling
with the number of particles, both for fermionic and bosonic
gases, and irrespective of whether or not the latter are close
to the condensation transition. As a function of temperature,
the relative error diverges as 1/

√
T for homogeneous and

harmonically trapped fermionic gases, as 1/T d/4 for homoge-
neous BECs, and as 1/T d/2 for harmonically trapped BECs.
This demonstrates that in addition to the impossibility of
reaching absolute zero temperature according to the third law
of thermodynamics, it also becomes increasingly difficult to
measure how close to absolute zero temperature one is. The
relative uncertainty increases more rapidly for bosons than
for fermions at small temperatures and dimensions larger than
one, reflecting the bunching behavior of the bosons.

The sensitivity for measurements of the chemical potential,
which has immediate applications to the ultimate precision of
voltage measurements in electrical conductors, has a richer
behavior. While for fermions the SQL, corresponding to
a linear scaling of the quantum Fisher information with
the particle number N , cannot be surpassed, bosonic gases
allow, in principle, enhanced sensitivity beyond the SQL. We
have shown this in different scenarios: standard isochoric
BEC; isobaric BEC; and generalized BEC in two- or one-
dimensional samples, where a hierarchy of condensation
transitions can arise, with condensation first taking place in
a subspace of Hilbert space. The superlinear scaling of the
Fisher information relative to the chemical potential originates
in the macroscopic occupation and the consequent bunching-
induced fluctuations in the occupation of the eigenstates of
the BEC. Furthermore, the superlinear scaling never beats
the fluctuations at T = 0 that scale quadratically with N .
These results are not modified in a simple model of harmonic
interactions. However, in a model of mean-field interactions
the superlinear scaling of the quantum Fisher information
is destroyed unless the interactions are very small. Small
contact interactions, treated in perturbation theory, lead to
small corrections of the superlinear scaling of the quantum
Fisher information in one-dimensional quantum degenerate
gas, and indicate that the chemical potential of bosons can
indeed be measured with sub-SQL sensitivity.

We stress that the two parameters can be jointly estimated.
This is an unusual feature of quantum multivariate estimation
and stems from the fact that our problem can be recast
as a classical statistical problem in the representation of
eigenstates of the energy and the particle number. The optimal
joint estimation consists of measuring μN − H and N ,
while the optimal single parameter estimation of temperature
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(chemical potential) can be achieved via the measurement
of μN − H (N ). The number of particles is measured with
absorption imaging in a number of experiments [51,52,56],
while the temperature estimation and the corresponding
optimal measurement of μN − H is hard to implement. The
experimental observation of particle number fluctuations in
the light of the present analysis opens the possibility for future
realizations of quantum sensors based on the measurement of
the chemical potential. Furthermore, superlinear sensitivities
can be achieved by different physical systems, such as dipolar
BEC where super-Poissonian particle number fluctuations
have been numerically computed [109].
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APPENDIX A: CLASSICAL GASES AND QUANTUM GASES
OF DISTINGUISHABLE PARTICLES

In this Appendix, we derive the Fisher matrix for classical
ideal gases and quantum ideal gases of distinguishable par-
ticles. The latter case is equivalent to the former: Once the
grand-canonical thermal state of the quantum gas is written
in its eigenbasis in first quantization, the computation of the
partition function and all the statistical averages is the same
as the for the classical gas. Indeed, distinguishable particles
fulfill the Maxwell-Boltzmann counting and they both suffer
from the Gibbs’ paradox. Thus, we discuss only classical gases.

The Hamiltonian of N particles of an ideal gas is the sum
of single-particle Hamiltonians H = ∑N

j=1 Hj , where Hj is
the Hamiltonian of the j th particle. Consider a gas of identical
classical particles, Hj = H1 for all j . The grand-canonical
partition function is

ZG =
∞∑

N=0

(eβμZc)N

N !
= eeβμZC , (A1)

where ZC = ∑
H1

e−βH1 is the canonical partition function
of the single-particle problem, and the factor N ! is the cure
to the Gibbs’ paradox [46,58]. This factor arises naturally
in the classical limit of quantum gases, i.e., for a high-
temperature and low-density equivalent to eβμ � 1 [46].
Define the single-particle mean energy 〈H1〉 = −∂ ln ZC/∂β

and its variance �2H1 = ∂2 ln ZC/∂β2. From the partition
function, we compute the average number of particles, the
average total energy, and the Fisher matrix:

〈N〉 = eβμZC, 〈H 〉 = 〈N〉(〈H1〉 − μ), (A2)

Fμ,μ = β2�2N = β2〈N〉, (A3)

Fβ,β = �2(μN − H ) = 〈N〉((μ − 〈H1〉)2 + �2H1), (A4)

Fμ,β = Fβ,μ = β Cov(N,μN − H ) = β〈N〉(μ − 〈H1〉).
(A5)

Notice that the entries of the Fisher matrix scale linearly with
the average number of particles, in accordance with the shot
noise.

For the homogeneous gas in d dimensions, the single-
particle Hamiltonian is H1 = p2

2m
, which gives ZC =

Vd (2πm/β)d/2, 〈H1〉 = d/(2β), and �2H1 = d/(2β2). For
the d-dimensional gas in a harmonic potential, the single-
particle Hamiltonian is H1 = p2

2m
+ 1

2mω2x2 which gives
ZC = (2πm/β)d/2, 〈H1〉 = d/β, and �2H1 = d/β2. For
quantum gases of distinguishable particles all with the same
single-particle Hamiltonian, one has to consider the sum
over the eigenvalues of H1 in ZC . The computations provide
prefactors depending on h̄, which do not affect statistical
averages with respect to classical gases.

APPENDIX B: ESTIMATION PROBLEM FOR IDEAL
FERMIONIC GASES AT ZERO TEMPERATURES

One of the assumptions for the validity of the quantum
Cramér-Rao bound is the differentiability of the density
matrix, as is evident from the formula of the Fisher matrix
(4). If this assumption is not met, the quantum Cramér-Rao
bound is generalized by the quantum Hammerseley-Chapman-
Robbins-Kshirsagar bound [74]. The Fermi-Dirac distribution
involved in the grand-canonical thermal state (32) is the step
function at zero temperature. This means that all the particles
occupy the eigenstates of the Hamiltonian with energy smaller
than the chemical potential. At zero temperature the chemical
potential is changed only if an additional particle occupies
the first empty eigenstate. Thus, the smallest change of the
chemical potential is the energy difference between the two
eigenstates, and the new thermal state is orthogonal to the
original one. This implies a noncontinuous change of the
density matrix, and the state is not differentiable with respect
to the chemical potential.

We now consider the estimation of the chemical potential,
following the theory for nondifferentiable models. Since the
temperature should be set to zero, in order to have a non-
differentiable thermal state, we focus on the single-parameter
estimation of the chemical potential. The starting point is to
define a finite change of the chemical potential, say δ, and the
finite ratio

�δρβ,μ = ρβ,μ+δ − ρβ,μ

δ
. (B1)

This ratio plays the role played by the derivative in the Fisher
matrix. The symmetric logarithmic derivatives are generalized
by the operators Lμ,δ , defined by

�δρβ,μ = 1
2 {ρβ,μ,Lμ,δ}, (B2)

and the Fisher information is replaced by the following
quantity:

Jμ,δ = tr
(
ρβ,μL2

μ,δ

) = tr(�δρβ,μLμ,δ). (B3)

Finally, the quantum Hammerseley-Chapman-Robbins-
Kshirsagar bound reads

var(μ) � 1

Jμ,δ

, (B4)
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which corresponds to the quantum Cramér-Rao bound if δ →
0 and the density matrix is differentiable. The inequality (B4)
is sharp, and the measurement that provides an estimation of
μ with the minimum uncertainty is a projective measurement
on the eigenbasis of Lμ,δ , i.e., a measurement of the energy
and the number of particles.

If the Fermi energy is degenerate, the thermal state at
zero temperature ρβ=∞,μ is an equally weighted mixture of
several pure states. Denote g as its degeneracy. The explicit
computation in the eigenbasis of the thermal state gives the
following result:

Jμ,δ = g

δ2
. (B5)

At T = 0, if the chemical potential is directly tuned, the small-
est change δ is the energy spacing. The finite parallelepiped-
shaped quantization volumes of homogeneous two- and
three-dimensional gases discussed here break the rotational
symmetry. This has some consequences on the energy spacing.
Consider isotropic volumes Lx = Ly = Lz = L and Fermi
momentum almost parallel to one quantization axis or plane,
i.e., only few excitations in at least one direction, say nx ∼
O(1). The distance between the corresponding Fermi energy
and the nearest level is O( h̄2

mV
2/d

d

). On the other hand, if the

Fermi energy is characterized by momenta with large wave
numbers nx ∼ ny ∼ nz ∼ O(ηL) with some constant η, the

spacing to the next energy level is O( h̄2η

mV
1/d

d

). These two

different scalings give two different regimes for the sensitivity:
Jμ,δ ∼ O[ gm2

h̄4	
4
d

(〈N〉hom
d )

4
d ] and Jμ,δ ∼ O[ gm2

h̄4η2	
2
d

(〈N〉hom
d )

2
d ],

respectively, where only the first scaling is superlinear when
the density is finite and d > 1. Notice that the Fermi energies
which provide the faster scaling of the sensitivity are rare,
because only a few wave numbers satisfy nx ∼ O(1).

This difference originates in the above-mentioned break
of the rotational symmetry which splits some energy levels.
Indeed, if the quantization volume is finite and spherical,
the eigenenergies p2

2m
depend only on one quantum number,

i.e., the quantized modulus of the momentum p which scales
with the finite radius of the box as p ∼ O(h̄/R) = O(h̄/V

1/d

d )
[110]. Thus, given the modulus of the Fermi momentum kF ,
the energy spacing and the sensitivity are

δ ∼ O

(
h̄kF

mV
1
d

d

)
, Jμ,δ ∼ O

[
gm2

h̄2k2
F 	

2
d

(〈N〉hom
d

) 2
d

]
. (B6)

If the density 	 = 〈N〉hom
d /Vd is fixed, the scaling of Jμ,δ

with the average number of particles is sublinear in three
dimensions, linear in two dimensions, and superlinear in one
dimension. Note that the square and the spherical quantization
volume coincide in one dimension, and thus only the result
(B6) applies. For harmonically trapped isotropic gases,

δ = h̄�d, Jμ,δ = g

h̄2	̃
2
d

(〈N〉harm
d

) 2
d . (B7)

If the density 	̃ = 〈N〉harm
d �d

d is fixed, Jμ,δ has the same scaling
as in (B6).

The absence of superlinear scaling in more than one dimen-
sion can be understood with the presence of high degeneracy

in the energy eigenspaces which becomes continuous in the
limit of infinite volume. Indeed, the energy depends only
on the modulus of p in (41) or of x in (49). Therefore,
when the chemical potential is changed, the new particles or
holes are spread on the entire eigenspace. Since the optimal
measurement is a projective measurement onto the Fock states,
i.e., eigenstates of the total number of particles, the continuous
degeneracy of the Fermi surface in two and three dimensions
makes the measurement more difficult than in one dimension
with a twofold degeneracy. To further investigate the role of the
continuous degeneracy, consider anisotropies that break this
degeneracy. We now focus on gases in an anisotropic harmonic
potential, for the simplicity of the linear energy spacing,
with frequencies ωx = ω/αx , ωy = ω/αy , ωz = ω/αz, finite
ω, and αx > αy � αz. The typical energy spacing and the
corresponding sensitivity for large anisotropies αx 
 αy,z are
given by

δ = h̄
ωx

αx

, Jμ,δ = gα2
x

h̄2ω2
. (B8)

If αx = αn
y = αn

z , the density is 	̃ = 〈N〉harm
3 ω3α

−1−2/n
x , and

the inverse sensitivity

Jμ,δ = g ω4 n−1
n+2

h̄2	̃
2n

n+2

(〈N〉harm
3

) 2n
n+2 (B9)

scales superlinearly with the average number of particles for
n > 2. The fastest possible scaling is quadratic and achieved
for n → ∞.

A different situation occurs if one tunes a continuous
parameter, e.g., the voltage or any potential, that leads to jumps
of the chemical potential. In this case, δ can be arbitrarily small;
for instance, one can increase the voltage by an arbitrarily
small amount δ, until the overall change of the total chemical
potential equals the energy spacing. At this point, the density
matrix suddenly changes into an orthogonal state, so that the
change in the chemical potential is detected with high accuracy.

APPENDIX C: SECOND-ORDER COHERENCE FUNCTION
AND THE VARIANCE OF THE PARTICLE NUMBER

In this Appendix, we prove the relation between the
second-order coherence function and the variance of the
particle number for homogeneous one-dimensional gases.
Consider the field operator �†(x), namely, the creation
operator of a particles localized in position x. Field op-
erators of bosonic particles satisfy commutation relations
[�(x),�†(x ′)] = δ(x − x ′), while fermionic field operators
satisfy anticommutation relations {�(x),�†(x ′)} = δ(x − x ′).
The second-order coherence function is defined as

g(2)(x,x ′) = 〈�†(x)�†(x ′)�(x ′)�(x)〉
〈�†(x)�(x)〉〈�†(x ′)�(x ′)〉 . (C1)

The total number operator is N = ∫
dx�†(x)�(x). Therefore,

with the help of the (anti)commutation relations, the variance
of the total number of particles can be written as

�2N =
∫

dxdx ′[〈�†(x)�(x)�†(x ′)�(x ′)〉

− 〈�†(x)�(x)〉〈�†(x ′)�(x ′)〉]
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= 〈N〉 +
∫

dxdx ′〈�†(x)�(x)〉〈�†(x ′)�(x ′)〉

× [g(2)(x,x ′) − 1]. (C2)

The result is the same for bosons and fermions because two
exchanges of field operators are required. The Hamiltonian
of homogeneous gases commutes with the total momen-
tum, and statistical averages depend only on relative dis-
tances. Thus, g(2)(x,x ′) = g(2)(|x − x ′|) and 〈�†(x)�(x)〉 =

∫
dx ′〈�†(x ′)�(x ′)〉/Lx = 	. Exploiting these properties and

the change of variables (x,x ′) → [r = x − x ′,R = (x +
x ′)/2] in the previous integral, we get

�2N = 〈N〉 + 2	2
∫ Lx

0
dr(Lx − r)[g(2)(r) − 1]. (C3)

Notice that this equation differs form that presented in [57],
which gives the leading contribution for large Lx .
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P. Treutlein, Nature (London) 464, 1170 (2010).
[35] F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M.

W. Mitchell, Nat. Photon. 7, 28 (2013).
[36] M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993).
[37] F. Benatti, R. Floreanini, and U. Marzolino, Ann. Phys. 325,

924 (2010).
[38] F. Benatti, R. Floreanini, and U. Marzolino, J. Phys. B 44,

091001 (2011).
[39] G. Argentieri, F. Benatti, R. Floreanini, and U. Marzolino, Int.

J. Quantum. Inform. 9, 1745 (2011).
[40] F. Benatti and D. Braun, Phys. Rev. A 87, 012340 (2013).
[41] A. Luis, Phys. Lett. A 329, 8 (2004).
[42] A. Luis, Phys. Rev. A 76, 035801 (2007).
[43] M. Napolitano, M. Koschorreck, B. Dubost, N. Behbood, R. J.

Sewell, and M. W. Mitchell, Nature (London) 471, 486 (2011).
[44] D. Braun and J. Martin, Nat. Commun. 2, 223 (2011).
[45] D. Braun and J. Martin, arXiv:0902.1213.
[46] K. Huang, Statistical Mechanics, 2nd ed. (Wiley & Sons,

New York, 1987).
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