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Bohmian-trajectory analysis of high-order-harmonic generation:
Ensemble averages, nonlocality, and quantitative aspects
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We perform a Bohmian-trajectory analysis of high-order-harmonic generation (HHG), focusing on the fact
that typical HHG spectra are best reproduced by the Bohmian trajectory starting at the innermost part of the
core [J. Wu, B. B. Augstein, and C. Figueira de Morisson Faria, Phys. Rev. A 88, 023415 (2013)]. Using
ensemble averages around this central trajectory, we show that for the high-plateau and cutoff harmonics, small
ensembles of Bohmian trajectories are sufficient for a quantitative agreement with the numerical solution of the
time-dependent Schrödinger equation (TDSE), while larger ensembles are necessary in the low-plateau region.
Furthermore, we relate the Bohmian trajectories to the short and long trajectories encountered in the strong-field
approximation (SFA) and show that the time-frequency maps from the central Bohmian trajectory overestimate
the contributions of the long SFA trajectory, in comparison to the outcome of the TDSE computations. We also
discuss how the time-frequency profile of the central trajectory may be influenced nonlocally by degrading the
wave-packet propagation far from the core.
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I. INTRODUCTION

Since its discovery in the late 1980s, high-order-harmonic
generation (HHG) has attracted a great deal of attention
due to the myriad of possible applications such as table-top
extreme ultraviolet sources [1], high-frequency light pulses
of attosecond duration [2,3] (for a review, see Ref. [4]), and
attosecond imaging of dynamic processes in matter [5–9].
These applications have been made possible due to a very
intuitive physical interpretation of HHG in terms of electron
orbits, in which an electron, under the influence of the external
laser field, reaches the continuum by tunnel ionization, is
accelerated by the field, and, at a subsequent time, recollides
with its parent ion [10]. Upon recollision, the electron may
recombine with a bound state, thus emitting high-frequency
radiation. This physical picture is widely known as the three-
step model (TSM).

In early HHG studies, this picture was put forth using an
ensemble of classical electrons being released in the continuum
at different times within a field cycle and returning to the core
[10]. These classical computations were hugely successful in
explaining typical features observed in high-order-harmonic
spectra, namely, a plateau consisting of harmonics of com-
parable intensities, followed by a sharp decrease in the
harmonic signal, the so-called cutoff, whose energy position
is proportional to the driving-field intensity.

Quantum mechanically, the TSM has been extracted from
the phase of the time-dependent electronic wave function. The
most widely known example is the steepest-descent method
applied to the expectation value of the dipole operator, within
the framework of the strong-field approximation (SFA) [11]. In
the SFA, two key assumptions are made: (i) The continuum is
approximated by field-dressed plane waves and (ii) the core is
reduced to a source term, located at the origin of the coordinate
system, so that its internal structure, such as excited bound
states, is neglected. Despite these simplifications, the SFA
has been hugely successful, as far as qualitative predictions

are concerned. Other, more recent approaches based on
the recollision picture are the Volkov-eikonal approximation
[12,13], the Coulomb-corrected strong-field approximation
[14–16], the Herman-Kluk propagator [17,18], the adiabatic
approximation [19,20], and the coupled-coherent-state method
[21]. These approaches go beyond the SFA as the Coulomb
potential is incorporated in the electron propagation, even
if in many cases approximately. Furthermore, the TSM has
also been inferred from the numerical solution of the time-
dependent Schrödinger equation (TDSE), by time-frequency
analysis (see, e.g., [22–25]; for recent articles see [26–29]).

The success of orbit-based quantum mechanical models
also implies that HHG may be related to the overlap between
the bound and continuum parts of the time-dependent wave
function, which are coupled via the dipole operator. Spatially,
this overlap takes place near the core and exhibits high-
frequency oscillations that lead to the plateau and cutoff.
These oscillations were first identified in the late 1990s
[30] and have been studied in recent publications employ-
ing semiclassical propagators [17–19]. Thereby, a necessary
condition for obtaining a clear plateau and cutoff is spatial
localization [30]. Consequently, the acceleration form of the
dipole operator, which probes regions near the core, leads to
better-quality spectra than the dipole length, which emphasizes
large distances [31,32]. This happens even if, in principle, both
formulations are equivalent.1

In order to understand this overlap in detail, it is helpful
to study the probability-density flow associated with the
quantum mechanical wave function in specific configuration-
space regions, without losing phase information. This can
be performed using Bohmian trajectories, which act as

1This is a consequence of the Ehrenfest theorem, as shown in [31].
For approximate methods, such as the SFA, however, the Ehrenfest
theorem may become invalid (for a systematic study see Ref. [33]
and for specific examples in molecular systems see Refs. [34,35]).
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tracer particles [36,37] (for strong-field applications see
[38–44]). Bohmian trajectories, however, are highly non-
local, nonclassical entities. Indeed, a spatially localized
Bohmian trajectory may contain bound and continuum dy-
namics, while, classically, one may identify a bound or
unbound trajectory by looking at the spatial regions it
occupies.2

In a previous publication [44], we have found that the
spectrum obtained from the Bohmian trajectory located at the
innermost part of the core is qualitatively very similar to that
of the dipole acceleration. Furthermore, we have shown that
the time-frequency maps from the central Bohmian trajectory
can be associated with an ensemble of classical trajectories
leaving and returning to the core. Physically, these results lead
to a more restrictive statement than to say that HHG takes place
near the core. In fact, they show that the main features predicted
by the TSM may be obtained even if the spatial extension of the
core is neglected. A natural question is, however, what regions
of the core must be included in order to obtain quantitative
agreement between the TDSE and the Bohmian-trajectory
computation. Clearly, as the Bohmian trajectories are extracted
from the TDSE, one expects that eventually both methods
will lead to identical outcomes. However, is it sufficient to
include the immediate vicinity of the innermost trajectory or
should the whole core be considered? Furthermore, it has been
recently shown that short-range potentials overestimate the
contributions of the long TSM trajectories, as compared to
their long-range counterparts [27]. This has been attributed to
the spatial extension of the core and to the Coulomb tail. Do
we find similar effects? If so, how can they be understood in
the present framework?

Another open issue is nonlocality. In Ref. [44], we have
briefly shown that the central Bohmian trajectory is affected
by the probability flow far from the core and suggested that
this is due to nonlocal transmission via the phase of the
wave function. A more detailed study of this nonlocality, and
in particular of how this phase builds up, has not yet been
performed.

In the present paper, we address the above-mentioned
questions. Our work is organized as follows. In Sec. II we
provide details about our model, including our TSDE and
Bohmian trajectory computations. Subsequently, in Sec. III,
our results are presented. In Sec. III A, using ensembles of
Bohmian trajectories, we investigate different regions of the
core and how quantitative agreement with the TDSE may
be reached. In Sec. III B, we relate the Bohmian trajecto-
ries to those obtained from the SFA using time-frequency
analysis and show how the dynamics far from the core
affects the central trajectory nonlocally via the phase of
the wave function. The main conclusions and results are
summarized in Sec. IV. Throughout, we employ atomic
units.

2Bohmian trajectories can only be related to classical trajectories
associated with the original potential under very specific conditions,
namely, for coherent states and values of the Mandel parameter
characterizing the quasi-Poissonian regime; for a detailed discussion
see Ref. [45].

II. THEORY

A. Time-dependent Schrödinger equation

For the sake of simplicity, we have developed our analysis
in one dimension, which contains the essential physical
elements for linear polarization. We solve the time-dependent
Schrödinger equation

i
∂�(x,t)

∂t
= H�(x,t), (1)

where H = H0 + Hint(t) and �(x,t) denote the time-
dependent Hamiltonian and wave function, respectively. The
field-free Hamiltonian H0 is chosen as

H0 = − 1
2 ∇2 + V (x), (2)

in which V (x) is modeled by a long-range soft-core potential.
The interaction with the field is Hint(t) = +xE0F (t), where
the driving field is chosen to be a flat-top pulse of frequency
ω0 [see our previous publication [44] for details on both the
pulse and V (x)].

The system is initially in the ground state of the field-
free Hamiltonian H0. This eigenstate has been numerically
obtained by the imaginary-time propagation method [46] and
has an energy ε0 = −0.669 95 a.u. The exact time propagation
of the wave function according to the TDSE (1) has been
carried out by combining the split-operator technique [47]
with the fast Fourier transform technique [48].

To ensure that all the relevant dynamics are incorporated for
the parameter range of interest, we have set the box boundaries
located far enough from the core region (at l = 150 a.u.).
Furthermore, special care has been taken in order to avoid
reflections and spurious effects near the box edges. First, we
have employed a mask function in the form

M(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos1/8

[
π |x + x1|
2(−l + x1)

]
, x � −x1

1, x1 � x < x1

cos1/8

[
π |x − x1|
2(l − x1)

]
, x � x1,

(3)

which becomes active at x1. This function is smooth enough,
but still capable of absorbing with a high efficiency, thus
avoiding nonphysical reflections. We have tested this fact by
considering a wide range of box sizes. Second, the maximum
or minimum value of the total potential function has been
truncated in order to avoid also nonphysical accelerations
towards the box edges. In this regard, the size of the box was
chosen such that this truncation takes place close to the region
where the absorber becomes active. Unless otherwise stated,
x1 = 145 a.u. Furthermore, no filter functions (e.g., Hanning
windows) were used in order to avoid influencing the topology
of the Bohmian trajectories.3

3Hanning filters are commonly employed to eliminate the back-
ground that occurs when computing HHG spectra from the expecta-
tion value of the dipole length. They however force the probability-
density flow to return to the core and thus alter the Bohmian
trajectories. This has been verified by constructing these trajectories
from a spectrum in which this filter has been used.
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The expectation value of the coordinate x and the dipole
acceleration are computed as

x̄(t) =
∫ +∞

−∞
dx�∗(x,t)x�(x,t) (4)

and

ā(t) = −
∫ +∞

−∞
dx�∗(x,t)dV (x)/dx�(x,t), (5)

respectively [31]. Note that −x̄(t) gives the expectation value
of the dipole operator in its length form.

To avoid effects associated with the loss of probability due
to the presence of the absorber, special care was taken in
properly renormalizing the wave function when computing all
expectation values in this paper. We have verified that this
renormalization has a minor effect in x̄(t) and practically none
in ā(t).

B. Bohmian trajectories

In order to determine the Bohmian trajectories, first �(x,t)
is recast in polar form

�(x,t) = ρ1/2(x,t)eiS(x,t), (6)

where ρ is the probability density and S is the real-valued
phase. Substitution in the TDSE leads to two coupled differ-
ential equations in ρ and S [44]. The Bohmian trajectories are
obtained by integrating the equation of motion

ẋ = ∇S = 1

2i

(
�∗∇� − �∇�∗

|�|2
)

. (7)

Equation (7) has been integrated by substituting the value of
the wave function �(x,t) at each timestep into the last term of
this equation. We have employed the Euler method, which has
proven to be accurate enough.

The Bohmian versions of the expectation values (4) and (5)
are given by

x̄B(t) = 1

N

N∑
i=1

xi(t), (8)

āB(t) = − 1

N

N∑
i=1

dV (x)

dx

∣∣∣∣
x=xi (t)

, (9)

respectively. In these expressions, xi(t) denotes the ith
Bohmian trajectory from an ensemble and N is the total
number of these trajectories in each numerical experiment
performed.

In all ensemble computations, we have considered a set of
initial conditions for the Bohmian trajectories obtained from
uniformly generated random numbers within a certain interval
[−xc,xc], symmetric with regard to the origin x = 0. These
random numbers are multiplied by weights, which are chosen
in such a way that the probability density related to the ground
state of the soft-core potential |�(x,0)|2 is mimicked. Unless
otherwise stated, we have chosen xc = 4.102 a.u. This ensures
that the time evolution of most of the probability density will
be well monitored, as the integrated probability for |x| � xc is
only 0.151% of the total probability.

C. Fourier and Gabor transforms

The power spectra in this work are computed as

I (ω) =
∣∣∣∣
∫

g(t)e−iωtdt

∣∣∣∣
2

= |aF (ω)|2, (10)

where g(t) is a generic time-dependent function denoting
either the expectation values discussed above or specific sets
of Bohmian trajectories and the integral aF (ω) is the standard
Fourier transform. We investigate the time-frequency profiles
and the phase of the wave function using the Gabor transform

aG(ω,t) =
∫

dt ′g(t ′) exp[−(t−t ′)2/2σ 2] exp(−iωt ′). (11)

If σ → ∞ the standard Fourier transform aF (ω) is recovered
and all temporal information is lost. Here we choose the same
temporal width as in Ref. [27], i.e., σ = 1/3ω0.

III. RESULTS AND DISCUSSION

A. Harmonic spectra

For clarity, we will discuss the behavior of individual
Bohmian trajectories and their spectra. These results are
displayed in Fig. 1. The spectra from the central trajectory,
starting at x(0) = 0, exhibit a clear plateau and a cutoff at ωc ≈
|ε0| + 3.17Up, where Up = E2

0/4ω2
0 is the ponderomotive

energy, for both moderate and high driving-field intensity. This
is a very good example of the nonlocal behavior of a Bohmian
trajectory. Classically, a trajectory confined in configuration
space would imply bound dynamics. Quantum mechanically,
however, what defines whether a system is bound or unbound
is its energy. The cutoff in the spectra of the central Bohmian
trajectory goes far beyond the ionization potential |ε0|. Hence
it contains bound and continuum dynamics.

For peripheral Bohmian trajectories, the situation is
markedly different. As long as they perform an oscillatory
motion near the core, the plateau and the cutoff will be present.
If, however, they leave this spatial region, the corresponding
spectra will only consist of the fundamental and of a uniform
background. Moreover, the further from x(0) = 0 the initial
position of a trajectory is, the higher the overall intensity in
the spectra will be. Thus, even if the number of trajectories
that leave the core is relatively small, their spectra are several
orders of magnitude more intense than those obtained from
the innermost trajectories. This masks the latter contributions
in the ensemble average (8). This behavior is more extreme
for higher intensities, as in this case the outward probability-
density flow is larger [see blue solid lines in Figs. 1(c) and
1(d)].

Formally, the ensemble average (8) is equivalent to the
expectation value (4). Hence the above-mentioned observa-
tions are in agreement with those in Refs. [31,32], where
a background in the HHG spectra of the dipole length was
attributed to irreversible ionization at the end of the pulse and
to the probability density near the edges of the integration box,
respectively. One may select the spatial region near the core
by employing the dipole acceleration [31]. In the results that
follow, we will then employ Eq. (9) for individual Bohmian
trajectories or ensembles thereof. As a benchmark, we will take
the expectation value (5) computed directly from the TDSE.
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FIG. 1. (Color online) (a) and (b) Bohmian trajectories obtained
with a flat-top pulse with frequency ω0 = 0.057 a.u. and field
amplitudes (a) E0 = 0.05 a.u. and (b) E0 = 0.075 a.u. (c) and (d)
Power spectra computed from individual trajectories xi(t) selected
from among the sets in (a) and (b), together with spectra from the
whole ensemble average (8), for (c) E0 = 0.05 a.u. and (d) E0 =
0.075 a.u. The black solid line and the red dashed line correspond
to the trajectories starting at x(0) = 0 a.u. and x(0) = −3 a.u.,
respectively. To facilitate a direct comparison, we have used the
same fonts to designate different types of trajectories as in (a)
and (b). The spectra computed from the ensemble average are
depicted as the blue solid lines. To facilitate visualization, the
spectra obtained from the ensembles have been shifted upward by
six orders of magnitude. The corresponding driving-field intensities
are I = 8.7 × 1013 W/cm2 (Keldysh parameter γ = 1.32) and I =
1.97 × 1014 W/cm2 (Keldysh parameter γ = 0.88).

We will now investigate which regions within the core must
be included for a quantitative agreement with the TDSE to be
reached. This will be done by gradually varying the range
of xc of the random-number distribution.4 These results are
displayed in Fig. 2(a) over a single cycle of the driving field,
for the time-dependent dipole acceleration computed using
Eq. (9). Overall, the time dependence of all the distributions
considered is very similar. What is affected is the amplitude
of the time-dependent acceleration. If only the acceleration
along the central trajectory is taken (red lines in the figure),
this amplitude is up to five times larger than that determined
by the acceleration computed with the TDSE. The main effect
of increasing the range of the integration around this central
trajectory is to decrease this amplitude.

4The total interval has been chosen such that the initial probability
density |�(x,0)|2 is recovered up to over 99.8%. This yields 14
intervals at each side of the origin x = 0 and around N ≈ 1000
random numbers in total. Each of these numbers provides an initial
condition for a Bohmian trajectory.

FIG. 2. (Color online) (a) Dipole acceleration obtained from a
series of sets of Bohmian trajectories randomly distributed within
the interval [−xc,xc] for E0 = 0.075 a.u. within one cycle of the
pulse, together with (b)–(d) harmonic spectra computed for the dipole
acceleration. The power spectra obtained for (b) the central trajectory,
(c) intermediate ensembles, and (d) the minimal ensemble for which
a quantitative agreement with the TDSE occurs are displayed. In
all cases, the black solid line represents the result obtained from
the TDSE and the other lines represent the results from different
ensembles of Bohmian trajectories. The different values of xc used
in our simulations are labeled with different types of colors and
line styles (in parentheses, we provide the total number of Bohmian
trajectories used in each case). For the high-plateau harmonics, a
quantitative agreement with the TDSE occurs already if 75% of the
overall probability density is considered (xc = 1.2 a.u.), while for the
lower harmonics 90% of the total probability density must be taken
(xc = 1.8 a.u., not shown here). The remaining parameters are the
same as in Fig. 1.

In Figs. 2(b)–2(d), we display the high-harmonic spectra.
Due to the above-mentioned difference in amplitude, the
harmonics in the spectrum from the central trajectory are
several orders of magnitude higher than those from the TDSE.
As the spatial range is increased, quantitative agreement is
reached fairly quickly for the harmonics in the cutoff region,
while for the below-threshold and low-plateau harmonics,
larger ensembles of trajectories are needed. Physically, this is
consistent with what is known from strong-field models, i.e.,
that the high-plateau and cutoff harmonics can be reasonably
modeled by the SFA, while the lower harmonics are much
more influenced by the internal structure of the system, such
as excited states.

Nevertheless, even for the cutoff region an ensemble
of Bohmian trajectories must also be taken if quantitative
agreement with the TDSE is to be achieved. This can be
attributed to the fact that, quantum mechanically, there is a
certain spread in the initial position of the electron, which
must be considered. Quantitative agreement with the TDSE
near the cutoff has also been obtained for an improved SFA
model [49], in which the steepest-descent method has not
been performed and the continuum-to-continuum transitions
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FIG. 3. (Color online) Time-frequency maps as functions of the harmonic order computed using the Gabor transform (11) of the
dipole acceleration for trapezoidal fields of frequency ω = 0.057 a.u. and intensities (a)–(c) I = 8.7 × 1013 W/cm2 and (d)–(f) I =
1.97 × 1014 W/cm2. In (a) and (d), only the central Bohmian trajectory is considered in order to compute the acceleration aB (t), while
in (b) and (e) an ensemble of 955 Bohmian trajectories is taken. In (c) and (f), we display the results obtained from the TDSE employing the
expectation value of the dipole acceleration [Eq. (5)]. The black lines in the figure indicate the real parts of the return times t obtained from
the strong-field approximation, according to Eqs. (12) and (13). In such equations, we have taken the ionization potential to be the absolute
value of the ground-state binding energy (|ε0| = 0.669 95 a.u.). The dashed lines and the letter s indicate the short orbits, while the solid lines
and the letter l indicate the long orbits. In (d)–(f), there is a second set of arches at lower energy. These arches corresponds to a longer pair of
return times. The time is displayed in units of the field cycle and the yield has been plotted on a logarithmic scale. Throughout, the yield has
been multiplied by 100.

have been incorporated. Physically, these modifications have
introduced a spread in position and momentum. In the language
of the TSM, this implies that the electron is no longer required
to return exactly to the site of its release or leave with vanishing
momentum.

B. Time-frequency maps and the phase of the wave function

In Fig. 3, we display time-frequency maps obtained for the
dipole acceleration considering the central Bohmian trajectory,
the ensemble average (9), and, for consistency, the expectation
value of the dipole acceleration from the TDSE (left, middle,
and right panels, respectively). For comparison, superimposed
to the time-frequency maps, we also plot the real parts of the
return times t obtained from the HHG transition amplitude in
the SFA using the steepest-descent method [11]. The times t ,
together with the ionization times t ′, are the solutions of the
saddle-point equations

[p(t,t ′) + A(t ′)]2

2
+ |ε0| = 0 (12)

and

[p(t,t ′) + A(t)]2

2
+ |ε0| − ω = 0, (13)

where

p(t,t ′) = − 1

(t − t ′)

∫ t

t ′
dτA(τ ) (14)

is the intermediate momentum of the released electron.
Equations (12) and (13) give the conservation of energy at the

instant of tunneling and recombination, respectively. At the
recombination time t , a high-order harmonic of frequency ω is
generated [11]. The trajectories obtained from these solutions
are widely known as quantum orbits [50]. Their real parts are
related to the classical trajectories of an electron in a laser
field, and form archlike structures in the time-frequency maps,
that merge at the cutoff. The upper and lower parts of each
curve are related to the long and the short orbits, for which
the electron returns after or before the field crossing [51]. In
all panels of Fig. 3, such archlike structures are present, both
for the ensemble average (9) and for the acceleration along
the central trajectory. These structures are particularly clear
if the driving-field intensity is such that the system is in the
tunneling regime [Fig. 3(d)]. In this case, the effect of taking an
ensemble is that the relative contribution of the long orbit, with
regard to that of the short orbit, is suppressed [see Fig. 3(e)].

This is consistent with other results in the literature, in
which different weights between the signals related to the short
and long trajectories have been observed in time-frequency
[27,44,52] and intensity-reciprocal intensity maps [53]. In
all cases, there seems to be a strong correlation between
the overenhancement of the long trajectory and the core
region being strongly localized. An enhancement of the long
orbit occurs for short-range potentials, if compared with their
long-range counterparts [27,44], or in the SFA, if compared
with the TDSE [52,53]. This overenhancement is particularly
extreme if the steepest-descent method is employed in the SFA
[53].

Physically, this may be understood as follows. First, the
long orbit is associated with a higher degree of wave-packet
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FIG. 4. (Color online) (a) Harmonic spectra computed from the
central Bohmian trajectory placing the absorber at x1 = 145 and
25 a.u. (b) Central Bohmian trajectory as a function of time over
two cycles of the driving fields, for absorbers placed at varying
distances x1. The external field has frequency ω = 0.057 a.u. and
intensity I = 1.97 × 1014 W/cm2 (E0 = 0.075 a.u.) and the atomic
parameters are the same as in Fig. 5. For the parameters employed in
this figure, the classical excursion amplitude is α = 23 a.u.

spreading, which means that it will be more sensitive with
regard to spatial propagation, and the uncertainty introduced
by the initial momentum and position spreads. If the steepest-
descent method is used in the SFA, these initial spreads
are neglected and the long orbit is overenhanced. Second,
for a short-range potential, the initial wave packet is highly
localized, the effective barrier is very steep, and there is
no Rydberg series. This implies that (i) there will not be a
strong mixing between excited states and the continuum in the
presence of the field and (ii) it will be more difficult for an
electron to reach the continuum along the short orbit, whose
start times are farther away from the field peak. This will
lead to overenhanced contributions of the long orbits in the
time-frequency maps.

In the present framework, using only the central Bohmian
trajectory or small ensembles around it means that a high
degree of localization is being imposed upon the core. This
shares similarities with the SFA, for which it is approximated
by a single point at x = 0, and with short-range potentials, for
which there are no weakly bound states. In order to reproduce
features that depend on the internal structure of the core and
to account for its spatial extension, one must employ larger
ensembles of Bohmian trajectories (see our discussion of
Fig. 2). The less localized the initial wave packet is, the more
trajectories one must consider.

For lower intensities, in the multiphoton regime, these
features are more blurred, as shown in Fig. 3(a), in agreement
with the results in Ref. [27]. This blurring is related to the
appreciable acceleration of the electronic wave packet outside
the time intervals predicted by the TSM. These features are
present in the SFA if the steepest-descent method is not used
[54].

The above-stated results confirm that the phase of the
wave function mimics the behavior of a classical electron
leaving and returning to the core. Hence one expects that
if this phase is somehow altered or degraded this will be
transmitted nonlocally to the central Bohmian trajectory.
Evidence for this nonlocality has been provided in our previous
publication [44], using short- and long-range potentials. Below
we will investigate in more detail how this phase builds up
in configuration space. For that purpose, we systematically
disrupt the propagation of the wave function outside the core

FIG. 5. (Color online) Time-frequency maps as functions of the
harmonic order computed using the Gabor transform (11) for a
trapezoidal field of frequency ω = 0.057 a.u. and intensity I =
1.97 × 1014 W/cm2. For the upper, middle, and lower panels we
have placed the absorber given by Eq. (3) at (a) and (b) x1 = 25 a.u.,
(c) and (d) x1 = 10 a.u., and (e) and (f) x1 = 5 a.u., respectively. We
have computed the Gabor transforms of (a), (c), and (e) the dipole
acceleration along the central Bohmian trajectory and (b), (d), and
(f) its expectation value obtained from the TDSE, respectively. The
black lines indicate the real parts of the solutions of the saddle-point
equations for the return time t . The dashed lines correspond to the
short orbits in a pair, while the solid lines give the long orbits. The
yields in all panels have been multiplied by 100.

region, but avoid absorption of the probability flow within the
region for which the dipole acceleration is significant.

This is performed by moving the absorber from near the
boundaries of the integration box to ranges of the coordinate
x within the excursion amplitude α = E0/ω

2
0 of a classical

electron in the field. The lowest absolute value of x1 in Eq. (3)
was around 5 a.u.(according to Sec. III A, quantitative agree-
ment with the TDSE are expected for orbits starting in the
interval x ∈ [−2.3,2.3]). For clarity, in Fig. 4, we show that,
already for an absorber placed slightly beyond α, there is
substantial degradation in the spectra from the central Bohmian
trajectory, but that the plateau and the cutoff are still present
[Fig. 4(a)]. In contrast, the central Bohmian trajectories, as
functions of time, look very similar [Fig. 4(b)].

The time-frequency maps obtained in this way are presented
in Fig. 5 for the higher intensity employed in Fig. 3. In the
figure, the patterns associated with the longer orbits become
increasingly suppressed and deteriorate as the absorber is
moved towards the core. For instance, if the absorber is
placed slightly beyond the classical excursion amplitude, the
arch corresponding to the longer SFA return times, which
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extends to around the 25th harmonic, becomes fainter. This
holds for the time-resolved spectra of the central trajectory
[Fig. 5(a)] and of the outcome of the TDSE [Fig. 5(b)]. The
same behavior is observed for the feature associated with the
long trajectory belonging to the shortest pair. If the absorber
is made active slightly below the middle of the electron
classical excursion amplitude, the above-mentioned features
are very weak, as shown in the middle panels of Fig. 5. For
an absorber starting immediately after the core region (x1 = 5
a.u.), all the features in the time-frequency maps associated
with the longer trajectories are substantially reduced [Figs. 5(e)
and 5(f)]. This shows that the probability density that leaves the
core region plays a very important role in influencing the phase
of the wave function. Throughout, the absorber is extremely
smooth, so the probability density-flow is disrupted but not
eliminated and full absorbtion only occurs for x = ±l. For a
sharper absorber, the signal related to the short orbit would
also be eliminated.

IV. CONCLUSIONS

In this work, we have applied Bohmian mechanics to assess
the influence of specific regions in configuration space on high-
order-harmonic generation. We have employed ensembles
around the central Bohmian trajectory, starting at x(0) = 0,
which previously had been found to yield clear spectra, with
a plateau and a cutoff [44]. If the ensemble average (8) is
taken, these features are masked by the Bohmian trajectories
associated with the probability-density flow far from the
core. Furthermore, in the present framework, the three-step
model manifests itself in the phase of the wave function.
This phase mimics the behavior of an ensemble of classical
electron trajectories leaving and returning to its parent ion.
Time-frequency analysis shows that this pattern is present in
the probability flow that remains at the core.

Nevertheless, the probability flow leaving and returning
to the core does influence how this phase builds up. In fact,
by deliberately placing absorbing boundaries in the spatial
regions within the ranges of excursion amplitudes of a classical
electron, but outside the core region, we have degraded
the phase of the whole wave function. This has influenced
both the HHG spectrum and the time-frequency maps of the
central Bohmian trajectory and the degradation has occurred
as it would be expected from the three-step model. In fact,
the first sets of features to be eliminated from the time-
frequency maps as the absorber increasingly approaches the
core correspond to the trajectories with longer excursion times.
These changes are transmitted nonlocally, as the probability
density flow associated with the central Bohmian trajectory
never leaves the core region. Since Bohmian trajectories are
in fact slices of the wave function, they will always depend
on the behavior associated with the whole wave function,
regardless of the positions occupied by the probability density
in configuration space. Hence, if the wave function is altered
far from the core, all the slices will be different. One should
note that the probability-density flow could have been altered
in other ways such as by employing inhomogeneous media
[28,29]. However, moving boundaries allow the systematic
deconstruction of the flow in the desired spatial range.

Our results also show that a spatially extended core is
paramount for obtaining good agreement with the TDSE, even

if this spatial extension is small. This holds not only for the low-
plateau and below-threshold harmonics, but also for the cutoff
energy region. This implies that an initial wave-packet spread
in position space is necessary for an accurate description of the
problem. From a Bohmian-trajectory perspective, this spread
manifests itself as an uncertainty in the initial conditions
xi(0) [36]. This is consistent with recent studies in which
the strong-field approximation has been improved to include
this spread [49,54]. Its fully quantum mechanical version,
without resorting to the steepest-descent method, has shown
very good agreement with the TDSE in the cutoff region. In
the time-frequency maps, neglect of the initial position spread
causes an overenhancement in the signal related to the long
SFA trajectory [52,53]. We have identified a similar effect in
our computations, if only the central Bohmian trajectory is
considered. An important issue here is nonlocality. In the full
quantum mechanical version of the SFA, the time-dependent
wave function is described as a coherent superposition of
the ground state and the continuum, which is approximated
by field-dressed plane waves. In this case, the continuum is
also nonlocal. Due to the approximations involved, however,
the phase picked up by the time-dependent wave function is
different from that of the full TDSE. Bohmian trajectories
consider the full phase, but may restrict the initial spread in
position space.

Finally, we would like to elaborate on the advantages and
disadvantages of Bohmian trajectories. On the one hand, since
Bohmian trajectories contain all phase information related to
the full time-dependent Hamiltonian, both the driving field
and the binding potential are accounted for. They may thus be
used to probe the time-dependent wave function in specific
regions in configuration space, and phenomena associated
with this wave function, such as the example provided in
this article. They can also be employed for visualization
purposes in order to access how the time-dependent probability
density flow behaves in particular spatial regions, e.g., near
the core or far from it. On the other hand, these trajectories
are highly nonlocal entities. Therefore, if one is interested in
information related to the phase of the wave function, and not
the probability-density flow, one needs to employ additional
resources such as time-frequency maps or quasiprobabilities
in phase space.

Another advantage is that, in principle, Bohmian trajec-
tories may be used for reconstructing the time-dependent
probability flow or parts thereof. In practice, however, a huge
obstacle to this reconstruction is that, according to the present
scheme, it is first necessary to solve the full TDSE in order to
obtain these trajectories. This is particularly problematic for
systems with many degrees of freedom. There is, however, a
real effort to overcome this obstacle and construct Bohmian
trajectories without the need for the TDSE solution [55].
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[54] J. A. Pérez-Hernandez and L. Plaja, Phys. Rev. A 76, 023829
(2007).

[55] W. P. Schleich, M. Freyberger, and M. S. Zubairy, Phys. Rev. A
87, 014102 (2013).

063416-9

http://dx.doi.org/10.1126/science.108836
http://dx.doi.org/10.1126/science.108836
http://dx.doi.org/10.1126/science.108836
http://dx.doi.org/10.1126/science.108836
http://dx.doi.org/10.1103/PhysRevLett.77.1234
http://dx.doi.org/10.1103/PhysRevLett.77.1234
http://dx.doi.org/10.1103/PhysRevLett.77.1234
http://dx.doi.org/10.1103/PhysRevLett.77.1234
http://dx.doi.org/10.1134/S1054660X10090069
http://dx.doi.org/10.1134/S1054660X10090069
http://dx.doi.org/10.1134/S1054660X10090069
http://dx.doi.org/10.1134/S1054660X10090069
http://dx.doi.org/10.1103/PhysRevA.65.031406
http://dx.doi.org/10.1103/PhysRevA.65.031406
http://dx.doi.org/10.1103/PhysRevA.65.031406
http://dx.doi.org/10.1103/PhysRevA.65.031406
http://dx.doi.org/10.1103/PhysRevA.76.023829
http://dx.doi.org/10.1103/PhysRevA.76.023829
http://dx.doi.org/10.1103/PhysRevA.76.023829
http://dx.doi.org/10.1103/PhysRevA.76.023829
http://dx.doi.org/10.1103/PhysRevA.87.014102
http://dx.doi.org/10.1103/PhysRevA.87.014102
http://dx.doi.org/10.1103/PhysRevA.87.014102
http://dx.doi.org/10.1103/PhysRevA.87.014102



