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Calculations of electron scattering from H2
+
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We have extended the convergent close-coupling method to investigate electron scattering from the vibrationally
excited molecular hydrogen ion H2

+, within the Born-Oppenheimer approximation. Results are presented for
proton-production and dissociative-ionization cross sections. The comparison with experiment is excellent across
the energy range from near threshold to 1 keV.
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I. INTRODUCTION

The ab initio convergent close-coupling (CCC) method
has achieved considerable success in providing accurate
collision data for electron and positron scattering from atoms
and ions [1–5]. Our long-term goal is to do the same for
molecular targets. We have already extended the CCC method
to positron [6] and antiproton [7] scattering from molecular
hydrogen, which produced results in good agreement with
experiment over a broad energy range. Here we report the
extension to electron scattering from the vibrationally excited
molecular hydrogen ion H2

+.
The H2

+ molecule is of fundamental interest to exper-
imentalists and theorists in the study of electron-molecule
scattering. It is a unique target; practically all electronic
excitations lead to a dissociative process. Electron scattering
from the electronic ground state 1sσg of H2

+ in a vibrational
state v is described by the following direct dissociative
reactions:

e− + H2
+(1sσg,v) → e− + H+ + H(nl) (1)

→ 2e− + H+ + H+. (2)

Dissociative excitation (DE) (1) and dissociative ionization
(DI) (2) are expected to be the major processes in the
intermediate- and high-energy regions. Recently Chakrabarti
et al. [8] used the multichannel quantum-defect theory to
investigate indirect resonant electron attachment processes
(dissociative excitation, recombination, and ion-pair produc-
tion), which are important at low energies (�10 eV). Here we
consider the direct processes only and concentrate on impact
energies above 10 eV.

The direct dissociative reactions (1) and (2) lead to proton-
production (PP) cross sections σPP = σDE + 2σDI, where σDE

and σDI are the DE and DI cross sections, respectively. It is
worth noting that the DI cross sections [9,10] are an order of
magnitude lower than the PP cross sections and are smaller
than the experimental error bars of σPP [10–13].

Experimentally H2
+ is produced by electron- or photon-

impact ionization of H2. Almost all experimental measure-
ments [9–13] have been taken with H2

+ populated across
a range of its 20 bound vibrational states [14]. The initial
vibration population is well described by the Franck-Condon
(FC) factors [15]. Peart and Dolder [9] suggested to use
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the experimentally determined distribution of von Busch and
Dunn [14], which better describes the experimental conditions.
The von Busch–Dunn (BD) distribution is smooth, close to
the FC factors and was produced by a least-squares fit of
vibrationally resolved photodissociation cross sections of H2

+.
The most recent measurements of El Ghazaly et al. [10]
determined the ion-beam-source vibrational level distribution
via resolution of the kinetic energy release spectrum of the
protons. This showed good agreement with the FC and BD
distributions. Dissociative excitation experiments have also
been conducted with laser-controlled ion beams at the Aarhus
Storage Ring Denmark, which produced HD+ in v = 0 and
H2

+ in v = 0 and 1 vibrational states [16].
To date, theoretical investigations into electron scattering

from vibrationally excited H2
+ have been conducted only by

first-order approaches. Born-Oppenheimer calculations of the
electron-H2

+ system within the first Born [17,18] and Bethe-
Born [18] approximations found that the DE cross sections
have a strong dependence on v and increase dramatically as
v becomes larger. Liu [19] used the Bethe theory combined
with the reflection approximation to calculate PP, DI, and
DE cross sections assuming the BD and FC distribution.
These methods compared well with experimental PP and
DI data at high energies. Peek and Green [20] validated
closure methods (summing cross sections over final rotational-
vibrational states) in the Born approximation for H2

+.
The distorted-wave method of Robicheaux [21] utilized

the fixed-nuclei approximation to calculate DI cross sections.
Robicheaux [21] used a fixed-nuclei distance of R = 2.15a0,
which is the average distance of H2

+ according to the BD
vibrational distribution [14]. Recently the fixed-nuclei (R =
2.0a0) approximation was utilized in the time-dependent close-
coupling (TDCC) method [22] and configuration-average
distorted-wave (CADW) method [23] to calculate DI cross
sections. Though these calculations [21–23] compared well
with the experiment of Peart and Dolder [9], they did not take
into account the initial vibrational distribution of molecular
states. In the present paper it is shown that account of the
initial vibrational distribution leads to a substantial increase in
the DI cross sections.

Here we present an ab initio approach to electron scattering
on H2

+ in the electronic ground, arbitrary initial vibrational
state. We start by formulating the scattering problem within the
fixed-nuclei approximation. The account of initial vibrational
levels is performed as postprocessing of fixed-nuclei scattering
results and requires scattering calculations to be conducted at
a (large) number of internuclear distances.
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II. METHOD

The Hamiltonian of the H2
+ molecule within the fixed-

nuclei approximation describes an electron in the Coulomb
potential of two protons that are fixed at distance R (atomic
units are used throughout the paper),

HT = K(r) − 1∣∣r + R
2

∣∣ − 1∣∣r − R
2

∣∣ + 1

R
. (3)

We have adopted a single-center approach to calculate the
H2

+ structure. The spherical body-frame coordinate system is
chosen with the origin at the midpoint between two nuclei and
the z axis along the internuclear axis R. Wave functions of
the H2

+ molecule are characterized by the angular momentum
projection m on the z axis and parity π . For each combination
of (m,π ) the electron wave function of the H2

+ molecule
is obtained by a diagonalization of the Hamiltonian (3) in
a Sturmian (Laguerre) basis [24]. This leads to a set of target
states �mπ

n with energy εn that satisfy〈
�mπ

n′
∣∣HT

∣∣�mπ
n

〉 = εnδn′,n. (4)

The multicenter nature of the H2
+ system leads to a slow

convergence rate of the calculated wave functions with respect
to the orbital angular momentum l of the Laguerre functions,
in particular for the 1sσg ground state and 2pσu excited state.
In order to improve accuracy and save on computational
resources we have performed structure calculations in two
steps. First, we produced an accurate 1sσg orbital of H2

+
using a large Laguerre basis with exponential falloff αl = 1.4,
lmax = 8, and the number of functions Nl taken to convergence.
Second, we produced a Laguerre basis with the same values
of exponential falloffs, lmax = 4, and Nl = 15 − l. Then we
replaced the 1s orbital of this basis with the 1sσg orbital
calculated in the first step. Such a structure results in a
total energy of −0.601 for the 1sσg state and −0.155 for
the 2pσu state at R = 2.0, which compares well with the
accurate values of −0.603 and −0.168, respectively [25]. For
the H2

+ ground-state static dipole polarizability we obtained
α‖ = 4.950 and α⊥ = 1.767, which compare well with the
accurate values of α‖ = 5.078 and α⊥ = 1.758 [26].

In the present calculations diagonalization of the target
Hamiltonian leads to N = 289 states. These states are used to
perform a multichannel expansion of the total wave function of
the scattering problem. In the CCC method, we transform the
body-frame electronic Schrödinger equation of the scattering
system (for a fixed internuclear distance R) into the coupled
Lippmann-Schwinger equations for the T matrix [6],

〈k f �f |TS |�i ki 〉 = 〈k f �f |VS |�i ki 〉

+
N∑

n=1

∑∫
k

〈k f �f |VS |�nk〉〈k�n|TS |�i ki 〉
E(+) − εk − εn

. (5)

Here |k〉 are Coulomb waves describing the incident electron.
The potential VS describes Coulomb interactions of the
incident electron with the H2

+ ion for a given spin channel
S (singlet S = 0 and triplet S = 1). The Lippmann-Schwinger
equations (5) are solved by performing a partial-wave expan-
sion of the incident electron Coulomb waves |k〉 to obtain
T -matrix elements per partial wave of total angular momentum
projection M , parity �, and spin S. The body-frame T -matrix

elements are used to obtain body-frame scattering amplitudes
F

(B)
f i , which are then averaged over all orientations using

standard procedures [27] to obtain integrated cross sections
σf i for electronic transitions.

We have performed 289-state CCC calculations over the
energy range from 10 to 1000 eV for several values of R.
Calculations were performed with projectile partial waves up
to a total angular momentum Lmax = 8 and its projection
M = 8, for singlet and triplet spin S and odd and even
parity �. We have used an orientation-averaged analytic
Born subtraction method to speed up convergence of the
partial-wave expansion [27].

The single-center formulation requires large expansions to
obtain accurate ground-state 1sσg and 2pσu energies at large
values of R; other states are hydrogenic and are sufficiently ac-
curate in the current formalism. Due to this, we chose to use the
accurate Born-Oppenheimer potential curve ε1(R) provided to
us by Wolniewicz and Poll [28,29] in the calculation of the
electronic ground-state nuclear wave functions �

(nuc)
1vJ (R). We

form the Born-Oppenheimer Hamiltonian

H
(BO)
1 = − 1

2M1
∇2

1 − 1

2M2
∇2

2 + ε1(R) (6)

of the molecule and calculate the nuclear wave functions via
diagonalization of each nuclear state symmetry of rotation
J . Here Mi = 1836.152 is the mass for a proton. For the
current study we assume a nonrotating molecule, taking J = 0
and dropping the dependence on J . The vibrational states
calculated were checked against the energies and FC factors
of [15].

Following from Lane [30], we write electronic and vibra-
tionally resolved cross sections for the transition ivi → f vf

as

σf vf ,ivi
= 4π3 kf

ki

∑
Lf ,Li

Mf ,Mi

∣
∣
〈
�

(nuc)
f vf

∣∣T (f i)
Lf ,Li

Mf ,Mi

∣∣�(nuc)
ivi

〉∣
∣

2
. (7)

Due to the completeness of the vibrational basis, we utilize
the closure property to sum over all final vibrational state
transitions to obtain

σf,ivi
=

∑
vf

σf vf ,ivi
=

∫
dR

∣∣�(nuc)
ivi

(R)
∣∣2

σf i(R), (8)

where σf,ivi
are cross sections resolved for an initial elec-

tronic, vibrational state transition to a final electronic state.
Expression (8) averages the cross sections over the initial
vibrational wave function of the molecule but does not retain
energy conservation between vibrational state transitions. This
has been shown to be accurate outside the low-energy region
for H2

+ [20]. To compare with experiment we weight cross
sections of the bound H2

+ vibrational levels via

σ̃f,i =
17∑

v=0

pvσf,iv

/(
17∑

v=0

pv

)
, (9)

where pv are the FC factors or BD distribution weights. We av-
eraged cross sections over all the bound H2

+ vibrational states
(up to v = 17 in the Born-Oppenheimer approximation [15]).
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III. RESULTS

Scattering calculations were conducted over a R grid
of 15 points within the interval 1.15 � R � 5.5. Resulting
σPP(R) and σDI(R) cross sections were found to be smooth
functions with respect to the internuclear distance R. These
cross sections were interpolated and extrapolated over the grid
1.0 � R � 12.0 (extent of the v = 17 state). Extrapolation of
cross sections outside the region 1.15 � R � 5.5 introduces
uncertainty in the vibrationally weighted cross sections. We
have investigated the stability of the final results with respect
to different extrapolation techniques and estimate that the
weighted cross sections have a maximum error of 5%.

In Fig. 1 we present our results for FC and BD vibrationally
weighted calculations for PP cross sections, compared with our
fixed-nuclear R = 2.0 results, calculations of Peek [18] and
measurements of El Ghazaly et al. [10], Dunn et al. [11,12],
and Dance et al. [13]. We also present DE cross sections
for HD+ in the vibrational ground state and compare with
the DE measurements of Andersen et al. [16]. In the latter
case we find good agreement with experiment for energies
above the 2pσu excitation threshold. Considering that the
current formulation neglects indirect (resonant) channels, this
agreement indicates the dominance of the direct processes.
The fixed-nuclear PP cross sections have little difference from
the HD+(v = 0) results in the intermediate- and high-energy
regions; only near threshold is a difference evident. Comparing
the fixed-nuclear and vibrationally weighted results, we note
the importance of accounting for the vibrational distribution,
which has a 225% larger cross section at lower energies. In the
low- (10–20 eV) and intermediate-energy regions (20–100 eV)
the vibrationally weighted CCC results clearly favor the most
recent experimental data of El Ghazaly et al. [10]. The large
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FIG. 1. (Color online) Franck-Condon (FC) and von Busch–
Dunn (BD) [14] weighted proton-production (PP) cross sections
for electron scattering from the electronic ground, vibrationally
excited states of H2

+. The present calculations are compared with
experiments of El Ghazaly et al. [10], Dunn et al. [11,12], and Dance
et al. [13]; fixed-nuclei (R = 2.0) results obtained in the present
method; and total inelastic (TI) Born calculations of Peek [18].
Calculations of dissociative excitation cross sections for HD+ in
the vibrational ground state are compared with the experiment of
Andersen et al. [16].
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FIG. 2. (Color online) Franck-Condon and von Busch–Dunn [14]
weighted dissociative ionization (DI) cross sections for electron
scattering from the electronic ground, vibrationally excited states
of H2

+. The present calculations are compared with measurements of
Peart and Dolder [9] and El Ghazaly et al. [10] and fixed-nuclei (R =
2.0) results obtained in the present method, the configuration-average
distorted-wave (CADW) method [23], and the time-dependent close-
coupling (TDCC) method [22].

variation in experimental data in the low-energy region could
be due to the production of different vibrational populations in
the presented experiments. Our vibrationally weighted results
are in good agreement with all experiments in the high-energy
region (100–1000 eV). We also agree with the vibrationally
weighted Born total inelastic cross sections σTI = σDE + σDI of
Peek [18] in the high-energy region, which gives us confidence
in our results. Like Peek [17] we have found that the PP
cross sections can differ as much as two orders of magnitude
when scattering from the individual v = 0 and 17 states. The
difference in results using the BD and FC distributions is only
evident for the lowest presented energies, where vibrational
dependence is extremely important (in particular the account
of high-lying vibrational levels).

Results for DI cross sections are presented in Fig. 2. We
compare the CCC FC and BD weighted results with the
CCC fixed-nuclei R = 2.0 results, the fixed-nuclei R = 2.0
TDCC [22] and CADW [23] results, and the measurements
of Peart and Dolder [9] and El Ghazaly et al. [10]. The CCC
fixed-nuclei DI cross sections are lower than the corresponding
fixed-nuclei TDCC results [22]; at the peak of the cross section
(95 eV) the difference is about 15%. The CADW results [23]
are even higher at the cross-section peak; this is expected
low-energy behavior for a first-order method. We find that CCC
fixed-nuclei results are lower than the vibrationally weighted
results by about 25% at the peak of the cross section and
about 10% at larger energies. The dependence on the initial
vibrational level distribution (FC or BD) is minor and only
visible at the cross-section peak. Although not shown, the
vibrationally weighted CCC results are in good agreement with
the first-order Bethe weighted reflection method of Liu [19]
at energies above 1 keV. Vibrationally weighted FC and BD
results are in excellent agreement with the experiment of Peart
and Dolder [9] across the entire energy range. Vibrationally
weighted CCC results do not agree with the measurements of
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El Ghazaly et al. [10], in particular at high energies. El Ghazaly
et al. [10] differentiated protons from DI and DE processes by
analyzing the kinetic energy release spectrum of the ions. In
their analysis they assumed that the DI cross section are not
dependent upon R, i.e., constant σDI(R). This allowed the DI
measurements to be extracted from the tail of the kinetic energy
release spectrum. El Ghazaly et al. [10] expected that such a
procedure would produce inaccurate results only for lower
energies, however, we see that the disagreement between CCC
results persists to high energies. The agreement between the
CCC results and the experiment of Peart and Dolder [9] is
most encouraging considering the fact that they differentiated
the DI cross section from the DE cross section by measuring
protons arriving at detectors in coincidence.

IV. CONCLUSION

In conclusion, we have solved the Lipmann-Schwinger
equation for electron scattering from the molecular hydrogen
ion in the fixed-nuclei approximation using the CCC method.
Utilizing the closure property, we averaged cross sections over
the initial vibrational wave functions of H2

+ and weighted
according to the FC and BD distributions. The results here
indicate the critical dependence of accounting for the initial

vibration population for both PP and DI cross sections. We
find excellent agreement with available experimental PP and
DI cross sections.

Although we have shown excellent agreement with exper-
iment, this method is by no means complete. A spheroidal
or multicenter expansion will be required to eliminate the
inaccuracies of our structure at large values of R. In the near
future we plan to extend the CCC method to heavier diatomic
molecules that can be described by one or two electrons
above an inert core, for example, Li2. A general scattering
code for polyatomic molecules will also be formulated in a
single-center approach and applied to molecules such as H3

+,
CH4, and H2O, where a single-center expansion has proved to
be sufficiently accurate [31–33].
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