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Imaging of relaxation times and microwave field strength in a microfabricated vapor cell
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We present a characterization technique for atomic vapor cells, combining time-domain measurements with
absorption imaging to obtain spatially resolved information on decay times, atomic diffusion, and coherent
dynamics. The technique is used to characterize a 5-mm-diameter, 2-mm-thick microfabricated Rb vapor cell,
with N, buffer gas, placed inside a microwave cavity. Time-domain Franzen and Ramsey measurements are used
to produce high-resolution images of the population (7}) and coherence (73) lifetimes in the cell, while Rabi
measurements yield images of the o_, 7, and o, components of the applied microwave magnetic field. For a cell
temperature of 90 °C, the T) times across the cell center are found to be a roughly uniform 265 us, while the 75
times peak at around 350 us. We observe a “skin” of reduced 77 and 75 times around the edge of the cell due to
the depolarization of Rb after collisions with the silicon cell walls. Our observations suggest that these collisions
are far from being 100% depolarizing, consistent with earlier observations made with Na and glass walls. Images
of the microwave magnetic field reveal regions of optimal field homogeneity, and thus coherence. Our technique
is useful for vapor cell characterization in atomic clocks, atomic sensors, and quantum information experiments.
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I. INTRODUCTION

The use of alkali-metal vapor cells in atomic physics
has a history extending back several decades [1,2], and has
led to important applications in precision measurement [3,4]
and quantum information [5]. Recent years have seen great
interest in newly developed miniaturized and microfabricated
vapor cells, with sizes on the order of a few millimeters
or smaller. Applications include miniaturized atomic clocks
[6,7], gyroscopes [8], and magnetometers measuring both
dc [9-12] and radio-frequency [13] fields. As new applications,
one of our groups has recently demonstrated imaging of
microwave magnetic fields using a vapor cell [14,15], and
detection of microwave electric fields has been reported in
Ref. [16]. Thanks to microfabrication, vapor cells have been
miniaturized to a point where spatially resolved information
on their properties, and on the external fields applied to them,
is essential to their characterisation and performance.

In this paper, we describe a characterization technique,
applying time-domain Franzen [1], Ramsey [17], and Rabi [18]
measurements and absorption imaging [19] to a microcell.
Time-domain measurements in vapor cells are currently expe-
riencing a renaissance in interest [20]. Absorption imaging is
well established in use with ultracold atoms [19], providing
single-atom sensitivity [21], and micrometer spatial resolution
[22]; however, its use with room-temperature atoms is a
relatively unexplored area. We use these tools to characterize
a microfabricated vapor cell [7,23] and a microwave cavity
designed for compact vapor cell atomic clocks [24], obtaining
spatially resolved images of decay times in the cell and images
of the microwave field applied to the cell.

This paper is organized as follows. In Sec. II, we describe
the experimental setup and features of our vapor cell. In Sec. 111
we introduce the Franzen, Ramsey, and Rabi experimental
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sequences, and some basic measurements using a photodiode
for detection. We begin Sec. IV by describing our adaptation
of absorption imaging to vapor cells. We then present images
of the 7} and 7 times, and of the atomic populations in
the optically pumped steady state. We investigate Rb-wall
collisions and describe the T relaxation by modeling optical
pumping, diffusion, and collisional relaxation in the cell,
and finish Sec. IV with polarization-resolved images of
the microwave magnetic field amplitude. We conclude, and
discuss future directions, in Sec. V.

II. EXPERIMENTAL SETUP AND INITIAL
CHARACTERIZATION

A. Equipment and setup

We use the microfabricated cell shown in Fig. 1(a). The
cell has a 5 mm x 2 mm internal diameter and thickness, and
contains natural abundance Rb and 63 4 2 mbar of N, buffer
gas [7]. The windows of the cell are glass, and the sidewalls
are Si. The buffer gas pressure was measured at 80 °C from
the line shift induced on the ¥Rb clock transition [7], using
the coefficients provided in [25]. The cell is inserted into a
microwave cavity [24], which is tuned to have its resonance
frequency at the 6.835 GHz ground-state hyperfine splitting of
87Rb. The cavity is surrounded by a solenoid coil that provides
a static magnetic field of 35 uT, parallel to the direction of
laser propagation [see Fig. 1(d)]. The resulting 0.25 MHz
Zeeman splitting between transitions allows all seven 3’Rb
hyperfine transitions to be individually addressed, as shown
in the double-resonance spectrum of Fig. 1(c). A temperature
control system is used to heat the cell and actively stabilize its
temperature to within a few parts in 10*, and an outer double
layer of w-metal provides magnetic shielding. Except when
otherwise noted, the cell temperature was set to 90 °C for all
data presented in this paper.

We use a grating stabilized diode laser emitting linearly
polarized light at 780 nm, frequency stabilized using saturated
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FIG. 1. (Color online) (a) The microfabricated vapor cell used
in this paper, with glass windows and a silicon frame. (b) The
8Rb D, line. Due to Doppler and collisional broadening on the
optical transitions, the excited state hyperfine levels F’ are not
resolved. Transitions between the Zeeman-split mp levels of the
ground-state hyperfine structure can be individually addressed by
the microwave field. The three hyperfine transitions used in this
work (i = 1,4,7) are shown by dashed blue arrows. (c) A double-
resonance spectrum, showing laser transmission through the cell
as the microwave frequency is scanned. Transmission is reduced
whenever the microwave comes on resonance with a hyperfine
transition. (d) The experimental setup.

absorption spectroscopy to the F =2 — F’ = 2,3 crossover
peak of the 8Rb D, line (5512 — 5P3). Doppler and
collisional broadening ensure that the F' =2 ground state
is coupled to all of the F’ = 1,2,3 excited state hyperfine
levels [see Fig. 1(b)]. An acousto-optical modulator (AOM),
driven at 80 MHz, is used to provide switching with a rise
time below 100 ns. A single laser beam is used for both
optical pumping [26] and absorption measurements on the
atoms. Microwave signals near 6.835 GHz are produced by a
frequency generator (HP8304B), and passed through a switch
and an amplifier before being coupled into the cavity.

B. Hyperfine (microwave) transitions

There are nine possible hyperfine transitions between the
87Rb ground states, shown in Fig. 1(b), three from each m g
level of F = 1. Two degenerate pairs of transitions leave us
with seven resonances, which we label i = 1...7, in order
of increasing frequency. We address three (nondegenerate)
hyperfine transitions in this work: i =1, 4, and 7, or,
using | F,m ) notation: |1,—1) — |2,-2), [1,0) — |2,0), and
[1,+1) — |2,4+2). These are transitions corresponding to o_,
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7, and o polarization components of the microwave magnetic
field, respectively. i =4 represents the “clock transition,”
exploited in atomic clocks [27].

The hyperfine transitions are shown in Fig. 1(c) as a
double-resonance spectrum [27]. The spectrum is produced
by scanning the frequency of the microwave as the laser
illuminates the cell. For this measurement, both the microwave
and laser are continuously on. Whenever the microwave
comes onto resonance with a hyperfine transition, the optically
pumped F' = 2 state is repopulated. This results in a dip in the
transmission of the laser, which is recorded by a photodiode.
The 7 transitions in Fig. 1(c), i = 2,4,6, are the strongest,
as the microwave cavity is designed to operate in a mode
where the 7 component dominates.

C. Experiment sequences

In this paper we mostly use pulsed experiments to char-
acterize the vapor cell. In a typical sequence (see Sec. III),
we first apply an optical pumping pulse to the vapor that
depopulates the F = 2 state. It is followed by microwave
pulses that coherently manipulate the atomic hyperfine state.
Finally, we measure the optical density (OD) in the F =2
state with a probe pulse of the same frequency and intensity,
but much shorter duration than the optical pumping pulse, in
order to minimize optical pumping during the probe pulse.
For incident and transmitted probe intensities of Iy and 7,
respectively, the OD is defined as

OD = —In(1,/Iy). (1)

Detection is performed using either a photodiode (Thorlabs
DET10A/M), or absorption imaging on a CCD camera (Guppy
Pro FO31B). Details on the two detection methods are given in
Secs. IIT and IV, respectively.

D. Optical density as a function of temperature

The OD of the vapor in the cell is shown as a function of
temperature in Fig. 2. Transmission through the center of the
cell of a 2-mm-diameter, low-intensity (fp < 600 uW/ cm?)
laser beam was measured with a photodiode. In this case, no
optical pumping or microwave pulses were applied. The model
described in Ref. [28], modified to include pressure broadening
due to the buffer gas as in Refs. [29,30] and broadening due
to Rb dipole-dipole interactions [31], is compared to the data.
The agreement is good considering that the theory has no free
parameters. In all of the following measurements, the cell was
operated at 90 °C (marked by an arrow in Fig. 2), where the
theory matches our data well.

III. TIME-DOMAIN MEASUREMENTS
WITHOUT SPATIAL RESOLUTION

We use three sequence types in this work: Franzen [1],
Ramsey [17], and Rabi [18]. Franzen, or relaxation-in-the-
dark, sequences are all-optical, and are used to obtain T}
times. Ramsey sequences provide both 77 and 7, times. The
T, times refer to population relaxation between all F =1
and F = 2 sublevels, while the 7, times are specific for the
particular hyperfine mp transition probed. Rabi sequences
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FIG. 2. (Color online) Optical density of the cell as a function of
temperature. The theory curve has been produced using the model
of Ref. [28], modified to include pressure and Rb dipole-dipole
broadening. The theory has no free parameters. An arrow marks
90°C, where all other presented data were taken.

provide information about the microwave magnetic fields
strengths applied to the cell.

We performed a first characterization of the cell using a
photodiode as the detector. When using the photodiode, the
transmission of the probe laser pulse is measured 10 us after its
start, in order to accommodate the photodiode response time. A
laser intensity of ~5 mW /cm? was used in the measurements
described in this section, with the beam partially covering
the cell. Scanning the laser intensity from 0.1 mW/cm? to
10 mW/cm? produced no apparent variation in relaxation
times. This indicates that the small, constant amount of optical
pumping induced by the first 10 s of the probe pulse does not
greatly affect the measured time constants. Unless otherwise
stated, uncertainties are taken from the 68 % confidence bounds
of fitting to the data.

A. Franzen measurements

We begin a Franzen sequence by optical hyperfine pumping
of the atoms for some milliseconds, depopulating the F = 2
ground state and reducing the OD of the cell [26]. The laser
beam is then switched off with the AOM, and the pumped
population difference relaxes at arate 1/77. After a time d?gak,
we measure the OD with the probe pulse. Scanning dg,
allows us to observe the hyperfine population relaxation and
to determine 77.

Figure 3(a) shows data from an example Franzen sequence.
We fit the following equation to the data:

OD = A — B exp(—dtqax/ Th), ()

where A, B, and 7 are fitting parameters. This yields
T\, = (244 £ 6) us. We neglect possible tensorial hyperfine
relaxation, with different relaxation rates for different mp
states, as we observed no significant variation in 77 when
scanning the laser polarization (which scans the relative
population of mp states after optical pumping). The simple
nature of the Franzen data and the fitting equation results in
fast fitting and robust 77 values.
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FIG. 3. (Color online) Cell OD response to (a) Franzen,
(b) Ramsey, and (c) Rabi sequences, recorded using a photodiode.
Data is shown as blue dots, while the fitting curves (described in the
text) are in red. Note the different scale in (c). The insets show the
laser and microwave sequences used. The OD increases with laser
dark time, as the hyperfine population difference relaxes.

B. Ramsey measurements

In Ramsey sequences [17], we introduce two microwave
pulses between the pump and probe laser pulses of the Franzen
sequence. The first pulse creates a coherent superposition of
the two hyperfine m  states that are coupled by the microwave.
During the subsequent free evolution of duration dtg, the
atomic superposition state accumulates a phase relative to
the microwave local oscillator. The second microwave pulse
converts this phase into a population difference between the
hyperfine states. By scanning dtg, oscillations of the atomic
population are recorded. Each microwave pulse is nominally
a /2 pulse; however, variation in the microwave field across
the cell (see Sec. IV) results in atoms experiencing a range of
pulse areas. For a given microwave power setting, the nominal
/2 pulse length is obtained by performing a Rabi sequence
using a broad laser beam that illuminates the entire cell, and
measuring the Rabi oscillation period on a photodiode. The
/2 length is then 1/4 of this period. Ramsey sequences are
robust to laser and microwave field induced decoherence, as
the majority of the atomic evolution occurs in the dark, with
the microwave and optical fields off. As such, they provide a
good measure of the 75 time of the cell.

Figure 3(b) shows an example Ramsey sequence. The
microwave power at the input to the cavity was 29.8 dBm.
To record Ramsey oscillations in time, the microwave was
slightly detuned by § from the i = 4 transition. Although the
data is only shown up to 500 us, Ramsey oscillations are still
clearly visible at evolution times past 1.2 ms. The data is fit
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with the equation

OD = A — B exp(—dtg/T))
+ C exp(—dtg/Ty) sin(§ dtg + @), 3)

where A, B, C, ¢, T\, T», and § are fitting parameters. The
fit gives the two relaxation times as 77 = (245 + 0.5) pus and
T, = (322 £ 4) us. The T; time is in excellent agreement with
that obtained from the Franzen measurement. The exact detun-
ing of the microwave from resonance is given by the Ramsey
oscillation frequency, § = 2w x (135.764 & 0.006) kHz. The
measured 7; is specific to the clock transition. Tuning the
microwave to field-sensitive transitions (i # 4 in Fig. 1),
we see T, drop by a factor of 2 to 3. This is primarily
due to dephasing introduced by inhomogeneities in the static
magnetic field.

C. Rabi measurements

A Rabi sequence consists of a single microwave pulse
applied during the dark time between the laser pumping
and probe pulses [18]. The microwave pulse drives Rabi
oscillations between the two resonantly coupled m g sublevels
of F=1 and F =2, at a frequency proportional to the
microwave magnetic field strength. This allows us to use Rabi
sequences to measure each vector component of the microwave
magnetic field [14,15]. By tuning the microwave frequency to
transitions i = 1, 4, and 7, we are sensitive to the o_, 7, and
o components of the microwave magnetic field, respectively.
The magnitude of the microwave magnetic field components
is obtained using the equations [14]

B—lh B—hQ
__\/§MB " ﬂ_MB 4’
4
1 &

where €; is the Rabi frequency for oscillations on transition i.
An example Rabi sequence is shown in Fig. 3(c). The
microwave power at the input to the cavity was 27.8 dBm,
and the microwave frequency was tuned exactly to the i = 4
transition, having been calibrated using a Ramsey sequence.
Defining 71, the population difference lifetime, and 7, the Rabi
oscillation lifetime, the data is fit with the equation

OD = A — B exp(—dt,y/T1)
+ c exp(_dtmw/TZ) SiH(Q dtmw + ¢)9 (5)

where A, B, C, ¢, 11, T2, and Q are fitting parameters. We
obtain 7y = (231 £9) us and 7, = (94 4 3) us. The Rabi
oscillation lifetime is significantly shorter than the 7, time
obtained from the Ramsey measurement, principally due to
the sensitivity of the Rabi oscillations to inhomogeneous
dephasing induced by a spatially nonuniform microwave field.
On the i = 4 transition, we are sensitive to the 7 component
of the microwave magnetic field, and so 4 = 27 x 50.39 +
0.05 kHz corresponds to B, = 3.600 &= 0.003 uT. We observe
a strong variation in €2 across the cell (see Sec. IV). The Rabi
data in Fig. 3(c) was taken using a small diameter laser beam in
a section of the cell with a relatively homogeneous microwave
magnetic field, corresponding to a maximized t,.
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FIG. 4. (Color online) 7; times as a function of temperature. Error
bars are 95% confidence bounds from the fitting. The theory curve
shows a calculation of 7} using Eq. (6) with no free parameters.

D. Temperature dependence of relaxation times

Figure 4 shows T times for a range of cell temperatures, ob-
tained using Franzen sequences measured with the photodiode.
These are compared with a simple model described in [1,32],
which includes the effect of Rb-Rb spin exchange collisions,
Rb-buffer gas collisions, atomic diffusion, and atom-wall
collisions. Considering only the lowest-order diffusion mode,
the T, time is calculated as

T =[(2+v)D+y] " ©6)

Here, the diffusion coefficient is D = DyPy/ P, where Dy is
the diffusion coefficient at atmospheric pressure Py, and P
is the buffer gas pressure. For a cell length d and radius R,
v; = /d, and p, is defined by the first root of Jo(u R) = 0,
where Jj is the Bessel function of the first kind. The relaxation
rate ¥ = Ysg + Youtter accounts for relaxation due to Rb-Rb
spin exchange collisions [33] at a rate ysg, and Rb-buffer
gas collisions [34] at a rate pyye- The parameters of the
model are temperature dependent; their values at 90°C are
¥sE = 1957 s, ppusier = 10 57!, and P = 65 mbar. For Dy,
we use an average of the values reported in Refs. [34,35],
corresponding to Dy = 0.22 cm?/s at 90 °C.

At low temperatures, relaxation is governed by Rb col-
lisions with the cell walls, with a rate proportional to the
diffusion coefficient D. As the temperature is increased, Rb-Rb
spin-exchange collisions rapidly come to dominate, due to
the Rb vapor density increasing almost exponentially with
temperature [28,36]. There is good agreement between our
data and the theory, particularly at spin-exchange dominated
high temperatures.

IV. SPATIALLY RESOLVED IMAGING OF RELAXATION
TIMES AND MICROWAVE FIELD STRENGTH

We now turn our attention to measurements using the CCD
camera. A single lens is used to create a 1:2 demagnified image
of the cell. A neutral density filter is placed between the vapor
cell and camera to avoid saturation of the CCD. As the camera
does not have a mechanical shutter, the optical pumping pulse
hits the CCD as well. The electronic shutter of the camera
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opens with a delay of 12 us after the end of the pumping pulse.
While some residual charges accumulated during pumping are
visible on the images, they can be compensated for by taking
a dark image as explained below. For the data presented in this
section, the laser intensity averaged over the 5 mm cell diam-
eter was set to 30 mW /cm? to obtain strong optical pumping,
which ensures a large signal amplitude. During probing, on the
other hand, optical pumping is undesired, and a short probe
pulse duration of 2.2 s was chosen. The strong collisional and
Doppler broadening of the optical transition ensure that the
transition is not strongly saturated and the number of absorbed
probe photons per atom is of order unity. In an optimized setup,
separate laser beams could be used to avoid compromises
between optical pumping and probing performance.

Absorption imaging is a powerful technique that was
perfected in experiments with ultracold atoms to obtain
accurate images of atomic density distributions in a given
hyperfine state [19,21,22]. Here we apply this technique to our
vapor cell. In absorption imaging, a set of reference and dark
images is usually taken in addition to the image with the atoms.
This allows one to calibrate out spatial variation of the probe
laser intensity and stray light [19]. An important difference
between absorption imaging of cold atoms and a hot vapor
is that the presence of the atoms cannot be easily controlled
in the vapor cell, i.e., the vapor is always present in the laser
beam path. However, we can still modify the experimental
sequence between the different images in order to be able to
extract the relevant information from the observed variation in
optical density AOD.

We record four images to create an image of AOD: the
actual image (Iimage), taken after the entire sequence of optical
pumping, microwave pulses (for Rabi and Ramsey sequences),
and probe pulse; a reference image ([.r), taken 10 ms after
every actual image, with a probe pulse, but without optical
pumping or microwave pulse; a dark image for the actual image
(14ark1), taken with a pump pulse, but no probe or microwave

(a) Franzen T1

Y (mm)
N = O

(b) Ramsey T1
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pulse; and a dark image for the reference image (/qak2), taken
without any pump, probe, or microwave pulse. The two dark
images are taken approximately once per day. The AOD image
is obtained by calculating

)

AOD = —1In
Iref - Idark2

Iimage - Idarkl :|

The absolute OD can then be determined by normalizing to the
unpumped value of OD = 1.1 at the cell temperature of 90 °C
(see Fig. 2). The use of reference and dark images significantly
reduces our sensitivity to short and long term drifts in the
imaging system and to spatial variations of the probe laser
intensity. Mechanical vibrations proved to be a significant
experimental challenge in achieving reliable imaging. We were
required to undertake steps in order to minimize them, such as
rigidizing mounting components.

After taking each image, we bin the CCD pixels. This
binning acts to reduce noise on the pixels and to reduce
the computational intensity of the fitting process. We bin
the simpler Franzen data into 3 x 3 blocks, and the Ramsey
and Rabi data into 7 x 7 blocks. Taking the approximate
1:2 demagnification given by the imaging lens into account,
each of these 3 x 3 (7 x 7) pixel blocks corresponds to
35 um x 35 um (82 um x 82 um) in the cell. The spatial
resolution of our imaging system is then 35 um for Franzen
data, and 82 pum for Ramsey and Rabi data. The expected size
of the smallest features in the atomic vapor, on the other hand,
is given by atomic diffusion through the buffer gas during the
measurement sequence, typically a few hundred micrometers
(see Sec. IV A below). In the rest of this paper, we use “pixel”
to refer to the 3 x 3 and 7 x 7 blocks.

A. Imaging relaxation in the cell

Figure 5 shows images of the 77 and 7, times across the
cell, taken using both Franzen and Ramsey sequences. For the
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FIG. 5. (Color online) Measured 7 and 7, times across the cell. The top panels show (a) 7} times obtained from the 1/e decay time of a
Franzen sequence (see text); (b) 7 times obtained from fitting a Ramsey sequence, fitting uncertainty +1%; and (c) 7, times obtained from
the same Ramsey sequence, fitting uncertainty +4%. The bottom panels show radial profiles of each image in the form of a two-dimensional
histogram. The radial distance from the cell center is binned into 27.5-pum-wide bins for the Franzen data, and 38.8-um-wide bins for the
Ramsey data. Franzen 7; and Ramsey 7 and 7, times are binned into 0.99-, 1.4-, and 2.1-us-wide bins, respectively. The 7; profiles are
compared to theory as described in Sec. IV B. Close to the walls, there is a significant decrease in 77 and 75> due to Rb-wall collisions.
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Ramsey sequence, the microwave input power to the cavity
was 21.8 dBm, and the frequency was set slightly detuned
from the i = 4 transition.

Two different methods have been employed to obtain T;
times from the Franzen and Ramsey data. Each pixel of the
Ramsey data was fit using Eq. (3), yielding 7| and 7, times
with 1% and +4% fitting uncertainties, respectively. Fitting
each pixel of the Franzen data in a similar way, using Eq. (2),
yields essentially the same 77 image as obtained from the
Ramsey data. However, relaxation near the cell walls is not
well-described by a single exponential. The model presented
in Sec. IV B defines T; as the 1/e decay time of the hyperfine
population difference [Eq. (16)]. The Franzen 7; image has
therefore been produced using this definition.

The bottom panels of Fig. 5 show radial profiles of the T}
and T images. There is strong agreement between the structure
of the Franzen and Ramsey 7) images. The relaxation rate
is uniform across the center of the cell, with both Franzen
and Ramsey 7 times around 265 us. Franzen and Ramsey
T, times drop away to around 80 and 100 us, respectively,
at the cell edge, due to the depolarization of Rb atoms after
collisions with the cell walls. The 0.34 4 0.05 mm half-width
of this “skin” of reduced relaxation times is determined by the
distance Ax an atom diffuses during the bulk relaxation time.
A simple estimate yields Ax = /DT; = 0.31 mm, using
the measured bulk 77 = 265 ps. More detailed modeling is
described in Sec. IV B below. The shorter Franzen T} at the
cell edge is due to the definition of the 1/e time that accounts
for the multimode nature of the diffusional relaxation. The
T, relaxation, shown in the right-hand panels of Fig. 5, also
exhibits an outer skin of reduced relaxation times, with 7,
times around 130 us at the cell edge. Unlike in the T profiles,
however, the bulk 7, times are not entirely flat, rising up to
around 350 ws in the cell center.

The relaxation times obtained in the center of the cell are
larger than the values obtained using the photodiode in Sec. I11.
Integrating over the images in Figs. 5(a)-5(c), we get average
Franzen and Ramsey 7 times of 176 and 221 us, respectively,
and an average Ramsey T, time of 269 us. The Franzen T; time
1S more accurate, as it accounts for the multimode diffusional
relaxation near the cell walls. The photodiode values lie
between the central and average image values, indicating that
the photodiode measurements averaged the relaxation time
over some partial fraction of the cell.

In addition to the relaxation times, the absorption images
also provide information about the optical pumping efficiency.
We define the hyperfine population difference between the
F =1and F = 2 states as

nj

u=1 5/8° ®)
where n, is the fraction of atoms in /' = 2. With this definition,
u = Orepresents the unpumped equilibrium state where all m g
states are equally populated, and u = 1 corresponds to perfect
optical pumping where the F' = 2 state is empty. The B fitting
parameter for Franzen data [see Eq. (2)] describes the amount
the OD has changed through optical pumping. Normalizing by
the unpumped OD = 1.1 we obtain the hyperfine population
difference in the optically pumped steady state, ug = B/1.1.
Figure 6 shows the image and radial profile of u, obtained
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FIG. 6. (Color online) Image and radial profile of ug, the
hyperfine population difference in the optically pumped steady state,
obtained from Franzen data. The red data points in the lower panel
show the mean u, for each radial position, binned in 27.5 um bins.
The error of the mean is smaller than the symbols. Note the change in
scaling of the bottom axis at 7 = 2 mm to magnify the region near the
cell wall. The data is compared to theory as described in Sec. IV B.
The fit of Eq. (10) to the data near the cell wall is shown in solid
blue. The “theory” and “analytic theory” curves, respectively, model
uo with [Eq. (15)] and without [Eq. (14)] the inclusion of the central
dip in optical pumping efficiency, which was caused by a Rb deposit
on the front cell window.

in this way. We observe a reduced pumping efficiency close
to the cell edge because of atom-wall collisions. In addition,
there is a broad dip in pumping efficiency in the center
of the cell. This is due to a deposit of Rb that had developed
on the front cell wall, partially blocking the pumping light.
We attribute the deposit to a small temperature gradient on the
cell. The deposit was present when taking all of the imaging
data. The robustness of our T, T,, and microwave magnetic
field measurements is highlighted by the lack of correlation
between the image of u( in Fig. 6, and the images presented
in Figs. 5 and 7.

B. Modeling relaxation in the cell

We now describe a model for the hyperfine population
relaxation in the cell and compare it with our imaging data.
We begin by analyzing the optically pumped steady state in
Fig. 6. Using a simple one-dimensional (1D) model based
on Ref. [37], we determine the probability that a Rb-wall
collision destroys the hyperfine polarization. We then use this
probability in a two-dimensional (2D) model valid throughout
the entire cell to describe the observed T relaxation.

1. Depolarization probability of Rb-wall collisions

In Ref. [37], Grafstrom and Suter used evanescent-wave
spectroscopy to study optical pumping of Na vapor near a
glass wall. Using a simple model, they related the atomic
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FIG. 7. (Color online) Top: Rabi sequences have been used to obtain images of the (a) o_, (b) 7, and (c) o, components of the microwave
magnetic field. Bottom: Images of the corresponding Rabi oscillation lifetimes, t,. The white dots on the = images show the approximate

locations of the pixels examined in Fig. 8.

(m ) polarization at the wall to the depolarization probability
of atom-wall collisions. We adapt their model to our case of
hyperfine population relaxation between states of different F
in Rb collisions with Si walls.

Close to the cell walls, the evolution of the hyperfine
population difference # can be described by a 1D diffusion
equation:

D iy = DL (T + T ©)
—u(rit)=D— — u(r, .
at ar? ? g

The first term on the right-hand side describes diffusion
of Rb atoms in the buffer gas. The second term describes
relaxation at a rate I' 4+ T",,, where the bulk relaxation rate
I' = Ysg + Youtfer + ¥, includes the effect of Rb-Rb spin
exchange collisions (ysg) and Rb-buffer gas collisions (Vpuffer)-
Relaxation due to collisions with the front and back cell
windows varies only slightly with r, and so we include it
as a constant rate y,. The optical pumping rate I', drives
both relaxation in the second term of Eq. (9) and optical
pumping in the third term. The steady-state solution to
Eq. 9)is

uo(r) = oo — (oo — ug) expu(r — R)I, (10)

where Uy, = FL is the population difference far from the

T
walls, R is the éell radius, ug = up(R) is the population

TT,
D

difference at the wall, and u = . Wall collisions

produce a skin of reduced optical pumping near the cell edge,
with the skin thickness given by £ ~'. The 1D model provides a
good description of the behavior near the wall for |[r — R| < R
and wR > 1, which is satisfied in our experiment.

From the behavior of uy(r) near the cell wall, it is possible
to determine the probability € that a Rb-wall collision destroys
the atomic hyperfine polarization [37]. Very close to the wall,
on average half of the atoms have just collided with the wall,
and half are arriving from a distance L = %)» into the cell bulk,
where A = 3.5 um is the Rb mean free path in the buffer gas.
Atoms from the bulk carry an average polarization u(R — L),
which is reduced to (1 — €)u(R — L) after the collision. Thus,

u(R) ~ %(2 —e)u(R — L). Applying these considerations to
Eq. (10) and exploiting that uL <« 1, we obtain

2uL —
e — uL(uoo — ug) . (11)
ur +puL(eo — ug)

Figure 6 shows a fit of Eq. (10) to the measured u(r) profile of
the Franzen data (blue solid line). We only fit to the data near
the cell wall (r > 2.15 mm), where the 1D approximation is
valid and the optical pumping rate is approximately constant.
The fit parameters are u = (7 £ 1) x 10> m™', ugx = 0.35 £
0.04, and u~ = 0.89 £ 0.03. Using these values in Eq. (11),
we obtain a depolarization probability of € = 0.05 £ 0.01.
When we analyze the initial state of the Ramsey data in
a similar way (not shown), we obtain € = 0.046 &£ 0.007,
consistent with the Franzen data. For comparison, Fig. 6 shows
fits to the data where € was constrained to € = 1 (purple) and
€ = 0.01 (green), respectively. Both values are inconsistent
with our data.

The value of e = 0.05 obtained from our data is surprisingly
small. It implies that the atomic hyperfine population can
survive of order e ~! & 20 collisions with the Si wall. Previous
experiments with Na and Cs atoms near glass walls have
reported € = 0.5 [37,38]. Our experiment differs not only in
the measurement technique, the atomic species, and the wall
material, but also in that we study relaxation between hyperfine
states F =2 and F =1, while the previous experiment
[37] studied the relaxation of (mp) polarization within one
hyperfine state. A systematic error in our measurement would
arise if the images are clipped close to the cell wall, so
that the actual location of the wall is at r > 2.5 mm. To
make our data consistent with € = 1, the location of the wall
would have to be shifted by >63 um (more than two data
points in Fig. 6), which is not very likely given the spatial
resolution of our imaging system. Moreover, we point out
that the surface properties of the interior cell walls are not
precisely known. A layer of adsorbed Rb atoms or other
residues on the Si walls could modify the collisional properties.
A systematic study of these effects would require a dedicated
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setup and is beyond the scope of the present work. However,
our measurements show that absorption imaging is a powerful
tool for the investigation of atom-wall collisions. The high
spatial resolution opens up many intriguing possibilities such
as laterally patterning the surface to modulate the collisional
properties.

2. T, relaxation: 2D model

We now model 7) relaxation in the Franzen sequence,
considering the entire circular aperture of our cell. The
diffusion equation for circular symmetry reads
190 < ou(r,t)

r

0
J— ,l‘ =D——
Btu(r ) ror ar

) — T +Tp u(rt)+T,.

(12)
From the above considerations on diffusion and atom-wall
collisions, we can derive the boundary condition

ou n €/2

or|,._p 1—¢€/2)L
which reproduces Eq. (11) when applied to Eq. (10). The initial
condition for modeling the Franzen sequence is given by the

optically pumped steady-state solution of Eq. (12) subject to
the boundary condition, Eq. (13),

u(R) = 0, (13)

wo(r) = ua [ 1 — Iolur) . (4)
IoeR) + 1h(uR) 2/ — DL

where Iy and I; are modified Bessel functions of the first kind,
and u,, and p are defined as in the previous section. In the
following, we take € = 0.05 as a fixed parameter determined
as described above.

Figure 6 shows ug(r) given by Eq. (14) for the same
parameters as in the previous section (blue dotted line). While
the solution is indistinguishable from the 1D model close to
the wall and matches the data well in this region, there is a
discrepancy in the cell center (» < 2 mm). This is because we
have so far assumed a spatially homogeneous optical pumping
rate I",, which was not the case in the experiment. To model 7}
relaxation, we can simply take the measured profile in Fig. 6
as the initial condition for the dynamics described by Eq. (12).
It can be phenomenologically described by the function

’ ko r
uy(r) = uop(r) — 5[008 (n;) + 1]. (15)

The additional term has been chosen such that it does not
affect the boundary condition, Eq. (13), and is thus consistent
with the same value of € as uy(r). The factor ky describes the
reduced pumping efficiency in the cell center. Our data is well
described by u'(r) using ky = 0.28 (black solid line in Fig. 6).

We model relaxation in the dark by setting I', =0 atz > 0
and numerically solving Eq. (12) with the initial condition,
Eq. (15), and the boundary condition, Eq. (13). At each radial
position, we define 7; as the time taken for u to decay to 1/e
of its initial value:

u(r,Ty) = éu(r,O). (16)

In the limit where the temporal decay of u can be described by
a single exponential, this definition is identical to that used in
the fits of Sec. III. The simulated and measured 7T profiles are

PHYSICAL REVIEW A 88, 063407 (2013)

compared in the bottom panels of Fig. 5. We set I" = 3900 s~
in order to match the theory curves with the observed 7; values
in the center of the cell. The central dip in optical pumping
efficiency results in 7y > I'"! in the cell center due to the
diffusive influx of atoms from neighboring regions with higher
optical pumping, partially offsetting relaxation. The agreement
of our model with the data is reasonable. In particular, the width
of the skin of reduced 7; times at the cell edge is reproduced
well. However, the transition from the cell bulk to the cell edge
is sharper in the data than in the model.

C. Imaging the microwave field

Figure 7 shows images of the o_, 7, and o, components
of the microwave magnetic field, obtained using Rabi mea-
surements on transitions i = 1, 4, and 7, respectively. The
bottom panels show the corresponding decay times of the Rabi
oscillations (7). The microwave frequency was calibrated
using Ramsey sequences, and tuned exactly to resonance for
each transition. The microwave power at the input to the cavity
was 26.8 dBm. Each pixel was fit using Eq. (5), and the
microwave magnetic field strength was then calculated using
Egs. (4).

The principal component of the cavity microwave magnetic
field is the w component, with a strength more than three times
that of the o components. The dominance of the w component
follows from the cavity design [24,39]. The presence of the o
components is not unexpected, as we are using a much smaller
vapor cell than the one the cavity was designed for, and both the
cavity tuning and field geometry are strongly dependent upon
the dielectric filling provided by the glass and silicon cell walls.
This nonoptimal dielectric charging of the cavity is likely, in
addition, to be the reason for the relatively high inhomogeneity
measured for the microwave field. Such inhomogeneities are
undesirable for most applications of the cavity, but here they
aid in the demonstration of our imaging technique and its
capabilities. It is also possible that the inhomogeneities are
caused by some microwave field radiated directly from the loop
coupling the microwave into the cavity: While the 6.8 GHz
microwave frequency is below cutoff with respect to the outer
cylinder of the cavity, in these images we are using an input
microwave power several orders of magnitude above the —30
to —10 dBm typically used for clock applications.

The lifetime, 7, of the Rabi oscillations is significantly
shorter than the 7, time, principally due to inhomogeneities in
the microwave magnetic field [2]. This can be seen in Fig. 7,
where the 1, time is inversely correlated with the magnitude of
the microwave magnetic field inhomogeneity, which in turn is
linked to the field strength. We see that this effect is strongest
for oscillations on the i = 4 transition, corresponding to the
7 component of the field. The 7, values on this transition are
only 20-40 us across much of the cell. In the field minimum
of each transition, where inhomogeneities are smallest, 7, is
around 150 us.

As a higher field strength also drives faster oscillations, the
number of visible oscillations is a measure of the quality of
the coherent driving. We find that this number remains roughly
constant across most of the images, with one to two oscillations
visible over the 1, time. The high 7, region in the upper right
of the 7 image [Fig. 7(b)], with 1, values around 150 us, is
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FIG. 8. (Color online) Representative pixels of the 7 images in
Fig. 7. Fitted data is shown for pixels in (a) the high 7, region (x =
3.64 mm, y = 1.19 mm) and (b) the low 7, region (x = 1.10 mm,
y = 3.98 mm). Atoms in the high 7, region perform an unusually
large number of Rabi oscillations.

an exception: In this region, more than five oscillations are
visible. It is not clear why there is such a local increase in the
number of visible oscillations, as this is not seen in the high 7,
regions on the o transitions.

Figure 8 shows examples of Rabi oscillations for two
representative pixels from the 7 image (marked by white dots
in Fig. 7). The top panel shows a pixel from the high 7, region
(x = 3.64 mm, y = 1.19 mm), while the bottom panel shows
a pixel with low 7, (x = 1.10 mm, y = 3.98 mm). Atoms in
the high 7, region can be seen to undergo many more Rabi
oscillations than atoms in the rest of the cell.

The images show that different hyperfine transitions can
have quite spatially different regions of optimal t,, depending
on the geometry of the applied microwave field. The strong
spatial variation in t, highlights the importance of our
technique for cell and cavity characterization, in particular
for high precision devices such as vapor cell atomic clocks.
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V. CONCLUSIONS AND OUTLOOK

We have used time-domain spatially resolved optical and
microwave measurements to image atomic relaxation and the
polarization-resolved microwave magnetic field strength in
a microfabricated Rb vapor cell placed inside a microwave
cavity. The population relaxation times were measured to be
approximately uniform across the cell center, with a value
at 90°C of T = 265 us, while coherence times in the cell
center peaked at around 7, = 350 ps. Depolarizing collisions
between Rb atoms and the Si cell walls resulted in 77 and 7>
times around 80 and 130 us near the cell walls, respectively.
Diffusion of these atoms lowered relaxation times within
0.7 mm of the cell wall.

The relaxation times at the cell edge provide spatially
resolved information on the interactions of Rb atoms with
the Si cell walls. Our data suggest that Rb-Si collisions are
not completely depolarizing, agreeing with previous work on
Na-glass collisions. It would be interesting to study these
interactions in further detail on a dedicated setup. This
aspect of our technique could be particularly useful in the
characterization of wall coatings in coated cells.

Images of the cavity microwave magnetic field show
significant spatial inhomogeneity in each of its three vector
components—o—_, m, and o,—due to perturbations to the
cavity introduced by the dielectric cell material. For each
vector component, we can identify the resulting region
maximizing the number of Rabi oscillations, and hence the
region of optimal coherent manipulation.

Our measurement technique is fast, simple, and produces
high-resolution images for vapor cell and microwave-device
characterization. It is of particular interest for characterizing
cells in miniaturized atomic clocks [40] and sensing applica-
tions [8,11,14]. It is also of interest for characterizing the cell
and cavity properties in larger and high-performance vapor
cell atomic clocks [4,41,42].
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