
PHYSICAL REVIEW A 88, 063405 (2013)

Evaporative cooling of reactive polar molecules confined in a two-dimensional geometry
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Recent experimental developments in the loading of ultracold KRb molecules into quasi-two-dimensional
traps, combined with the ability to tune the ratio between elastic and loss (inelastic, reactive) collisions through
application of an external electric field, are opening the door to achieving efficient evaporative cooling of reactive
polar molecules. In this paper, we use Monte Carlo simulations and semianalytic models to study theoretically
the experimental parameter regimes in which evaporative cooling is feasible under current trapping conditions.
We investigate the effect of the anisotropic character of dipole-dipole collisions and reduced dimensionality on
evaporative cooling. We also present an analysis of the experimentally relevant antievaporation effects that are
induced by chemical reactions that take place when more than one axial vibrational state is populated.
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I. INTRODUCTION

Polar molecules that exhibit strong dipole-dipole interac-
tions provide a flexible platform for realizing a broad range of
interesting phenomena relevant to condensed matter physics,
quantum information sciences, and precision measurements
[1–7]. The parameter regime of interest is generally ultralow
temperature and high phase-space density, where novel quan-
tum features can emerge. In practice, it turns out to be difficult
to cool molecules into the desired regime using standard
methods due to their complicated internal level structure.
In the past few years, significant experimental progress has
been made towards this goal through the demonstration of a
method for preparing a gas of fermionic KRb molecules in the
lowest electronic, vibrational, and rotational quantum state,
with a temperature T at the verge of quantum degeneracy
(i.e., T/TF ∼ 1 where TF is the Fermi temperature) [8–10].
From this starting point, one would like to further increase the
phase-space density by implementing evaporative cooling—
demonstrated to be one of the most useful cooling methods for
quantum gases [11–13].

A fundamental limitation to the effectiveness of evaporative
cooling for polar molecules is their fast losses. For KRb
molecules, the losses arise mainly from exothermic chemical
reactions, i.e., KRb + KRb → K2 + Rb2. In such reactions,
molecules prepared in different internal states can undergo
barrierless collisions, with a lifetime of only ∼10 ms [10,14].
In contrast, identical fermionic KRb molecules at ultralow tem-
perature are protected by the p-wave barrier, which potentially
results in a much slower reaction rate [10]. However, due to the
anisotropic nature of the dipole-dipole interaction, molecules
of the correct orientation can be attracted towards each other by
experiencing “head-to-tail” collisions. As a result, the p-wave
barrier can be lowered by the application of a strong external
field, increasing the loss mechanism of the molecules.

Significantly, these obstacles can be overcome by confining
the molecules into quasi-two-dimensional traps, which can be
generated by a one-dimensional optical lattice. In this case, the
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adverse collisions can be greatly suppressed and the reaction
barrier effectively raised [15–17]. Furthermore, both the elastic
and reactive collision rates can be tuned by controlling the
applied external electric field and the trapping potential. Thus,
while most previous experiments implementing evaporative
cooling were performed in three-dimensional geometries [18],
here we are explicitly interested in focusing on evaporative
cooling in two dimensions, with the anisotropic collisions that
arise from the dipolar interaction. A detailed understanding
of this situation would be beneficial for future experimental
realizations.

Given this motivation, we theoretically investigate evapo-
rative cooling of molecules. We use both Monte Carlo (MC)
simulations and models developed on the basis of kinetic
theory to study the efficiency of evaporative cooling with
parameters applicable to current state-of-the-art KRb experi-
ments. The paper is structured as follows. In Sec. II we explore
the effect of anisotropic collisions on evaporative cooling. In
Sec. III we consider the effect of reduced trap dimension,
i.e., two-dimensional rather than three-dimensional traps. In
Sec. IV we apply the MC method to determine the optimum
evaporative cooling trajectory for KRb molecules. In Sec. V
we discuss the potential antievaporation mechanism arising
from the energy dependence of the reactive loss.

II. EVAPORATIVE COOLING WITH
ANISOTROPIC COLLISIONS

A. Anisotropic elastic collisions between polar molecules

Evaporative cooling relies on removing particles with
above-average energy and redistributing the residual energy
among the remaining particles by elastic collisions so that
the temperature falls. For polar molecules, the characteristic
parameters that encapsulate the elastic scattering process can
be dramatically modified by the application of external fields.
In the presence of an external electric field, the dipole-dipole
interaction between polar molecules can mix different partial
waves and give rise to highly anisotropic scattering. Moreover,
for identical fermions, the lowest total angular momentum
partial wave that has the correct symmetry is p-wave, so the
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TABLE I. Derived parameters from the fit of Eq. (1) for the
scattering energies shown in Fig. 1.

Ec(nK) a a′ α α′ λ (10−6 cm)

1 0.31 0.0005 1.00 2.19 0.38
10 0.27 0.06 1.00 2.09 3.67
100 0.24 0.21 1.19 7.03 5.99
1000 0.34 0.40 2.47 26.40 3.42

elastic collisions are anisotropic at ultralow temperature even
in the absence of applied fields [19].

Considering current experimental conditions [15], we have
computed the differential and total scattering cross section
for KRb molecules in two dimensions at an induced dipole
moment d = 0.2 D as a function of the collision energy Ec. The
theoretical formalism is explained in Appendix A. Figure 1(a)
shows the dependence of the differential cross section on the
scattering angle φ, which is the precession angle of the relative
momentum during the collision. Scattering is mainly forward
(0 or 2π ) and backward (π ) after a collision. The peak is more
pronounced as the collision energy increases due to the larger
contribution of higher partial waves. This differential cross
section is well parametrized by the empirical function(

dλ(φ)

dφ

)
Ec

= λ(Ec)[a(cos φ)2α + a′(cos φ)2α′
], (1)

with a, a′, α, and α′ constants that are real and positive, and
with the total cross section [20] given by

λ(Ec) =
∫ 2π

0
dφ

(
dλ(φ)

dφ

)
Ec

. (2)

The dependence of λ on collision energy Ec is shown in
Fig. 1(b). Our best parametrization for various scattering
energies is given in Table I. Note that at Ec ∼ 1 nK, the angular
dependence of the differential cross section is well described
by that of the lowest odd partial wave (see Appendix A), since
a � a′ and α ≈ 1.

B. Thermalization rate

The thermalization rate characterizes the time scale needed
for a system to redistribute energy after an evaporative cut. To
quantitatively investigate the thermalization under anisotropic
collisions, we adopt the typical experimental procedure of
cross-dimensional thermalization [21,22]. In order to isolate
the effect of anisotropic elastic collisions, we will neglect
losses completely, and also neglect the energy dependence
in the total elastic cross section λ for these thermalization
calculations.

Consider a gas of N molecules in a two-dimensional har-
monic trap with a slight initial imbalance of temperatures along
each axis. This initial condition can be prepared in experiment
by parametric heating of an equilibrium gas [21]. We define
an effective temperature Ti in the ith direction in terms of
the total energy Ei by kBTi = Ei/N = p2

i /(2m) + mω2
i x

2
i /2,

where ωi is the trapping frequency, m is the molecule mass, and
p2

i /(2m) and mω2
i x

2
i /2 denote the average kinetic energy and

potential energy. We assume that the system is well described

by the Boltzmann distribution

f0(x,p) = n0 exp

[
−

∑
i

(
p2

i

m
+ mω2

i x
2
i

)/
(2kBTi)

]
, (3)

where n0 guarantees normalization, i.e.,

1

(2πh̄)2

∫
d2x d2p f0(x,p) = N . (4)

Without loss of generality, we assume Ty = (1 − ξ )Tx with
ξ > 0. Elastic collisions lead to an exchange of energy between
the x and y directions and reduce the relative temperature
difference. The rate of such change is [23]

dEx

dt
= NkB

dTx

dt

= 1

2m(2πh̄)4

∫
d2x d2p1 d2p2 dφ′

× f0(x,p1)f0(x,p2)|p1 − p2|dλ(φ′)
dφ′ �Ex. (5)

This involves the energy change per collision given by

�Ex = 1

4m
|p1 − p2|2(cos2φ′ − cos2φ), (6)

where φ and φ′ are the angles between the relative momentum
and the total momentum before and after the collision,
respectively. The period of time it takes to thermalize, τ , can
be defined as the 1/e decay time of the temperature difference,
so that

dTx

dt
= − 1

τ
(Tx − T0), (7)

where T0 = (Tx + Ty)/2 is the temperature at equilibrium.
From Eqs. (5) and (7), we obtain the average number of
elastic collisions required for the system to thermalize, κ , in
the following way. We begin by defining the collision rate γ ,

γ = λ

m(2πh̄)4

∫
d2x d2p1 d2p2 f0(x,p1)f0(x,p2)|p1 − p2|,

(8)

so that κ ≡ limξ→0(τγ ), independent of the initial temperature
and trapping frequencies [22,24]. Combining Eqs. (3)–(8) with
the form of the differential cross sections given in Eq. (1) leads
to the following result:

κ = 8

15
√

π

{
a

2α + 2

�
(
α + 1

2

)
�(α + 1)

+ a′

2α′ + 2

�
(
α′ + 1

2

)
�(α′ + 1)

}−1

.

(9)

When a′ = 0 and α′ = 0, this reduces to the particularly simple
expression

κ = 16
15 (2α + 2), (10)

which corresponds to the differential cross section

dλ(φ)

dφ
= a cos2αφ. (11)

In order to interpret these results, for each scattering energy
Ec, we calculate κ using Eq. (9), and plot the result on the
(α,κ) line, as prescribed by Eq. (10), with markers (star,
square, triangle, diamond, and disk), as shown in Fig. 1(c).
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FIG. 1. (Color online) (a) Two-dimensional differential scattering cross section for elastic collisions as a function of the scattering angle.
Four collision energies are shown; Ec = 1 nK (blue disk), 10 nK (green diamond), 100 nK (red triangle), and 1 μK (black star). The induced
dipole moment is d = 0.2 D and the harmonic frequency of the one-dimensional confinement potential is ν = 23 kHz. The solid lines show the
empirical formula, Eq. (1). (b) Total scattering cross section for elastic collisions (solid line) and reactive processes (dashed line) as a function
of the collision energy for an induced dipole moment of d = 0.2 D and a one-dimensional confinement of ν = 23 kHz. The ratio of elastic
to reactive is indicated at four different collision energies: Ec = 1 nK (blue point), 10 nK (green point), 100 nK (red point), and 1 μK (black
point). (c) Number of collisions κ required for thermalization for different differential scattering cross sections. The magenta solid line shows
Eq. (10). The purple circles are results from the MC simulations, and are shown with their small statistical error bars. The four symbols (blue
disk, green diamond, red triangle, black star) correspond to the same energies as (a).

The use of the linear relationship between α and κ is supported
by results obtained from MC simulations, as described in
Appendix B, utilizing the differential cross sections in the form
of Eq. (11) directly (purple circles). The exception is at large
α, where the assumption adopted in deriving Eq. (9)—namely,
that of a Boltzmann distribution parametrized by an effective
temperature—becomes poor when the thermalization is too
slow.

The calculations demonstrate a strikingly strong depen-
dence on the anisotropy of the collisions for rethermalization.
For α = 0 the collisions are isotropic and κ ≈ 2.1. In compari-
son, κ ≈ 4.3 at α = 1, which describes the lowest partial wave
scattering between identical fermions. For Ec = 1 μK we find
κ ≈ 9.7, which is many times that for isotropic collisions,
implying a significant increase in the number of collisions
required for rethermalization. One may have anticipated this
since the differential cross section is more and more sharply
peaked as α increases, and the energy is less and less efficiently
distributed. Also note that the outcome for the differential
cross section of KRb with Ec = 1 nK is very close to that
from Eq. (10) with α = 1, indicating that the lowest odd
partial wave dominates for elastic collisions between fermions
in indistinguishable internal and external states at ultralow
temperature.

C. Evaporation with anisotropic collisions

In evaporative cooling experiments, loss collisions compete
with elastic collisions, and thus a slow thermalization rate gives
rise to a reduction in cooling efficiency. In this section, we use
MC simulations to investigate the efficiency of evaporative
cooling in the presence of anisotropic elastic collisions, and
also including two-body reactive collisions, as occur for KRb
molecules. We quantify the efficiency in two ways: by the
achieved increase in phase-space density �f/�0 at the expense
of losing a certain portion of the molecules in the trap (see
Fig. 2), and by the time required for the temperature to go
down and � to increase by a given amount (see Fig. 3).

In these simulations, we assume an instantaneous removal
of all particles with energy greater than a cut-off energy. The
cut-off energy εt evolves during the evaporation trajectory
with the constraint that a truncation parameter η = εt/E is
kept constant, where E is the average energy of the nonequi-
librium distribution. The comparison between isotropic and
anisotropic collisions is made by calculating the evaporation
trajectory for a variety of differential cross sections, starting
with the same initial molecule number. To simplify the
comparison, for both elastic and reactive collisions, we keep
the total cross sections constant and energy independent. More
specifically, we consider elastic differential cross sections in
the form of Eq. (1), and choose the same λ(Ec) = λel for
all differential cross sections used in our simulations, leaving
a,a′,α, and α′ defined as in Table I (a = 1, a′ = α = α′ = 0
for isotropic collisions). And we fix the reactive cross section
via λre = ζλel, with ζ a constant ratio.
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η

ln
f

0

isotropic

Ec 100nK
Ec 1μK
critical

FIG. 2. (Color online) Increase in phase-space density vs trunca-
tion parameter η for different dλ(φ)

dφ
. Here �0 is the initial phase-space

density, and the final phase-space density �f was calculated when the
ratio of molecule numbers was Nf/N0 = 0.1. Blue circles: dλ(φ)

dφ
=

const; red crosses: ( dλ(φ)
dφ

)Ec=1 μK; green squares: ( dλ(φ)
dφ

)Ec=100 nK;
black dotted line: critical phase space density �c for quantum
degeneracy.
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FIG. 3. (Color online) Trajectories of evaporation for (a)
( dλ(φ)

dφ
)Ec=1 μK at η = 3.3 and (b) dλ(φ)

dφ
= const at η = 4.3, under the

same initial conditions as in Fig. 2. In comparison with (a), it is
apparent that in (b) the temperature T drops faster and the phase-space
density � increases much more rapidly.

The molecules are initially simulated from a truncated
Boltzmann distribution utilizing the cut-off energy [25] εt :

f (x,p) = n′
0 exp

[
−

(
p2

m
+ mω2x2

)/
(2kBT )

]

×�

(
εt −

(
p2

2m
+ 1

2
mω2x2

))
, (12)

where � is the Heaviside function, n′
0 is the normalization,

and T is the initial temperature, held fixed for different
simulations. Although the energy distribution of the
molecules is intrinsically in nonequilibrium here, we may
assign it a phase-space density, �, as that of the corresponding
equilibrium distribution that has the same molecule number
and average molecule energy.

In Fig. 2, � is plotted for the case of evaporation
trajectories in which 90% of the initial molecules are lost. For
anisotropic collisions, we calculate evaporation trajectories for
the differential cross sections for Ec = 100 nK and Ec = 1 μK
given in Sec. II B. The results presented in Fig. 2 show that the
maximum efficiency achievable by varying η is much lower
for anisotropic collisions than that achievable with isotropic
collisions. In addition, the maximum efficiency is reached
at smaller η. This suggests, for example, that if εt is set by
the trap depth in an experiment, a shallower trap is desirable
for evaporating a gas with anisotropic collisions, compared
with evaporating a gas with isotropic collisions, at the same
temperature and collision rate.

For these calculations, the reactive to elastic collision rate
ratio was held fixed at ζ = 1/200. This was chosen based
on typical experimental conditions for KRb molecules (see
Sec. IV). The value of ζ does not qualitatively change the above
comparisons; it only changes the shape of each curve [18],
and as one would expect, the maximum efficiency and the
corresponding η decreases as ζ increases.

In Fig. 3, we plot the time-dependent trajectories of
evaporative cooling for isotropic collisions with η = 4.3, and
for anisotropic collisions for Ec = 1 μK with η = 3.3. These
values of η were chosen such that �f/�0 is maximum in
Fig. 2, and thus most efficient. It is evident from this plot

that to reach the same increase in � and decrease in T , it
takes a much shorter time with isotropic collisions [Fig. 3(b)].
This indicates a lower efficiency with anisotropic collisions,
consistent with the results of Fig. 2.

III. EVAPORATIVE COOLING IN
TWO-DIMENSIONAL TRAPS

Physics in two-dimensional (2D) geometries can often be
quite different from that in three dimensions. Unlike many
previous evaporative cooling experiments, KRb molecules
need, in general, to be confined in traps with reduced
dimensionality to be stable. Such a configuration was also
used to evaporate Cs atoms [26]. Here, we study the effect of
reduced dimensionality on evaporative cooling by comparing
the efficiency in two-dimensional and three-dimensional traps.

The previous section showed that the existence of highly
anisotropic collisions slows down thermalization and de-
creases the efficiency of evaporative cooling. A calculation
analogous to Sec. II B but for a three-dimensional harmonic
trap gives

κ = 5
6 (2α + 3), (13)

which implies κ = 2.5 when α = 0 (isotropic collisions). This
result may suggest a potentially faster thermalization rate and
more efficient evaporation in a two-dimensional harmonic trap
when compared with a three-dimensional harmonic trap with
everything else held fixed. However, such a conclusion based
solely on Eq. (13) would be premature, since the density of
states depends on the dimensionality. Specifically, it was found
for the comparison between quadratic potentials and linear
potentials in three dimensions that changing the density of
states can also change the evaporative cooling efficiency [18].

To incorporate such differences, we use MC simulation
and a truncated-Boltzmann (TB) method based on kinetic
theory (see Appendix C) to calculate the evaporation tra-
jectories. Here, we consider harmonic traps and isotropic
energy-independent collisions in order to isolate the effect
of dimensionality. Following a similar procedure to that of
the previous section, we calculate ln(�f/�0) at fixed Nf/N0,
under equivalent initial conditions for both types of traps. As
shown in Fig. 4, both the MC and TB approaches show a
lower achievable increase in the phase-space density for a
two-dimensional harmonic trap. This suggests that evaporative
cooling is intrinsically less efficient in two-dimensional traps.
The discrepancy between MC and TB, which increases for
smaller η, is caused by the discrepancy between the form of the
energy distributions, which for TB is constrained. At smaller
η, the truncated Boltzmann distribution deviates significantly
from the actual distribution of molecules, as calculated in MC.

IV. EVAPORATIVE COOLING OF KRb MOLECULES

In a quasi-two-dimensional trap, the elastic and reactive
collisions between KRb molecules both depend on the strength
of the external electric field and the confinement induced by
the lattice. Under current trapping conditions in experiments,
a favorable ratio between the elastic and reactive processes can
be reached at a moderate electric fie ld [15–17]. We show in
Fig. 1(b) the total scattering cross section for the elastic process
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FIG. 4. (Color online) Comparison of the efficiency of evapora-
tive cooling in two-dimensional (2D) and three-dimensional (3D)
harmonic traps. ln(�f/�0)’s are calculated at Nf/N0 = 0.1, and
ζ = 1/200. Red (blue) line: 3D (2D) harmonic trap from method
in Appendix C; red squares: 3D harmonic trap from MC simulation;
blue disks: 2D harmonic trap from MC simulation; blue (red) dotted
line: �c for a 2D (3D) trap.

and reactive process of KRb molecules at d = 0.2 D with
the confinement along the lattice direction given by ν = 23
kHz. In the ultracold regime, the elastic cross section scales
as E

3/2
c , while the reactive cross section scales as E

1/2
c [27].

Furthermore, elastic processes are found to be generally faster
than reactive processes, supporting the potential for successful
evaporative cooling [17], while the large elastic cross section
favors fast rethermalization.

The quantitative knowledge of the elastic and reactive
collisions between KRb molecules allows us to apply MC
simulation with realistic experimental parameters. In Fig. 5,
we show evaporation trajectories in a 2π × 20 Hz two-
dimensional Gaussian trap. For this simulation, we have
assumed the instantaneous removal of energetic molecules
above the cut, as in Secs. II C and III. We also assume reactive
losses as discussed above. The initial temperature was chosen

0

0.5
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FIG. 5. (Color online) Evaporative cooling trajectories for KRb
molecules inside a 2D trap of 2π × 20 Hz, with scattering cross
sections as computed in Fig. 1(b). The initial temperature was
∼200 nK, with an initial phase-space density �0 ∼ 0.1�c, and
η = 3.8.

to be within the accessible regime of experiments. The results
show that a considerable increase in phase-space density can
be achieved via evaporative cooling. We note that there are
further experimental effects that can in principle reduce the
achieved phase-space density increase from that calculated
here, such as the finite rate of removing energetic molecules
and other sources of loss and heating. On the other hand,
progress towards realizing deeper lattices (i.e., ν > 23 kHz),
can potentially reduce ζ and thereby enhance the cooling
efficiency.

V. ANTIEVAPORATION IN QUASI-2D

Fast reactive collisions are disadvantageous for evaporative
cooling, since they not only reduce the molecule number,
but can also cause heating known as “antievaporation” [10].
Since the ability to identify the relative importance of different
heating mechanisms is important in the design of experiments,
in this section we quantitatively investigate heating due to
two-body reactive collisions.

Antievaporation arises from the fact that reactive collisions
are more frequent in the high density region of the trap
(density selection). Molecules there have on average total
energies that are less than the ensemble average. Thus one
may anticipate evaporative heating rather than evaporative
cooling to occur. In competition with this, however, is the effect
that the reactive collision cross section is dependent on the
collision energy, i.e., molecules with energies higher than the
average are more likely to engage in a reactive collision and be
removed (velocity selection). In three-dimensional harmonic
traps, the reactive processes for ultracold indistinguishable
fermionic KRb molecules are mainly p-wave two-body col-
lisions, the cross section of which scales as E

1/2
c [10]. The

density-selection mechanism wins over the velocity-selection
mechanism and consequently there is net heating induced by
losses [10]. In two-dimensional trapping potentials, however,
this is not necessarily true even though the cross section scales
similarly with Ec (see Sec. IV), as we now show.

We consider a two-dimensional harmonic trap and assume
a Boltzmann distribution as given in Eq. (3), for which the
number loss rate is

dN

dt
= −2

∫
d2x d2p1 d2p2 λ(Erel)vrelf0(x,p1)f0(x,p2),

(14)

and the corresponding energy loss is

dE

dt
= −

∫
d2x d2p1 d2p2 λ(Erel)vrel

× f0(x,p1)f0(x,p2)(E1 + E2), (15)

where Erel and vrel are the relative energy and velocity between
the two colliding molecules, and E1 + E2 is the total energy.
From Eqs. (14) and (15), with λ(Erel) ∝ E1/2 (see Sec. IV),
one can derive the energy loss per molecule, which is given by

dE

dN
= 2kBT . (16)

This implies that there is no net heating or cooling in a
pure two-dimensional harmonic trap due to reactive loss. This
is because the energy loss in a single reactive process is
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FIG. 6. (Color online) Heating due to two-body losses in a two-
dimensional harmonic trap. Here (a) and (b) show the MC result
in a two-dimensional harmonic trap where all molecules are in the
lowest band of the lattice potential. The results for (c) and (d) are
obtained with the master equation approach. The blue line assumes
only one band along the lattice direction is populated. The red dashed
line (green dots) assumes two (three) bands are populated. N0 is the
initial total molecule number. The initial temperature is chosen to be
around 800 nK, so that when two bands are included, there are ∼25%
of molecules on the second band, and when three bands are included,
there are ∼19% of molecules on the second band and ∼6% on the
third band.

exactly the average energy for a pair of molecules. In contrast,
a similar calculation for three-dimensional harmonic traps
gives dE/dN = 2.75kBT , which is smaller than the average
energy per molecule (i.e., 3kBT ), indicating heating in that
case. This conclusion for three-dimensional traps is consistent
with the experimental observation in Ref. [10] (heating rate
∼100 nK/s).

However, we emphasize that Eqs. (14)–(16) only take
into account the two-body reactive collisions and assume
a Boltzmann distribution, which implies sufficiently fast
rethermalization. Note that at zero electric field, the elastic
collisions that lead to thermalization are infrequent and can
generally be neglected in experiments with KRb molecules
[10], thus a Boltzmann distribution is not guaranteed.

To study possible effects caused by the deviation from
a Boltzmann distribution during the evolution, we use MC
simulations to calculate the molecule loss and temperature
change in a two-dimensional harmonic trap, assuming only
two-body reactive processes between molecules. The results
are plotted in Figs. 6(a) and 6(b), respectively. The reactive
collision rate is taken from Fig. 1(b). The heating rate is found
to be very small, illustrating a drastically different quantitative
behavior from that seen in three-dimensional traps.

The periodic array of two-dimensional pancake traps for
confining KRb molecules is generated by a one-dimensional
optical lattice [15]. This forms energy bands separated by
∼h̄ωz, where ωz = 2πν and ν is the frequency of the harmonic
approximation of the lattice potential. When the temperature
is sufficiently low, the longitudinal degree of freedom along
the lattice axis is effectively frozen out and one may consider
solely the lowest band. However, as the temperature increases,
higher bands can be populated. For example, at T ∼ 800 nK
in a lattice of ν = 23 kHz, about 25% of molecules occupy
higher bands.

FIG. 7. (Color online) Collisions between molecules in a quasi-
2D trap. (a) Intraband collisions, occurring at rate �̃(1). (b) Interband
collisions, occurring at rate �̃(2) (see Appendix D). The wavy arrows
indicate that the molecules are lost from the trap after these reactive
collisions.

With multiband population, collisions between molecules
can occur as interband or intraband, as shown in Fig. 7. The
interband collisions involve additional degrees of freedom
along the longitudinal direction [see Fig. 7(b)], and thus do
not satisfy the assumptions leading to Eq. (16) and can give
rise to antievaporation heating [10].

In the ultralow temperature regime, these collisions are
dominated by the lowest odd partial wave [10]. We adopt
a p-wave many-body Hamiltonian to describe such reactive
interactions [28–30]:

Ĥp = 3πb3
ph̄

2

m

∫
d3r{[∇�̂†(r)]�̂†(r) − �̂†(r)[∇�̂†(r)]}

× {[∇�̂(r)]�̂(r) − �̂(r)[∇�̂(r)]}, (17)

where �̂(r) is a fermionic field operator that annihilates a
molecule at position r, and b3

p is the p-wave inelastic scattering
volume. The value of bp for KRb molecules can be found from
the reactive cross section calculated in the previous section.
In a trap with transverse confinement ωr and longitudinal
confinement ωz, the field operator can be expanded in the
basis of noninteracting harmonic oscillator eigenstates ψr

n

(corresponding to ωr ) and ψz
n (corresponding to ωz) as

�̂(r) =
∑

n

ĉnψ
r
nx

(x)ψr
ny

(y)ψz
nz

(z), (18)

where n = (nx,ny,nz) enumerates the mode number along
each dimension, and ĉn annihilates a fermion in mode n.

Considering elastic collisions to be negligible, we assume
there is no change of modes during the losses, i.e., a molecule
initially in mode n remains in mode n. With such an assump-
tion, each molecule can be labeled with its mode indices, and
for identical fermions, there are no two molecules with the
same indices. The two-body losses can then be accounted for
by jump operators Ân,m = √

�n,mĉnĉm, which remove two
molecules in modes n and m at a rate �n,m determined by the
corresponding p-wave two-body reactive collisions, Eq. (17)
(see Appendix D for details). When nz = mz, these correspond
to the intraband collisions [Fig. 7(a)]; when nz �= mz, these
correspond to the interband collisions [Fig. 7(b)].

The dynamics can then be described by the quantum master
equation

dρ̂

dt
= 1

2

∑
n,m

(2Ân,mρ̂Â†
n,m − Â†

n,mÂn,mρ̂ − ρ̂Â†
n,mÂn,m). (19)
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Since we have assumed that the molecules do not change
modes during evolution, in order to solve Eq. (19), we can
use ρ̂ = ∏

i

∑
n ρi

n,nδ(n − ni)|n〉〈n|, where i = 1,2,3, . . . ,N

represents the ith molecule that initially is in mode ni , and N is
the initial total number of molecules. Since the quantum jumps
here correspond to the reactive loss of pairs of molecules, the
off-diagonal coherence terms have been dropped. The relevant
equation of motion under these assumptions is

dρi
ni ,ni

dt
= −ρi

ni ,ni

∑
j �=i

�ni ,mj ρ
j

mj ,mj . (20)

The total molecule number at time t is thus

N (t) =
∑

i

ρi
ni ,ni (t), (21)

and the average temperature can be found from

T (t) = 1

N (t)kB

∑
i

h̄ωr

(
ni

x + ni
y

)
ρi

ni ,ni (t). (22)

Furthermore, the initial population in different bands can be
determined by

Nα

N
= e−(1/2+αh̄ωz)/kBT∑

α e−(1/2+αh̄ωz)/kBT
, (23)

where α = 0,1, . . . is the band index. For the initial condition,
the density matrix is simulated such that Nα molecules are
assigned to band index ni

z = α, and the transverse modes
ni

x,n
i
y are randomly generated from a Boltzmann distribution

with given initial temperature T . The final result is averaged
over many different simulations. In order to show the effect
of including different numbers of bands, we assume a cutoff
in the highest band index. In our calculation, if a total of
nmax bands are taken into account, the population of the lower
nmax − 2 bands is determined according to Eq. (23). All of the
reminder molecules are assigned to the highest populated band,
nmax − 1.

In Figs. 6(c) and 6(d), we show the result with temperature
T = 800 nK and lattice frequency ν = 23 kHz, which are
typical for KRb experiments. While the small amount of
multiband population does not lead to a significant change in
the loss rate for molecules [Fig. 6(c)], there can nevertheless
be significant heating. In consequence, it is necessary to
greatly suppress the population outside the lowest band for
evaporative cooling experiments to be effectively performed
in quasi-two-dimensional geometries when reactive loss of the
form considered here is present.

VI. CONCLUSION

Motivated by recent experiments of KRb molecules, we
have applied MC simulation methods and semianalytical
approaches to perform a detailed study of evaporative cooling
properties in two-dimensional traps with anisotropic colli-
sions. We have quantitatively analyzed the dependence of the
thermalization rate on the anisotropy of the elastic collisions.
Specifically, for our calculations of the differential and total
scattering cross section for KRb molecules confined in a
quasi-two-dimensional trap, we were able to investigate the
efficiency of evaporative cooling for the practical parameter

regime of recent experiments. The dipole-dipole interactions
resulted in highly anisotropic elastic collisions which were
disadvantageous for evaporative cooling when compared with
isotropic collisions.

The reduced dimension of the trapping potential further
decreased the efficiency of evaporative cooling when com-
pared with conventional evaporation procedures for three-
dimensional traps. Nevertheless, we showed that the phase-
space density of KRb molecules can potentially be increased
using evaporative cooling with parameters that are accessible
under current experimental conditions. Although this could
be limited by further complicated real-world experimental
details that we have not considered, it is also the case that
future experimental progress in increasing the ratio between
the elastic and reactive collision rates could lead to more
efficient evaporative cooling of KRb molecules.

We also developed theoretical models to investigate the
antievaporation induced by two-body losses. Our results
highlighted the distinctions between the evaporation processes
in two-dimensional and three-dimensional geometries through
the role of multiband excitations in a quasi-two-dimensional
trap. We point out that the importance of multiband physics
has also been addressed in recent literature [31–33].
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APPENDIX A: SCATTERING CROSS SECTION
IN A QUASI-2D TRAP

Here we outline the theoretical formalism we used to
compute the total and differential scattering cross sections
in a two-dimensional space, for elastic and reactive processes
of KRb + KRb collisions, in the presence of an electric field
along the confinement direction. More details can also be found
in Ref. [16].

We use a time-independent scattering formalism based on
Jacobi coordinates. The KRb molecules are assumed to be
in their ground electronic, vibrational, and rotational states.
They are also assumed to be in the ground state of the
one dimensional optical lattice. The results of this formalism
compare well with experimental observation [15]. The vector
r represents the relative distance between the two centers of
mass of the two molecules. The potential energy between the
two molecules is given by the van der Waals interaction and
the dipole-dipole interaction that arises in the presence of an
external applied electric field. In addition to the intermolecule
interaction potential, each molecule feels a one-dimensional
confining potential approximated by a harmonic oscillator.
At short range, we apply an absorbing potential that takes
into account the fact that the KRb molecules are chemically
reactive and are lost from the trap.

The time-independent Schrödinger equation is solved for
each intermolecular separation r using a spherical represen-
tation of r = (r,θ,φ). At long distance, the van der Waals
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and dipolar interactions vanish, while the confinement is still
present. It is therefore more convenient to use a cylindrical
representation of r = (ρ,φ,z). Since the electric field and
the confinement axis of the optical lattice are parallel to the
quantization axis, the quantum number ml associated with
the projection of the orbital angular momentum is strictly
conserved during the collision. Since we assume that the
fermionic KRb molecules, all in the same internal ground
state, are also in the same external ground state of the
optical lattice, the quantum number ml is restricted to odd
values ml = ±1, ± 3, ± 5, . . . [16]. A frame transformation
is performed at long range between the two representations.
Applying asymptotic boundary conditions at long range, we
obtain the scattering matrix Sml and the transition matrix
T ml = Sml − 1.

The elastic differential cross section for initial and final
KRb molecules in the internal and external ground state is
given by [34]

dλ(φ)

dφ
= |fs(φ)|2, (A1)

where the scattering amplitude is

fs(φ) =
(

1

2πik

)1/2 ∞∑
ml=1,3,...

εml
cos(mlφ)T ml� (A2)

with k = √
2μEc/h̄ denoting the wave vector, Ec the collision

energy, μ the reduced mass of the colliding pair, εml
= 2 if

ml � 1, ε = 1 if ml = 0, and � = 2 or 1 if the molecules are
indistinguishable or not. To converge the results, we used ten
odd values of ml , with ml = [1,3, . . . ,19], and 85 odd values
of l = [1,3, . . . ,169]. The total elastic cross section is given
by

λ =
∫ 2π

0
dφ

dλ(φ)

dφ
. (A3)

As seen from the differential cross section shown in Fig. 1(a),
scattering in the perpendicular direction is forbidden. This
is due to the cos(mlφ) term, with the odd ml restriction
arising from the fermionic indistinguishable character of the
molecules.

APPENDIX B: MONTE CARLO SIMULATION

With its stochastic nature, the Monte Carlo method is
capable of simulating the individual collisions that are intrinsic
to evaporative cooling phenomena [22,35,36], and this leads to
a flexible algorithm in which it is easy to incorporate a variety
of different conditions in a straightforward way. The detailed
simulation algorithm consists mainly of the following steps:

(1) Preparation of an ensemble of particles with coordinates
and velocities generated from a given probability distribution,
e.g., an initial equilibrium Boltzmann distribution.

(2) Evolution of the particles between collisions that follows
the classical Hamilton’s equations of motion, i.e.,

dx
dt

= v,

(B1)
dv
dt

= −∇V (x),

where V (x) is the external potential. The time step is chosen
to be both small enough to guarantee numerical convergence
for the computed trajectory, as well as much less than the time
between adjacent collision events.

(3) Checking every pair of particles to decide if there is
a collision. Since we are interested in two-body collisions,
the collision events are determined by the distance between
particles. This distance is characterized by the scattering
length as . In three-dimensional collisions, there is a collision
cross section with units of area, σ = πa2

s . In two-dimensional
collisions, there is an analogous cross section with units of
length, λ = 2as .

(4) Changing the state of the pair of particles if they collide.
For an elastic collision event, the velocities after collisions
are determined from the conservation of total momentum and
energy. The scattering angle is simulated from a probability
distribution determined by the differential cross section. For
instance, in two-dimensional s-wave scattering, the outgoing
angles φ are uniformly distributed in the interval [0,2π ), while
for p-wave scattering, the distribution of the outgoing angles
follows the distribution cos2φ. In three-dimensional isotropic
scattering, there are two random angles: an azimuthal angle φ

uniformly distributed in the interval [0,2π ) and a polar angle
θ uniformly distributed according to cos θ . The nonuniform
distribution of the scattering angles does not affect the collision
rate that is determined by the total cross section, but the
rate of redistributing energies does vary. For a loss event
corresponding to two-body reactive collision, the two particles
are lost from the trap after the collision, and thus deleted from
the simulation when such processes occur.

(5) Averaging over many initial samples and trajectories.
The physical quantities such as the total number of particles,
temperature, collision rate, and phase-space density can be
computed statistically from the simulation ensemble.

APPENDIX C: KINETICS OF EVAPORATIVE
COOLING IN 2D

An alternative algorithm which is partially analytic can be
derived by assuming that in the process of evaporative cooling,
the energetic particles can be efficiently removed from the
trap. The system is assumed to follow a truncated Boltzmann
distribution f (x,p) [Eq. (12)], with a cut-off energy εt [25,
37], meaning that there is no particle with energy E > εt .
Then similar to the description of an equilibrium ensemble,
the measured quantities of the system can be expressed by
averaging over this distribution function. For example, the
collision rate is

γ = λ�2

m

∫
ε1,ε2

d2x d2p1 d2p2f (x,p1)f (x,p2)|p1 − p2|,
(C1)

in which � = 1/(2πh̄)2, and ε1,2 = p2
1,2/2m + V (x1,2) are the

energies of the incident particles. For simplicity, here we have
assumed isotropic energy-independent elastic and reactive
collisions, so λ in Eq. (C1) is constant. We also assume the
two-body reactive collisions happen at rate ζγ . During forced
evaporative cooling, εt decreases with time, so does the temper-
ature T , and the distribution function f = f (x,p) changes. As
a result, the evolution of the system from t to t ′ can be modeled
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via three steps: the change due to f when εt decreases to ε′
t

(dN1,dE1), the change due to evaporation (dN2,dE2), and the
change due to the reactive losses (dN3,dE3). These can be
represented by the following equations:

dN1 = �

∫ εt

ε=ε′
t

d2x d2pf, (C2)

dE1 = �

∫ εt

ε=ε′
t

d2x d2pεf, (C3)

dN2

dt
= λ�2

m

∫
�

d2x d2p1 d2p2 dφ′ f1f2|p1 − p2|, (C4)

dE2

dt
= λ�2

m

∫
�

d2x d2p1 d2p2 dφ′ sf1f2|p1 − p2|ε4, (C5)

dN3

dt
= ζ

λ�2

m

∫
�′

d2x d2p1 d2p2 f1f2|p1 − p2|, (C6)

dE3

dt
= ζ

λ�2

m

∫
�′

d2x d2p1 d2p2 f1f2|p1 − p2|(ε1 + ε2),

(C7)

where f1,f2 are the distribution function for each of the two
colliding particles, φ′ specifies the scattering angle, ε = ε(x,p)
is the energy of a particle and is a function of the coordinate
and momentum of the particles, ε3 and ε4 are energies after
collision, which are determined once p1, p2, and φ′ are known,
and � = {ε1,ε2,ε3 < ε′

t ,ε4 > ε′
t } and �′ = {ε1,ε2 < ε′

t }
specify the integration region. These contributions add up to
give the total changes: N (t ′) = N (t) − dN1 − dN2 − dN3

and E(t ′) = E(t) − dE1 − dE2 − dE3. The new temperature
T (t ′) is found from

N (t ′) = �

∫ ε′
t

0
d2x d2p f (x,p), (C8)

E(t ′) = �

∫ ε′
t

0
d2x d2p f (x,p)ε. (C9)

Then the trajectory of evaporative cooling in two-dimensional
traps can be solved from the above equations. Similar calcula-

tions also apply to three-dimensional harmonic traps, and the
results are equivalent to solving the rate equations following
the method developed by Walraven et al., as long as the trun-
cated Boltzmann distribution is a good approximation [25].

APPENDIX D: MASTER EQUATION APPROACH FOR
LOSSES IN A QUASI-2 DTRAP

Represented in the basis of harmonic oscillator eigenstates,
the rate coefficients �n,m defined in the jump operators in
Sec. V can be written explicitly for intraband collisions [nz =
mz, Fig. 7(a)] [30]

�n,m = �̃(1)

= 3
√

2πb3
p

√
ωrωz

(aHO)3
Is(nz,mz,nz,mz)

×
∑
σ �=σ ′

Is(nσ ,mσ ,nσ ,mσ )Ip(nσ ′ ,mσ ′ ,nσ ′ ,mσ ′), (D1)

and for interband collisions [nz �= mz, Fig. 7(b)]

�n,m = �̃(2)

= 3
√

2πb3
p

√
ωrωz

(aHO)3

∑
σ1 �=σ2 �=σ3

ωσ2

ωr

Is(nσ1 ,mσ1 ,nσ1 ,mσ1 )

×Ip(nσ2 ,mσ2 ,nσ2 ,mσ2 )Is(nσ3 ,mσ3 ,nσ3 ,mσ3 ), (D2)

where σ,σ ′ = {x,y}, σ1,σ2,σ3 = {x,y,z}, aHO = √
h̄/mωr ,

Is(n,m,p,q) =
∫

du
e−2u2

Hn(u)Hm(u)Hp(u)Hq(u)

π
√

2n+m+p+qn!m!p!q!
, (D3)

Ip(n,m,p,q) =
∫

du
e−2u2

π
√

2n+m+p+qn!m!p!q!

× [∂Hn(u)Hm(u) − Hn(u)∂Hm(u)]

× [∂Hp(u)Hq(u) − Hp(u)∂Hq(u)], (D4)

and Hn,Hm,Hp,Hq are Hermite polynomials.
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