
PHYSICAL REVIEW A 88, 063415 (2013)

Entanglement between electronic and vibrational degrees of freedom
in a laser-driven molecular system
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We investigate the entanglement between electronic and vibrational degrees of freedom produced by a vibronic
coupling in a molecular system described in the Born-Oppenheimer approximation. Entanglement in a pure state
of the Hilbert space H = Hel

⊗
Hvib is quantified using the von Neumann entropy of the reduced density matrix

and the reduced linear entropy. Expressions for these entanglement measures are derived for the 2 × Nv and
3 × Nv cases of the bipartite entanglement, where 2 and 3 are the dimensions of the electronic Hilbert space Hel,
and Nv is the dimension of Hvib. We study the entanglement dynamics for two electronic states coupled by a
laser pulse (a 2 × Nv case), taking as an example a coupling between the a3�u

+(6s,6s) and 1g(6s,6p3/2) states
of the Cs2 molecule. The reduced linear entropy expression obtained for the 3 × Nv case is used to follow the
entanglement evolution in a scheme proposed for the control of the vibronic dynamics in a Cs2 cold molecule,
implying the a3�u

+(6s,6s), 0g
−(6s,6p3/2), and 0g

−(6s,5d) electronic states, which are coupled by a nonadiabatic
radial coupling and a sequence of chirped laser pulses.
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I. INTRODUCTION

Quantum entanglement, central to the foundations of
quantum theory [1], is today a reference concept shaping
the understanding of various quantum phenomena in physics,
chemistry, and quantum biology. With the emergence of quan-
tum information theory entanglement was also recognized as a
fundamental resource for quantum computation and quantum
communication [2].

In the last 20 years atomic and molecular physics had a
particularly fortunate encounter with quantum information
theory, sustained by the continuous development of exper-
imental techniques able to produce extremely controllable
ultracold atomic and molecular systems. Entanglement has
been explored in a variety of experiments employing highly
controlled atomic systems like cold trapped ions [3], Rydberg
atoms crossing a “photon box” [4], or neutral atoms in optical
lattices [5]. The controlled creation of entanglement between
pairs of atoms trapped in an optical lattice was used for
precision measurements of atomic scattering properties [6],
atomic spectroscopy using quantum logic was implemented
with trapped atomic ions [7], and quantum metrology was
performed using “designer atoms” [8]. A similar trend be-
comes increasingly possible in molecular physics, due to the
progress in the formation of ultracold molecules. Proposals
for molecular entanglement creation are considering ultracold
polar molecules [9] as interesting systems for quantum in-
formation manipulation and promising platforms for quantum
computation.

In addition to these developments there is also an in-
creased interest in using quantum entanglement and quantum
information concepts to describe the structure of atoms and
molecules and related phenomena. A recent review focusing
on “essential entanglement for atomic and molecular physics”
[10] shows the specificity of this research program which
considers physical objects far from the idealized systems
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familiar from the quantum information science and for which
the identification of subsystems which can carry entanglement
is nontrivial. Within this program various theoretical investiga-
tions have been advanced, including studies of entanglement
in two-electron atomic systems [11] and investigations of
the entanglement between the internal electronic and the
external translational degrees of freedom of trapped atoms
[12]. Studies of entanglement in molecular systems have con-
sidered the entanglement associated with the dissociation of
diatomic molecules [13], entanglement in Rydberg molecules
[14], and dynamical entanglement of vibrations in triatomic
molecules [15].

Proposals for quantum computing using molecular internal
degrees of freedom (electronic, vibrational, and rotational)
have opened the door to stimulative research in molecular sys-
tems driven by shaped light pulses, in which optimal quantum
control theory is used to find the driving fields which play the
role of quantum logic gates [16]. These developments have
stimulated the interest in the characterization of entanglement
in laser-driven molecular systems.

The present work investigates the entanglement between
electronic and nuclear degrees of freedom in a molecule. Few
studies have treated this subject and these works consider
Hilbert spaces with low dimensionality. Special attention is
attached to double-welled chemical systems, as embodying
electronic-vibrational entanglement through the role played by
the wave-function delocalization [17,18], and to entanglement
in relation with quantum chaos induced by nonadiabatic
interaction due to the breakdown of the Born-Oppenheimer
approximation [19].

Here we consider a molecular system (diatomic molecule)
described in the Born-Oppenheimer (BO) approximation
which separates the electronic and nuclear motion, leading
to the factorization of the molecular wave function into an
electronic and a rotational-vibrational part. The rotational
degree of freedom is neglected, and, therefore, the system can
be described by a Hilbert space which is a tensor product H =
Hel

⊗
Hvib of electronic and vibrational Hilbert spaces of

finite dimensions. We will analyze the entanglement between
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electronic and vibrational degrees of freedom produced by
a coupling between electronic states: this coupling could
be produced by an external source, such as laser pulses
acting on the molecular system, or it could be a nonadiabatic
interaction neglected in the Born-Oppenheimer approxima-
tion. We consider pure states of the bipartite system (el

⊗
vib), and quantify the entanglement using the von Neumann
entropy of the reduced density matrix and the linear entropy
related to the purity of the reduced density matrix. We derive
formulas for these measures of entanglement, which can be
employed to follow the entanglement evolution in relation to
the intramolecular dynamics.

We show results for the entanglement dynamics in two
cases of temporal evolution in a laser-driven molecule. A
first example treats the case of a laser coupling between
the a3�u

+(6s,6s) and 1g(6s,6p3/2) electronic states of the
Cs2 molecule (a 2 × Nv case). The second example follows
the entanglement evolution quantified by the linear entropy
(a 3 × Nv case) in a theoretical control scheme proposed to
create Cs2 vibrationally cold molecules using a multichannel
tunneling observed in the cesium photoassociation spectrum.
The scheme employs the electronic states a3�u

+(6s,6s),
0g

−(6s,6p3/2), and 0g
−(6s,5d) of the Cs2 molecule, which are

coupled by a nonadiabatic radial coupling and a sequence of
chirped laser pulses. In both cases the entanglement dynamics
is analyzed in relation to the characteristic times specific to the
vibronic couplings and intramolecular dynamics.

The structure of the paper is as follows. Section II briefly
reviews the theoretical framework of the BO approximation.
In Sec. III the 2 × Nv case of the bipartite entanglement
is studied and expressions for the reduced von Neumann
entropy and reduced linear entropy are derived. The example
of two electronic states coupled by a laser pulse is contained
in Sec. III B. Section IV treats the 3 × Nv case, deducing
the corresponding formula for the reduced linear entropy.
Section V follows the entanglement evolution quantified by
the linear entropy in the theoretical control scheme proposed
to create Cs2 vibrationally cold molecules using a sequence of
chirped laser pulses. Section VI contains our final remarks.

II. MOLECULAR MODEL: BORN-OPPENHEIMER
APPROXIMATION AND VIBRONIC COUPLINGS

BETWEEN ELECTRONIC STATES

We briefly review some basic notions used in the description
of a diatomic molecule in the BO approximation [20]. The
mass difference between nuclei and electrons justifies the so-
called clamped nuclei electronic Schrödinger equation, written
for the electronic Hamiltonian H el (i.e., the total molecular
Hamiltonian without the nuclear kinetic-energy part):

H elφel
n (�ri ; R) = Un(R)φel

n (�ri ; R), (1)

where R is the internuclear distance and { �ri} the electronic co-
ordinates expressed in the molecule-fixed coordinate system.
This equation produces the adiabatic potential-energy surfaces
Un(R) as eigenvalues of the electronic Hamiltonian and the
electronic wave functions φel

n (�ri ; R), depending parametrically
on R, as orthonormal eigenstates of H el.

The molecular rovibronic wave function �mol( �R,�ri ; t) can
be expanded in the basis set of the electronic eigenfunctions

{φel
n (�ri ; R)}:

�mol( �R,�ri ; t) =
∑

n

ψn( �R; t)φel
n (�ri ; R). (2)

In Eq. (2) we have introduced the time-dependent picture
emphasizing that the temporal dependence is contained in the
nuclear wave functions ψn( �R; t). In a stationary picture, the
coefficients ψn( �R) depending on the nuclear geometry are
the rotational-vibrational wave functions. If the expansion (2)
is inserted in the Schrödinger equation of the full molecular
Hamiltonian, one obtains a system of coupled differential
equations describing the motion of the nuclei in an electronic
state, coupled with the nuclear motion in all other electronic
states. In the BO approximation this coupling with other
electronic states is neglected, providing a good description
if the electronic wave functions depend only weakly on R.
Then, the sum in Eq. (2) can be reduced to a single term:

�mol( �R,�ri ; t) ≈ ψn( �R; t)φel
n (�ri ; R). (3)

This factorization of the total wave function into an electronic
and a rotational-vibrational part is essential to the BO
approximation. The consequence is that the nuclear motion in
an electronic state is uniquely determined by the corresponding
electronic potential, which allows one to write a rotational-
vibrational Schrödinger equation for each electronic state. As
the radial and angular variables of the nuclear motion can
be also separated, the Schrödinger equation which defines
the rovibrational eigenfunctions χn

v,J (R) corresponding to an
electronic potential Un(R) can take the form(

− �
2

2μ

∂2

∂R2
+ Un(R) + �

2J (J + 1)

2μR2

)
χn

v,J (R)

= En
v,J χn

v,J (R), (4)

where μ is the nuclear reduced mass, J quantifies the
rotational angular momentum, and En

v,J are the energies of
the rovibrational levels corresponding to the electronic state n.

Due to the fact that here the rotational degree of freedom
is neglected the molecular system is described by the Hilbert
space H = Hel

⊗
Hvib. The molecular wave function corre-

sponding to an electronic state n, BO factored into electronic
and vibrational wave functions, is

�n
mol(R,�ri,t) = 1

R
χn(R,t)φel

n (R; �ri)

= 1

R

(∑
v

cn
v (t)χn

v (R)

)
φel

n (R; �ri). (5)

In Eq. (5) the vibrational wave packet χn(R,t) is developed in
the orthonormal basis set of the vibrational eigenstates {χn

v (R)}
corresponding to the electronic potential Un(R). {χn

v (R)} are
solutions of Eq. (4) for J = 0 or for fixed J .

The BO states are generally those on which the molecular
description is built1 by including various coupling mechanisms
between the electronic states, such as non-BO coupling

1“In order to go beyond the BO approximation, it is necessary to
use a BO representation,” as it is expressed in Ref. [20].
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terms subsequently introduced in the description, or vibronic
couplings caused by external fields. In the following we
consider a molecular system which can be described by a
pure state belonging to the bipartite Hilbert space Hel

⊗
Hvib

of finite dimension. Our aim is to derive formulas for the
entanglement between electronic and vibrational degrees of
freedom produced by vibronic couplings of the electronic
states. In the next sections we will explore the cases of bipartite
entanglement in pure states belonging to Hilbert spaces of
2 × Nv and 3 × Nv dimensions.

III. MEASURES OF ENTANGLEMENT BETWEEN
ELECTRONIC AND VIBRATIONAL DEGREES OF

FREEDOM IN A 2 × Nv MOLECULAR SYSTEM

Considering two coupled electronic states (g,e), our aim
is to derive an expression for the electronic-nuclear entangle-
ment produced by the vibronic coupling. We are especially
interested in describing cases of coupling due to a laser pulse,
but the nature of the coupling does not need to be specified in
the formal part of our treatment. The only restriction that we
employ is that the coupling creates a pure state in the Hilbert
space H = Hel

⊗
Hvib of dimension 2 × Nv , whose wave

function can be written as

�el,vib(R,�ri ; t) = φel
g (�ri ; R)ψg(R,t) + φel

e (�ri ; R)ψe(R,t).

(6)

If {|χvg
(R)〉}vg=1,Ng

and {|χve
(R)〉}ve=1,Ne

are the orthonormal
vibrational bases with dimensions Ng and Ne (Ng + Ne =
Nv), corresponding to the electronic surfaces g,e, respectively,
Eq. (6) can be rewritten as

|�el,vib(t)〉 = |g〉
⊗ Ng∑

vg=1

cvg
(t)

∣∣χvg

〉

+ |e〉
⊗ Ne∑

ve=1

cve
(t)

∣∣χve

〉
, (7)

where |g〉, |e〉 designate the electronic states φel
g,e(�ri ; R),

and the nuclear wave packets ψg,e(R,t) were developed
in their corresponding vibrational bases. The complex co-
efficients {cvg

(t)},{cve
(t)} give the population probabilities

{|cvg
(t)|2},{|cve

(t)|2} of the vibrational levels {vg} and {ve}.
For a closed system comprised of only these two electronic
surfaces, the normalization condition 〈�el,vib(t)|�el,vib(t)〉 = 1
is expressed by the relation

Ng∑
vg=1

∣∣cvg
(t)

∣∣2 +
Ne∑

ve=1

∣∣cve
(t)

∣∣2 = 1, (8)

and the density operator

ρ̂el,vib(t) = |�el,vib(t)〉〈�el,vib(t)| (9)

corresponds to a pure state of the bipartite system: ρ̂2
el,vib =

ρ̂el,vib.
Pure bipartite states have clear separability criteria like the

Schmidt decomposition [1,21], and “good” measures of the
amount of entanglement, the first one being the von Neumann
entropy of the reduced density matrix [22,23]. Even if the

von Neumann entropy of the subsystem is the “entropy of
entanglement” [24] for pure states, and it could be considered
as “the unique measure for pure states” [1], it was also argued
that “only one measure is not sufficient to completely quantify
entanglement of pure states for bipartite systems,” and “several
independent measures should be employed simultaneously”
[25]. In the present work we shall refer to two measures
quantifying the entanglement: the von Neumann entropy and
the linear entropy of the reduced density matrix.

To estimate the entanglement of |�el,vib(t)〉, we have to
analyze the reduced density operator of one of the two
subsystems: ρ̂el = Trvib(ρ̂el,vib) or ρ̂vib = Trel(ρ̂el,vib). The
spectrum of the reduced density matrix (for example ρ̂el)
gives the Schmidt coefficients which allow us to distinguish
separable from entangled states and can be used to obtain the
von Neumann entropy SvN (ρ̂el). On the other hand, the purity
of the reduced density, Trρ̂2

el, shows the degree of mixing
of the subsystems and is also an indicator for the degree of
entanglement in system: if Trρ̂2

el �= 1 the state described by
Eq. (7) is entangled [26].

In order to obtain a reduced density matrix one needs
to designate an orthonormal basis set for each subsystem
Hilbert space, Hel and Hvib. {|g〉,|e〉} constitutes such a
basis set for Hel. In Hvib we have the two vibrational
bases {|χvg

(R)〉}vg=1,Ng
and {|χve

(R)〉}ve=1,Ne
, but generally

〈χvg
(R)|χve

(R)〉 �= 0, so we need to construct a complete
orthonormal vibronic basis {|j 〉}j=1,Nv

ofHvib, which will have
the dimension Nv = Ng + Ne and will satisfy the orthonor-
mality (〈j |j ′〉 = δjj ′) and completeness (

∑Nv

j=1 |j 〉〈j | = Îv)
conditions. Then, designating by {|1〉,|2〉} a suited orthonormal
basis in the electronic Hilbert spaceHel, |�el,vib(t)〉 can be also
expressed as

|�el,vib(t)〉 = |1〉
⊗ Nv∑

j=1

C1j (t)|j 〉

+ |2〉
⊗ Nv∑

j=1

C2j (t)|j 〉. (10)

The complex coefficients C1j ,C2j obey a normalization
condition similar to Eq. (8):

Nv∑
j=1

[|C1j (t)|2 + |C2j (t)|2] = 1. (11)

The reduced density operator ρ̂el can now be calculated using
the vibronic basis {|j 〉}j=1,Nv

:

ρ̂el(t) = Trvib[|�el,vib(t)〉〈�el,vib(t)|]

=
Nv∑
j=1

〈j |�el,vib(t)〉〈�el,vib(t)|j 〉, (12)

and the reduced density matrix (ρ̂el) can be expressed in the
electronic basis {|1〉,|2〉} as

(ρ̂el) =
(∑

j |C1j |2
∑

j C1jC
∗
2j∑

j C∗
1jC2j

∑
j |C2j |2

)
, (13)

where the summation is over j = 1,Nv , and Tr(ρ̂el) = 1.
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To express the quantities implying the coefficients C1j ,C2j

as functions of entities related to the initial electronic states
g,e, we choose the new electronic basis set as

|1〉 = 1√
2

(|g〉 + |e〉), |2〉 = 1√
2

(|g〉 − |e〉). (14)

Using Eqs. (7), (10), (14) together with the orthornormality and
completeness relations, the quantities implying the coefficients
C1j ,C2j can be expressed as functions of cvg

(t), cve
(t) and of

the vibrational eigenstates |χvg
〉, |χve

〉.
The eigenvalues of the matrix (13) are ρ+,−(t) = 1

2 {1 ±
[Pg(t) − Pe(t)]}, with Pg(t) = ∑

vg
|cvg

(t)|2 and Pe(t) =∑
ve

|cve
(t)|2 being the vibrational populations of the g,e

electronic states. As Pg(t) + Pe(t) = 1, the eigenvalues of the
reduced density matrix (ρ̂el) are simply the populations of the
electronic states:

ρ+(t) = Pg(t), ρ−(t) = Pe(t). (15)

Knowing that the eigenvalues ρ+,−(t) are the squares of
the coefficients defining the Schmidt decomposition of the
pure bipartite state |�el,vib(t)〉 [1,21], one reaches the easily
understandable conclusion that separability appears if only one
of the electronic states is populated [Pg(t) = 1 and Pe(t) = 0,
or vice versa], and maximum entanglement is realized for
Pg(t) = Pe(t) = 1/2.

To advance to the dynamical aspects of entanglement, one
has to use measures such as the von Neumann entropy of the
reduced density matrix or the linear entropy (calculated via
the purity of the reduced density matrix). The von Neumann
entropy of entanglement

SvN (ρ̂el) = −Tr(ρ̂el log2 ρ̂el) (16)

is the Shannon entropy of the squares of the Schmidt
coefficients [24]: SvN (ρ̂el) = −ρ+ log2 ρ+ − ρ− log2 ρ−. Two
alternative expressions can be written:

SvN (ρ̂el(t)) = −Pg(t) log2 Pg(t) − Pe(t) log2 Pe(t) (17a)

= −1 + D(t)

2
log2

1 + D(t)

2

− 1 − D(t)

2
log2

1 − D(t)

2
. (17b)

The notation D(t) = Pg(t) − Pe(t) was employed in deriv-
ing (17b), which is the form taken by the von Neumann entropy
for the density operator of a qubit, D(t) being the module of
the Bloch vector [26].

As expected, the von Neumann entropy SvN (ρ̂el(t)) is 0 for
a separable state (if one of the eigenvalues is 1, the other
being 0), and attains the maximum value 1 for maximum
entanglement [when Pg(t) = Pe(t) = 1/2]. It is important to
notice that Eq. (17a) gives the possibility to investigate the
entanglement dynamics in a molecular process.

Now we shall analyze the purity of the reduced density
matrix, Tr[ρ̂2

el(t)], which is related to the linear entropy of
entanglement L(t):

L(t) = 1 − Tr
[
ρ̂2

el(t)
]
. (18)

Using Eq. (13) one obtains

Tr
(
ρ̂2

el

) =
⎛
⎝ Nv∑

j=1

|C1j |2
⎞
⎠

2

+
⎛
⎝ Nv∑

j=1

|C2j |2
⎞
⎠

2

+ 2

∣∣∣∣∣∣
Nv∑
j=1

C1jC
∗
2j

∣∣∣∣∣∣
2

. (19)

These quantities can be written as functions of cvg
(t), cve

(t),
|χvg

〉, |χve
〉, to reach the expression

Tr
[
ρ̂2

el(t)
] = 1

2
+ 1

2
[Pg(t) − Pe(t)]2

+ 2

∣∣∣∣∣∣
Ng∑

vg=1

Ne∑
ve=1

c∗
vg

(t)cve
(t)〈χvg

(R)
∣∣χve

(R)〉
∣∣∣∣∣∣
2

. (20)

Using the condition Pg(t) + Pe(t) = 1, and writing the vibra-
tional wave packet in an electronic state as

|ψ(R,t)〉 =
∑

v

cv(t)|χv(R)〉, (21)

Eq. (20) takes the simple form

Tr
[
ρ̂2

el(t)
] = P 2

g (t) + P 2
e (t) + 2|〈ψg(R,t)|ψe(R,t)〉|2. (22)

Equations (20) and (22) show the purity Tr[ρ̂2
el(t)] as an

interesting sensor for the correlations between the electronic
channels, emphasizing explicitly the role played by the
vibronic coherences. The purity defined by Eq. (20) is
bounded by 1

2 � Tr[ρ̂2
el(t)] � 1,2 and the corresponding linear

entropy by 0 � L(t) � 1
2 . If Tr[ρ̂2

el(t)] = 1 [and L(t) = 0]
the electronic subsystem is pure by itself, and then the pure
bipartite state is nonentangled. It is, obviously, the result
obtained with the relation (20) if only one of the electronic
states is populated [all cvg

(t) = 0 or all cve
(t) = 0].

These results show that an interaction between two elec-
tronic channels which leaves both channels populated will
produce an entangled state, entanglement being present at all
times if both channels remain populated.

In the following, we will use the expressions obtained for
SvN (ρ̂el(t)), Tr[ρ̂2

el(t)], and L(t)3 to analyze the entanglement
dynamics in specific cases of coupling of two electronic
channels by a laser pulse.

2Generally, the purity Trρ̂2 of a quantum state is bounded by 1
d

�
Trρ̂2 � 1, where d is the dimension of the Hilbert space attributed to
the system [27].

3Comparing entanglement measures is obviously a subtle and
complicated matter. We just make the observation that the von
Neumann entropy SvN (ρ̂) and the purity Tr(ρ̂2) are both related to the
quantum α Renyi entropies Sα(ρ̂) = (1 − α)−1 log2Trρ̂α . In the limit
α → 1, one obtains the entropy of entanglement: S1(ρ̂) = SvN (ρ̂).
On the other hand, S2(ρ̂) = − log2 Tr(ρ̂2). Nevertheless, the Renyi
entropies for α > 1 do not have the same mathematical properties
as those with 0 � α � 1, which fulfill the maximum of postulates
required for an entanglement measure [1,25].
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A. Entanglement dynamics produced by a constant vibronic
coupling in a 2 × 2 system: One vibrational level in each

electronic state

We consider first the model case of two electronic states g,e

coupled by an electric field with amplitude E(t) = E0 cos ωLt .
In the rotating wave approximation, the evolution of such a
system is described by a time-dependent Schrödinger equation
like Eq. (29), but with constant coupling WL [28]. Considering
a 2 × 2 system with one vibrational state associated with every
electronic state, the “vibrational wave packets” associated
with the electronic states are |ψg(R,t)〉 = cvg

(t)|χvg
(R)〉 and

|ψe(R,t)〉 = cve
(t)|χve

(R)〉 [with |cvg
(t)|2 + |cve

(t)|2 = 1]. In
this case one can write an analytic expression for the population
|cve

(t)|2, showing the Rabi beats induced by the coupling
between the two vibrational states with energies Eve

, Evg
[29]:

∣∣cve
(t)

∣∣2 =
∣∣WLFvgve

∣∣2

(
��ve,vg

)2 sin2
(
�ve,vg

t
)
, (23)

��ve,vg
=

√∣∣WLFvgve

∣∣2 + [(
Eve

− Evg

)/
2
]2

. (24)

In Eqs. (23) and (24) |Fvgve
|2 is the Franck-Condon factor,

with Fvgve
= 〈χvg

(R)|χve
(R)〉 the overlap integral of the

vibrational wave functions.
The eigenvalues of the reduced density matrix ρ̂el(t)

are the populations of the two electronic states: ρ+(t) =
Pg(t) = |cvg

(t)|2, ρ−(t) = Pe(t) = |cve
(t)|2. Then, according

to Eqs. (17) and (20), the von Neumann entropy and the purity
are

SvN (ρ̂el(t)) = −∣∣cvg
(t)

∣∣2
log2

∣∣cvg
(t)

∣∣2

− ∣∣cve
(t)

∣∣2
log2

∣∣cve
(t)

∣∣2
, (25)

Tr
[
ρ̂2

el(t)
] = 1 − 2

(
1 − ∣∣Fvgve

∣∣2)∣∣cvg
(t)

∣∣2∣∣cve
(t)

∣∣2
. (26)

The linear entropy of entanglement becomes

Lvgve
(t) = 2

(
1 − ∣∣Fvgve

∣∣2)∣∣cve
(t)

∣∣2[
1 − ∣∣cve

(t)
∣∣2]

, (27)

with |cve
(t)|2 given by Eq. (23), which means that the

characteristic period appearing in the linear entropy evolution
is the Rabi period T R

ve,vg
of the beating between the vibrational

levels (ve,vg), shown by Eq. (23):

T R
ve,vg

= π

�ve,vg

. (28)

By showing that the Rabi period associated to the vibronic
coupling is the characteristic time in the evolution of the
linear entropy, already this simple model provides insight
into the entanglement dynamics during the laser coupling.
A beat phenomenon in the reduced-density linear entropy is
also signalled in Ref. [15], which analyzes the entanglement
of vibrations in triatomic molecules using an algebraic model.

10 20 30 40 50
R (units of a

0
)

-400

-300

-200

-100

0

V
(R

) 
(u

ni
ts

 o
f 

cm
-1

)

v
e
=142

R
c

t=0

a
3Σ

u

+
(6s,6s)+hω

L

1
g
(6s,6p

3/2
)

V
c

FIG. 1. (Color online) a3�u
+(6s,6s) and 1g(6s,6p3/2) electronic

potentials of Cs2, dressed with the photon energy �ωL= E6p3/2 −
E6s − ��L (��L = 140 cm−1) and crossing at Rc = 29.3a0, Vc =
V1g

(Rc) = V�(Rc) = −143 cm−1. The energy origin is taken to be the
dissociation limit E6s+6p3/2 = 0 of the 1g(6s + 6p3/2) potential. The
initial wave function of the process is the vibrational wave function
with ve = 142 of the 1g electronic state, also represented in the figure.

B. Entanglement dynamics in the case of two electronic states
coupled by a laser pulse: Example of a3�u

+(6s,6s) = g,
1g(6s,6 p3/2) = e of the Cs2 molecule

Here we consider the intramolecular dynamics induced by
a laser pulse which couples two electronic states of the Cs2

molecule. This allows one to follow the temporal dependence
of the entanglement measures proposed in the preceding
sections and to relate it to the characteristic times of the
molecular evolution.

We consider that the electronic channels e = 1g(6s,6p3/2)
and g = a3�u

+(6s,6s) are coupled by an electric field
with amplitude E(t) = E0f (t) cos ωLt , such that the potential
curves dressed with the photon energy �ωL have a crossing
point at Rc (Fig. 1). The time-dependent Schrödinger equation
associated with the radial motion of the wave packets �e(R,t)
and �g(R,t) in the electronic channels, written using the
rotating wave approximation with the frequency ωL/2π

[28,29], is

i�
∂

∂t

(
�e(R,t)
�g(R,t)

)

=
(

T̂ + Ve(R) WLf (t)

WLf (t) T̂ + Vg(R)

)(
�e(R,t)

�g(R,t)

)
. (29)

The potentials Ve(R) and Vg(R) are the diabatic electronic
potentials crossing at Rc, represented in Fig. 1. T̂ is the kinetic-
energy operator and WLf (t) the coupling between the two
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FIG. 2. (Color online) Dynamics of entanglement between elec-
tronic and vibrational degrees of freedom for the electronic states
g = a3�u

+ and e = 1g of Cs2 (Fig. 1) coupled by a laser pulse. (a)
Pulse envelope f (t). (b) Time evolution of the populations Pg(t) and
Pe(t). (c) Time evolution of the von Neumann entropy SvN (t) (full
line) and linear entropy L(t) (dashed line). (d) Evolution of the purity
Tr[ρ̂2

el(t)].

channels, with f (t) the temporal envelope of the pulse [shown
in Fig. 2(a)]. WL = − 1

2E0D
�eL

ge , where E0 = √
2I/cε0 is the

field amplitude (with I the laser intensity), �eL the polarization,
and D �eL

ge the transition dipole moment between the ground
and the excited molecular electronic states. If one neglects
the R dependence of the transition dipole moment, using
a value D �eL

ge deduced from standard long-range calculations
for a linear polarization vector �eL [30], for a pulse intensity
I ≈ 43 MW/cm2 one obtains a coupling WL = 13.17 cm−1.
The initial state of the process, represented in Fig. 1, is
the vibrational eigenstate χ

ve=142
1g

(R) corresponding to the
vibrational level ve = 142 of the excited electronic potential
1g(6s + 6p3/2), bound by Eve

= −140.9 cm−1.
The dynamics is simulated solving numerically the

Schrödinger equation (29), by propagating in time the initial

wave function (χ
ve=142
1g

(R)
0

) on a spatial grid with length LR ≈
370a0. The time propagation uses the Chebychev expansion of
the evolution operator [31,32] and the mapped sine grid (MSG)
method [33,34] to represent the radial dependence of the wave
packets. The populations in each electronic state are calculated
from the vibrational wave packets �e(R,t) and �g(R,t)

as Pg,e(t) = ∫ LR |�g,e(R′,t)|2dR′, with the total population
normalized at 1 on the spatial grid [Pg(t) + Pe(t) = 1], and
Pe(0) = 1.

The evolution of the populations Pg(t), Pe(t) during the
pulse is shown in Fig. 2(b). The chosen pulse is sufficiently

long (about 200 ps) and strong (the maximum local Rabi
period associated with the constant coupling WL is TRabi(Rc) =
�π/WL = 1.27 ps [29]) to put in evidence typical phenomena
such as the beats between various vibrational levels populated
by the pulse, and the vibrational motion in the potential wells.
Several vibrational levels of each electronic surface having
energies close to the energy crossing Vc are populated during
the pulse, with typical vibrational periods of 11 ps in the 1g

potential, and between 40 ps and 80 ps in the a3�u
+ potential.

The time scales related to the laser coupling and vibrational
motion have been analyzed in detail in Ref. [29]. The time
evolution shown in Fig. 2(b) is characterized by inversion
of population between the two channels and a Rabi beating
with the period T R

ve,vg
= 22.3 ps, specific to the vibrational

levels ve = 142 of 1g and vg = 47 of a3�u
+, whose vibrational

periods are T vib
ve=142 = 10.8 ps and T vib

vg=47 = 80 ps. In the figure,
this last characteristic time appears as related to the revival of
Rabi oscillations of maximum amplitude.

The entanglement dynamics is illustrated by the evolution
of the von Neumann entropy SvN (t) and the linear entropy L(t),
represented in Fig. 2(c). Both show similar time oscillations,
with periods which are those of the beats between the
populations Pg(t) and Pe(t), dominated here by the Rabi
period T R

ve,vg
= 22.3 ps. The equalization of populations

between the two electronic channels creates the condition
for maximum entanglement [SvN (t) = 1], which is repeatedly
realized during the pulse action. Finally, the laser pulse leaves
the system in an entangled state |�el,vib(t)〉 characterized by a
high von Neumann entropy SvN (t = 300 ps) ≈ 0.8.

IV. ENTANGLEMENT BETWEEN ELECTRONIC
AND VIBRATIONAL DEGREES OF FREEDOM

IN A 3 × Nv SYSTEM

We consider now a bipartite Hilbert spaceH = Hel
⊗

Hvib

of dimension 3 × Nv . We assume the existence of couplings
between the three electronic states |g〉, |e〉, |f 〉, such that a
pure state of H is created:

|�el,vib(t)〉= |g〉
⊗ Ng∑

vg=1

cvg
(t)

∣∣χvg

〉 + |e〉
⊗ Ne∑

ve=1

cve
(t)

∣∣χve

〉

+ |f 〉
⊗ Nf∑

vf =1

cvf
(t)

∣∣χvf

〉
. (30)

{|χvg
〉}vg=1,Ng

, {|χve
〉}ve=1,Ne

, and {|χvf
〉}vf =1,Nf

are the or-
thonormal vibrational bases (with dimensions Ng , Ne, Nf , re-
spectively) corresponding to the electronic surfaces g,e,f , and
the dimension of the vibrational Hilbert space is Nv = Ng +
Ne + Nf . The normalization condition 〈�el,vib(t)|�el,vib(t)〉 =
1 is expressed by the relation∑

vg

∣∣cvg
(t)

∣∣2 +
∑
ve

∣∣cve
(t)

∣∣2 +
∑
vf

∣∣cvf
(t)

∣∣2 = 1, (31)

and the density operator ρ̂el,vib(t) associated with the pure
state [as in Eq. (9)] obeys ρ̂2

el,vib = ρ̂el,vib. Following the
line of reasoning employed in Sec. III, the quantification of
the entanglement requires the calculation of the electronic
reduced density matrix, for which we have to use a complete
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orthonormal vibronic basis {|j 〉}j=1,Nv
, satisfying

the orthonormality (〈j |j ′〉 = δjj ′ ) and completeness
(
∑Nv

j=1 |j 〉〈j | = Îv) conditions in Hvib. This vibronic
basis can be associated to a new orthonormal electronic basis
{|1〉,|2〉,|3〉} in Hel, such that the wave function |�el,vib(t)〉 of
the pure bipartite system may be also expressed as

|�el,vib(t)〉 = |1〉
⊗ Nv∑

j=1

C1j (t)|j 〉 + |2〉
⊗ Nv∑

j=1

C2j (t)|j 〉

+ |3〉
⊗ Nv∑

j=1

C3j (t)|j 〉. (32)

The complex coefficients C1j ,C2j ,C3j obey the normalization
condition

∑Nv

j=1[|C1j (t)|2 + |C2j (t)|2 + |C3j (t)|2] = 1.
The reduced density operator ρ̂el is calculated using the

vibronic basis {|j 〉}j=1,Nv
as shown in Eq. (12), and the reduced

density matrix (ρ̂el) can be written in the electronic basis
{|1〉,|2〉,|3〉}:

(ρ̂el) =

⎛
⎜⎜⎝

∑
j |C1j |2

∑
j C1jC

∗
2j

∑
j C1jC

∗
3j∑

j C2jC
∗
1j

∑
j |C2j |2

∑
j C2jC

∗
3j∑

j C3jC
∗
1j

∑
j C3jC

∗
2j

∑
j |C3j |2

⎞
⎟⎟⎠ , (33)

where the j summations are over j = 1,Nv . It is nevertheless
difficult to diagonalize the reduced density matrix (33) and to
obtain its eigenvalues in order to get an analytic expression for
the von Neumann entropy SvN (t). However, the purity of the
reduced density matrix can be calculated using Eq. (33):

Tr
(
ρ̂2

el

)

=
⎛
⎝∑

j

|C1j |2
⎞
⎠

2

+
⎛
⎝ ∑

j

|C2j |2
⎞
⎠

2

+
⎛
⎝ ∑

j

|C3j |2
⎞
⎠

2

+ 2

⎛
⎝

∣∣∣∣∣∣
∑

j

C1jC
∗
2j

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
∑

j

C1jC
∗
3j

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
∑

j

C2jC
∗
3j

∣∣∣∣∣∣
2⎞
⎠.

(34)

Making a choice for the new electronic basis set, as for
example

|1〉 = 1√
3

(|g〉 + |e〉 + |f 〉),

|2〉 = 1√
6

(|g〉 + |e〉 − 2 |f 〉), (35)

|3〉 = 1√
2

(|g〉 − |e〉),

allows one to arrive in Eq. (34) at an expression related to the
initial electronic states, based on the electronic populations
Pg(t),Pe(t),Pf (t) and overlaps between |ψg,e,f (R,t)〉

Tr
[
ρ̂2

el(t)
]

= P 2
g (t) + P 2

e (t) + P 2
f (t) + 2|〈ψg(R,t)|ψe(R,t)〉|2

+ 2|〈ψg(R,t)|ψf (R,t)〉|2 + 2|〈ψe(R,t)|ψf (R,t)〉|2.
(36)

Equation (36) has the same structure as Eq. (22), which now
can be regarded as its particular case for only two populated
electronic states. The purity given by Eq. (36) is bounded by
1
3 � Tr(ρ̂2

el) � 1, which gives boundaries 0 � L(t) � 2
3 for the

linear entropy. We shall use Eq. (36) to quantify the electronic-
vibrational entanglement in a 3 × Nv molecular system using
the reduced linear entropy, L(t) = 1 − Tr[ρ̂2

el(t)]. The next
section constitutes an example.

V. ENTANGLEMENT DYNAMICS IN A SYSTEM OF
THREE ELECTRONIC STATES COUPLED BY A
SEQUENCE OF TWO CHIRPED LASER PULSES

In this section we analyze the production of entanglement
[quantified by the linear entropy L(t)] in the case of a more
complex molecular dynamics, related to a theoretical control
scheme proposed to create Cs2 vibrationally cold molecules
[35–37] using the multichannel tunneling observed in the
cesium photoassociation spectrum [38].

The scheme, illustrated in Fig. 3, uses a sequence of
two chirped laser pulses to couple the electronic potentials
a3�u

+(6s,6s) = g and 0g
−(6s,6p3/2) = e of a Cs2 cold

molecule at large interatomic distances (R1 ≈ 94a0), as well
as at small distances (R2 ≈ 15.6a0), in order to capture vi-
brational population in low vibrational levels of the electronic
potentials. Moreover, the 0g

−(6s,6p3/2) = e state (having a
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FIG. 3. (Color online) Electronic potentials a3�u
+(6s,6s) = g,

0g
−(6s,6p3/2) = e, and 0g

−(6s,5d) = f of the Cs2 molecule, coupled
by a sequence of two chirped laser pulses (see also Fig. 4) with central
frequencies ωL1/2π and ωL2/2π , and by a nonadiabatic coupling
(to be seen in the crossing of e and f electronic surfaces at small
interatomic distances of about 10a0). The initial state at t = 0 (a
loosely bound vibrational state in g = a3�u

+) is also shown, as well
as the vibrational wave packet created by the first pulse in the e state,
at t = 250 ps.
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first sequence is made of two pulses centered in tP 1 = 150 ps and
tP 2 = 275 ps. The repetition of the sequence after 1800 ps is also
shown (tPR1 = 1950 ps and tPR2 = 2075 ps).

double-well potential) is coupled in the inner well region to
the 0g

−(6s,5d) = f electronic state, through a nonadiabatic
coupling generated by the spin-orbit interaction [36]. The
first chirped pulse, with central frequency ωL1/2π (�ωL1 =
11 729.66 cm−1) at tP 1 = 150 ps couples a3�u

+(6s,6s) and
0g

−(6s,6p3/2) at large interatomic distances (R1 ≈ 94a0).
We consider as initial state of the process the “last bound
state” of the a3�u

+(6s,6s) potential obtained on a spatial
grid of about 1060a0. Its wave function (partially visible
in Fig. 3) extends up to about 350a0 and has a maximum
at R1, being an advantageous choice for the simulation of
a cold photoassociation process. Operating on this initial
state, the first pulse creates a vibrational wave packet around

the vibrational level v0 = 98 of the 0g
−(6s,6p3/2) outer

well [35], which begins to move to small distances in the
0g

−(6s + 6p3/2) double well (see Fig. 3). The second delayed
pulse, with �ωL2 = 11 856.66 cm−1 and tP 2 = 275 ps [37],
induces a coupling in the zone of the 0g

−(6s,6p3/2) double
well barrier (R2 ≈ 15.6a0), controlling the tunneling in the
0g

−(6s,6p3/2) potential coupled radially at small interatomic
distances (≈10a0) with the 0g

−(6s,5d) potential, and transfer-
ring population in low vibrational levels of the a3�u

+(6s,6s)
state. The theoretical model and the choice of the chirped
pulses are described in detail in Refs. [35,37]. Our present
calculations include in the model the nonadiabatic coupling
at short distances between the 0g

−(6s,6p3/2) and 0g
−(6s,5d)

potentials, and the repetition of the pulses sequence after
1800 ps (see Fig. 4). These factors were not previously taken
into account and, as we will show, they do contribute in the
entanglement dynamics.

The succession of pulses considered in this work is
represented in Fig. 4. Each pulse has a Gaussian envelope
f (t) and negative linear chirp, being described by an electric
field E(t) = E0f (t) cos[ωLt + ϕ(t)], where ωL/2π is the
central frequency reached at t = tP , and ϕ(t) a phase which
is a quadratic function of time. The Gaussian envelope
f (t) = √

τL/τC exp{−2 ln 2[(t − tP )/τC]2} is centered at t =
tP , having the temporal width τC defined as the full width
at half maximum (FWHM) of the temporal intensity profile
E2

0f
2(t). The maximum of f (t) is at f (tP ) = √

τL/τC , where
τL is the temporal width of the transform limited pulse (before
chirping). Such a pulse is characterized by several parameters
belonging to the spectral and temporal domains, which are
carefully chosen in order to control the system evolution (a
detailed analysis is contained in Refs. [33,37]).

The vibrational dynamics is obtained by solving numeri-
cally the time-dependent Schrödinger equation associated with
the radial motion of the vibrational wave packets. For each
pulse, the coupling between electronic surfaces is treated by
using the rotating wave approximation with the correspond-
ing carrier frequency ωL/2π . Then, for a given pulse, the
coupled equations for the evolution of the radial wave func-
tions �ω

g,e,f (R,t) in the dressed diabatic potentials V ′
e (R) =

Ve(R), V ′
f (R) = Vf (R), and V ′

g(R) = Vg(R) + �ωL, can be
written as

i�
∂

∂t

⎛
⎜⎝

�ω
e (R,t)

�ω
f (R,t)

�ω
g (R,t)

⎞
⎟⎠ =

⎛
⎜⎝

T̂ + V ′
e (R) V12(R) −WLf (t)e−iϕ(t)

V12(R) T̂ + V ′
f (R) 0

−WLf (t)eiϕ(t) 0 T̂ + V ′
g(R)

⎞
⎟⎠

⎛
⎜⎝

�ω
e (R,t)

�ω
f (R,t)

�ω
g (R,t)

⎞
⎟⎠ . (37)

Similar to the example analyzed in Sec. III B, T̂ is the
kinetic-energy operator and WL = −E0Dge/2 is the laser
coupling determined by the laser intensity I (E0 = √

2I/cε0)
and the transition dipole moment Dge/2. The Cs2 molec-
ular potential curves used in the present work were de-
scribed in Refs. [36,38]. The nonadiabatic coupling between
0g

−(6s,6p3/2) and 0g
−(6s,5d) electronic potentials is modeled

using a radial coupling V12(R) of Gaussian form [36] in
the Hamiltonian matrix of Eq. (37). The numerical methods

used to solve Eq. (37) are those already mentioned in
Sec. III B.

The populations Pg(t), Pe(t), Pf (t) in each electronic state
are calculated from the vibrational wave packets as

Pg,e,f (t) =
∫ LR ∣∣�ω

g,e,f (R′,t)
∣∣2

dR′, (38)

where LR = 1060a0 is the length of the spatial grid used
to solve Eq. (37) by wave-packet propagation. The total
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the linear entropy evolution, respectively, during the first chirped
pulse. (c),(d) The population evolution and linear entropy evolution,
respectively, during the second chirped pulse.

population is normalized at 1 on the spatial grid [Pg(t) +
Pe(t) + Pf (t) = 1], with Pg(t = 0) = 1.

The linear entropy, L(t) = 1 − Tr[ρ̂2
el(t)], calculated with

Eq. (36), is used to characterize the entanglement dynamics
during the whole process. Figures 5 and 6 show the evolution
of the linear entropy and electronic populations during each
pulse. In Fig. 7 is represented the overall linear entropy
evolution. In the following, we will analyze these results.

In the population evolution appears the chirped Rabi period
[35], which is a characteristic time associated with the action
of a chirped pulse:

T C
Rabi(tP ) =

√
τC

τL

�π

WL

. (39)

The first chirped pulse, characterized by a coupling strength
WL1 = 0.74 cm−1 and a chirped Rabi period T C1

Rabi(tP 1) =
34.3 ps, acts at large R distances and produces a transfer
of population from the g electronic state to the e state: the
characteristic period T C1

Rabi(tP 1) appears clearly in the evolution
of the populations and linear entropy, in Figs. 5(a) and 5(b).
The second pulse comes with a coupling strength WL2 =
24.69 cm−1 and a chirped Rabi period T C2

Rabi(tP 2) = 1.8 ps,
and operates an exchange of populations at much smaller
R � 35a0 distances, bringing population back to the ground
electronic state g, but in strongly bound vibrational levels. Its
characteristic Rabi period T C2

Rabi(tP 2) can be distinguished in the
evolution of the populations and linear entropy, in Figs. 5(c)
and 5(d), but with a smaller amplitude, due to the smaller
amount of transferred population. On the other hand, during
the second pulse which brings population into the inner zone,
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during the repetition of the second chirped pulse. (d) Evolution of the
partial populations P

R=34.6a0
g,e,f = ∫ R=34.6a0 |�g,e,f (R′,t)|2dR′ during

the repetition of the second chirped pulse. (e) Evolution of the linear
entropy during the repetition of the second chirped pulse.

the evolution of the populations and linear entropy begins to
show the beats due to the nonadiabatic coupling between the
e and f states.

The evolution during the repetition of the pulse sequence
after 1800 ps is represented in Figs. 6(a) and 6(b) for the
first pulse and in Figs. 6(c)–6(e) for the second pulse. As
the second pulse operates at small distances R, it appears
that to understand its effects one has to represent also the
partial populations P

R=34.6a0
g,e,f = ∫ R=34.6a0 |�g,e,f (R′,t)|2dR′,

calculated by integrating the vibrational wave packets up
to R = 34.6a0 [Fig. 6(d)]. Then, the chirped Rabi period
T C2

Rabi(tP 2) may be easily identified in their evolution, as in
the linear entropy evolution presented in Fig. 6(e).

The repetition of the first pulse feels the “void” left in the
g initial wave function by the initial first pulse [see Fig. 8(a)],
and as a result less population is transferred from the ground
state g to the excited state e at large distances [Fig. 6(a)].
Nevertheless, by bringing closer the electronic populations Pg

and Pe, the first pulse (the initial and its repetition) leads to
an increase of the linear entropy (Fig. 7). On the other hand,
the second pulse in the sequence (which operates at small
distances) has different effects initially and in its repetition. In
the first stage, it transfers population in low vibrational levels
of the ground state g, which has a “purification effect” on the
overall state, lowering the linear entropy [see Figs. 5(c) and
5(d) and 7]. In contrast, its repetition transfers population back
in the inner well of the excited state e [Figs. 6(c) and 6(d)],
bringing even closer the electronic populations and increasing
L(t) [Fig. 6(e)]. Therefore, it appears that the repetition of
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FIG. 7. Dynamics of entanglement: time evolution of the linear
entropy L(t) = 1 − Tr[ρ̂2

el(t)] during the pulse sequence represented
in Fig. 4. The vertical dotted lines indicate the instants tP 1, tP 2, tPR1,
tPR2 corresponding to the maximum of every pulse envelope, as it is
shown in Fig. 4.

the pulse sequence is significant to the overall picture, which
is best seen in the evolution of the linear entropy during the
process (Fig. 7).

The succession of pulses creates a final state |�el,vib(t)〉
with significant entanglement, if we take into account that
the linear entropy is maximally bounded by 2/3, and here
L(t) attains 0.42. The vibrational components ψg,e,f (R,t) of
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FIG. 8. (Color online) Vibrational components ψg,e,f (R,t) of the
pure entangled state |�el,vib(t)〉 = |g〉 ⊗ |ψg(t)〉 + |e〉 ⊗ |ψe(t)〉 +
|f 〉 ⊗ |ψf (t)〉 created by the succession of pulses at t = 2100 ps.

the pure entangled state |�el,vib(t)〉, according to Eq. (30),
are shown in Fig. 8 [other decompositions of |�el,vib(t)〉 are
equally possible, as in Eq. (32)].

VI. CONCLUSION

We have investigated the entanglement between electronic
and nuclear degrees of freedom produced by vibronic cou-
plings in pure states of the Hilbert space H = Hel

⊗
Hvib.

Expressions for the von Neumann entanglement entropy and
the reduced linear entropy were derived for the 2 × Nv and
3 × Nv cases of the bipartite entanglement (el

⊗
vib), relating

these entanglement measures to quantities specific to the
intramolecular dynamics, such as the electronic populations
and the vibronic coherences.

The entanglement dynamics was analyzed in two cases of
laser coupling between electronic states, using as an example
the Cs2 molecule. In the first case, treated in Sec. III B, we
have simulated the vibrational dynamics for two electronic
states of the Cs2 molecule, a3�u

+(6s,6s) and 1g(6s,6p3/2),
which are coupled by a laser pulse. We show that the
Rabi period due to the vibronic laser coupling is also a
characteristic time in the evolution of the von Neumann
entropy and of the reduced linear entropy. The pulse creates
the conditions for the equalization of population between
the two electronic channels, producing an electronically
maximally entangled state in several stages of the temporal
evolution.

The second case, described in Sec. V, is related to a theoret-
ical control scheme proposed to create Cs2 vibrationally cold
molecules using a multichannel tunneling in the 0g

−(6s,6p3/2)
and 0g

−(6s,5d) electronic states coupled through a nona-
diabatic coupling generated by the spin-orbit interaction.
The scheme employs three electronic states [a3�u

+(6s,6s),
0g

−(6s,6p3/2), and 0g
−(6s,5d)] coupled by a sequence of

two chirped laser pulses. In addition to previous treatments,
we have introduced in the simulation of the dynamics the
nonadiabatic coupling between 0g

−(6s,6p3/2) and 0g
−(6s,5d)

at short distances, and the repetition of the pulse sequence. In
these conditions we have analyzed the entanglement dynamics
quantified by the reduced linear entropy. The chirped Rabi
period characteristic to each pulse can be identified in the
linear entropy evolution, as well as the beats period due
to the nonadiabatic radial coupling between the tunneling
channels 0g

−(6s,6p3/2) and 0g
−(6s,5d). We have shown that

the repetition of the pulse sequence has considerable influence
on the process, diminishing the purification effect of the
first sequence and increasing the entanglement in the final
state.

In both cases, the results show that the characteristic
times related to the vibronic couplings and the vibrational
motion are present in the entanglement structure. The linear
entropy, calculated from the purity of the electronic reduced
density matrix, appears as an interesting sensor for the
correlations between the electronic channels, emphasizing
explicitly the role played by the vibronic coherences. This
property could qualify the linear entropy as a useful ref-
erence in control schemes of the molecular coherence and
entanglement [39].
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In a molecule controlled by laser pulses which leave more
than one electronic state populated, electronic-vibrational
entanglement is always produced. The amount of entangle-
ment will depend on the “entangling power” of the quantum
evolution [40], which is directed here by the laser pulses, and
could, in principle, be controlled.

Molecules are systems whose entanglement properties
are beginning to be explored. Many phenomena are ex-
pected to contribute to the intramolecular dynamics and
they could be interrogated in future developments regard-
ing electronic-nuclear entanglement in isolated molecules:
electronic energy relaxation, vibrational energy redistribution

and relaxation, and various coupling mechanisms [41]. We
hope that the present work will help in these possible
developments, and also in future studies aiming to investigate
the environment effects and the control of entanglement in
molecules.
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