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Electron-impact theoretical cross sections and rate coefficients for vibrational excitation of vibrationally
excited H2 molecules, occurring through the H−

2 resonant species in the 2�+
g Rydberg-excited electronic state,

are presented. The cross sections are calculated as functions of the incident electron energy by adopting the
local-complex-potential model for resonant collisions and by using ab initio calculated molecular potentials
and resonance widths. The calculations have been extended to all possible vibrational transitions linking all
15 vibrational levels of the electronic ground state of the H2 molecule. The corresponding rate coefficients are
also obtained as a function of the electron temperature by assuming a Maxwellian electron energy distribution
function, and a simple analytical expression is derived. Finally, the present rate coefficients for the transitions
starting from the lowest vibrational level of the H2 molecule are compared with those for the process involving
the X2�+

u resonant state of the H−
2 molecular ion.
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I. INTRODUCTION

Resonant processes involving vibrationally excited H2

molecules play a role of fundamental importance in affecting
the properties of low-temperature hydrogen plasmas, typi-
cal of many technological systems. Well-known examples
of cold plasmas with a large density of H2 molecules can be
found in nuclear fusion research. This is the case, for instance,
of the negative ion sources, designed for the generation and
extraction of intense energetic H− ion beams for heating of
plasmas in magnetic fusion devices [1,2]. A second example
is provided by the periphery of magnetically confined plasma
in toroidal fusion devices, in particular in tokamak divertors,
where the relatively low temperatures, dominant in these
plasma regions, allow the formation of vibrationally excited
diatomic molecules [3,4].

In negative ion sources the production of H− ions may take
place through the well-known dissociative electron attachment
(DEA) process, H2(v) + e → H−

2 → H + H−, where v is the
vibrational quantum number. This reaction involves the reso-
nant molecular state H−

2 and the vibrationally excited (v � 0)
neutral molecules. It is well established [1] that this is one of
the most relevant processes leading to the formation of negative
ions, and its efficiency is strongly enhanced if the molecules
are initially in highly excited vibrational levels. These excited
molecules, in their turn, are also efficiently formed through
the competitive electron-impact-induced resonant vibrational
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excitation (RVE) process, H2(v) + e → H−
2 → H2(v′) + e,

where the resonant states H−
2 undergo autodetachment with the

subsequent formation of possible vibrationally excited H2(v′)
molecules. The DEA and RVE processes play an important
role also in the volume recombination of divertor plasma. The
recombination of the negative ions, formed through the DEA
processes sketched above, with the positive H+ ions leads to the
formation of neutral atoms (molecular assisted recombination)
which, escaping the guiding magnetic field lines, reduce the
localized thermal load on divertor plates [4].

Cross sections for these resonant processes, involving the
ground electronic state of the H−

2 transient species, have been
calculated and measured over decades, and large sets of data
are now available for the applications [5–10]. More recently,
the calculations have been extended to the DEA and RVE
processes occurring through a Rydberg-excited resonant state
of 2�+

g symmetry, which is known to give rise to the so-called
14 eV resonance peak in dissociative attachment cross sections
[8,11,12] and is also considered responsible for the structures
with multiple peaks in the vibrational-excitation cross sections
observed in electron-molecule collision experiments [13,14].

A complete set of theoretical vibrational-excitation cross
sections and corresponding rate coefficients for dissociative
attachment has been obtained, as a function of the electron
energy and temperature, respectively, employing the local
complex-potential (LCP) formulation of the collision process
[15–18] and by using as input parameters of the model, the
ab initio calculated potential curve and widths of the resonant
2�+

g Rydberg state [19]. On the other hand, the cross sections
for the RVE process are presently limited to the H2 excitation
starting from the v = 0 vibrational level only. In this paper
we extend the RVE cross sections, and corresponding rate
coefficients, to the whole manifold of the vibrational levels,
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according to the process

H2(X 1�+
g ,v) + e(εi) → H−

2 (2�+
g )∗

→ H2(X 1�+
g ,v′) + e(εf ) , (1)

where H−
2 (2�+

g )∗ denotes the Rydberg-excited resonant state
and the values of the vibrational quantum numbers v,v′ range
over the interval 0–14. εi and εf are the initial and final kinetic
energy of the free electron, respectively. The cross-section
calculations have been performed in the framework of the
LCP model with the same input parameters as employed in
Ref. [15], where the differential cross sections for the case
v = 0 were calculated.

The paper is organized as follows: In Sec. II we give
a brief account of the LCP model for resonant collisions,
while in Secs. III A and III B the calculated cross sections and
rate coefficients, respectively, are presented and discussed. In
Sec. IV a short summary of the work is given.

II. THEORETICAL MODEL

In this section only a very brief description is given of
the relevant equations of the theoretical model for resonant
electron-molecule collisions. A more complete account can be
found in previous papers [15,20].

The local integral cross-section expression for a resonant
excitation, from the vibrational level v to the level v′ and for a
fixed rotational state J = 0, can be written for process (1) as

σv,v′ (εi) = 2π2

k2
i

∣∣∣∣
∫ ∞

0
dRχ∗

v′ (R)�1/2
X (R)ξv(R)

∣∣∣∣
2

. (2)

ki is the incident electron’s momentum, defined in terms of its
kinetic energy εi as k2

i = 2mεi/h̄
2, where m is the electron

mass. χv′ (R) is the final vibrational wave function of the
target molecule in its ground electronic state, depending on the
internuclear distance R. �X(R) is the partial width associated
with the capture or emission of the free electron from the
X1�+

g ground state of the target molecule.
The resonant radial wave function ξv(R) is defined by the

local equation for the nuclear motion,

[
− h̄2

2M

d2

dR2
+ V −(R) − i

2
�(R) − E

]
ξv(R)

= −
[
�X(R)

2π

]1/2

χv(R). (3)

Here M is the nuclei reduced mass, χv(R) is the vibrational
wave function in the initial vibrational level v, �(R) is the
total width, and E is the total energy defined by E = εi + Ev ,
where Ev is the vth vibrational eigenvalue of the molecule in
its ground state. V −(R) is the potential energy for the Rydberg
electronic state 2�+

g .
In this work, Eq. (3) has been solved by the Green’s

function method and by using Numerov’s algorithm for the
calculation of the regular and irregular wave functions needed
to build Green’s function (see Appendix). The input parameters
V −(R), �(R), and �X(R) are all taken from the ab initio

calculations of Ref. [19] and extrapolated to the extreme
regions (R → 0,∞) according to Ref. [15].

Finally, the rate coefficients for process (1) have been also
calculated according to the expression

κv,v′ (T ) =
√

8

mπ

(
1

T

)3/2 ∫ ∞

εth

dεi εi e
− εi

T σv,v′ (εi), (4)

obtained by assuming a Maxwellian electron energy distribu-
tion function, at the electron temperature T , in energy units,
and where εth represents the threshold energy for the v → v′
excitation.

III. RESULTS

A. Cross sections

Integral RVE cross sections have been calculated using
Eq. (2) for all the excitation processes with v′ � v, where v

runs from 0 through 14. The cross sections for the deexcitation
(v < v′) can be obtained via detailed balance [21]. The results
obtained are shown in Figs. 1–5 as a function of the incident
electron energy. In these figures some curves do not appear
since the cross sections are very small. The other visible curves
are labeled with the corresponding value of v′.

The left upper panel of Fig. 1 shows the cross sections for
the 0 → v′ transitions. For the inelastic process (v′ �= 0), the
corresponding differential cross sections, at an angle of 85◦,
have been calculated in Ref. [15] by using the same method
and input parameters adopted in the present paper and were
found to be in good agreement with the measurements reported
in Ref. [13].

We have also extended the sensitivity analysis, performed
in Ref. [15] for the v = 0 cross sections, to the levels
v,v′ = 5, 10, and 14, by altering separately the input param-
eters [�(R),�X(R), and V −(R)] by ±10% and observing the
cross-section variations. We explored the energy regions for
the above transitions where the cross sections are appreciably
different from zero characterized, in particular, by the appear-
ance of sharp peaks. Outside these regions the cross sections
become vanishingly small and the numerical accuracy in the
calculations accordingly tends to decrease.

An alteration of ±10% in �(R) does not affect the cross
section for the transition 5 → 5 in the region of 10–12 eV,
while for the cases 5 → 10 and 5 → 14, the cross-section
variation is no larger than 10%. In general, the cross-
section variation is quite contained at the peaks, due to their
large values, and decreases between the peaks and in the far
energy regions, where the cross sections are characterized by
small values. This is particularly true for the elastic processes
which show the largest cross sections. For the transition
10 → 10, for example, the variation of �(R) induces a
change in the cross section of about 0.05% at the main peak
(σ = 9 × 10−19 cm2, see Fig. 4), which rises to 0.3% at
the minimum placed at 9.18 eV (σ = 4 × 10−20 cm2), then
becomes ∼3% at 10.02 eV, where the cross section starts
to vanish (σ = 6 × 10−21 cm2). For the inelastic transition
10 → 14, the cross sections are generally smaller than the
previous cases, so reduced accuracy is to be expected. In fact,
at the main peak, the accuracy is about 6% and reaches ∼20%
at 9.68 eV between two peaks (σ = 8 × 10−23 cm2). The same
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FIG. 1. (Color online) Resonant excitation cross sections as a function of the incident electron energy for the transition v → v′ where
v = 0,1,2, as indicated in the three panels, respectively, and v′ � v. Each visible curve in the figures is labeled with the corresponding value
of v′ (see text).

situation is observed for the 14 → 14 transition, where the
largest variation does not exceed 15%.

The influence of an alteration of ±10% of �X(R) on the
cross sections is not substantially different from the previous
case. For the transitions 5 → 5,10,14 the largest cross-section
variation is smaller than 10%, being almost zero for the elastic
process. For the 10 → 10,14 excitations the variations are
less than 1% and 20% for the elastic and inelastic processes,
respectively. Finally, for the 14 → 14 transition, the variation
remains confined within 15%.

A modification of ±10% of the potential V −(R) does not
produce significant variation in the cross section for the elastic
transition 5 → 5, where the largest discrepancy between peaks
is less than 2%. For the 5 → 10 case, the variation in the 10–
11 eV energy interval is <4% and grows for εi > 11 eV, where
the cross sections start to decrease. For the 5 → 14 the varia-
tion in the peak region is not larger than 20%. For the 10 → 10
case, the cross section variation in the interval 8.5–9.5 eV
is contained within 5% and reaches 20% in the interval 9–10 eV
for the 10 → 14 transition. Finally, for the 14 → 14 process,
the variation in the largest cross section is up to 10%.

The sharp and thin peaks observed in the figures indicate
that the resonant process is characterized by small widths. This

implies a long lifetime for the resonant H−
2 (2�+

g ) Rydberg
state, which thus behaves like a quasi-stable molecular ion.
The peak positions of the cross sections, in fact, fall almost
exactly at the vibrational eigenvalues of the resonant states,
and the small energy spread determines a narrow profile of the
cross-section curves.

This can be better seen in Figs. 6(a) and 6(b) where the
cross sections for the 0 → 0 and 5 → 5 elastic transitions
are shown in logarithmic scale. The structures in these two
figures are typical boomerang oscillations, which have been
observed since early calculations and experiments on the
RVE process in H2 [10,23]. The crosses, over the lower
and upper energy axis, locate the energy of the resonant
vibrational eigenvalues [22] Evr

above the target levels, i.e.,
the difference 
Evr

= Evr
− Ev , for v = 0 and 5 respectively.

The vertical lines, connecting the crosses, coincide with the
energy positions of the cross section peaks, showing clearly
their correspondence with the resonant vibrational energies
[24]. This however is not always true. In some cases, in fact,
we have found that expected peaks are missing. Figure 6(b)
provides an example. At the energy corresponding to Evr=6 −
Ev=5 = 10.61 eV (7-th line in the figure), in fact, no peak is
observed.
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FIG. 2. (Color online) Same as Fig. 1, but for v = 3,4,5.

This can be explained by writing the resonant nuclear wave
function as (see Appendix)

ξv(R)

= −
∫ ∞

0
dR′

[∑
vr

∫
Cvr

(R′)ϕvr
(R)

][
�X(R′)

2π

]1/2

χv(R′),

(5)

where the quantity in the first bracket is the resonant Green’s
function expressed as a linear combination of the vibrational
wave functions of the resonant state, ϕvr

(R). Inserting now
Eq. (5) in Eq. (2) and assuming that the width, in the
spirit of the Frank-Condon principle, can be approximated
as �X(R) = �X(R′) ≈ �X(R̄), where R̄ is a suitable value
of the internuclear distance such that �X(R̄) can be carried
out of the integral, and putting, according to Eq. (A9),
Cvr

(R′) ≈ 2iϕ∗
v̄r

(R′)/�v̄r v̄r
, we can write finally for v = v′,

σv,v(εi) ≈ 4π

k2
i

�2
X(R̄)

∣∣∣∣Qv̄r ,v Qv,v̄r

�v̄r ,v̄r

∣∣∣∣
2

= 4π

k2
i

�2
X(R̄)

|Qv̄r ,v|4
|�v̄r ,v̄r

|2 ,

(6)

where Qv̄r ,v =∫
dRϕ∗

v̄r
(R)χv(R) = Q∗

v,v̄r
. Equation (6) shows

that the cross section is mainly governed by the resonant

Franck-Condon factors Qv̄r ,v , while the matrix elements �v̄r ,v̄r

are found to be quite insensitive to the variations of the
quantum number v̄r . This can be seen in Table I, which
reports the calculated values of both |�v̄r ,v̄r

|2 and |Qv̄r ,v=5|4.
The table also shows that for vr = 5 and 7, |Qv̄r ,5|4 is very
large, compared with the case v̄r = 6, and this explains
the formation of the peaks, in Fig. 6(b), in correspondence
with the energy of these two levels of 10.38 and 10.87 eV,
respectively. |Qv̄r ,5|4 for vr = 6 is instead three orders of
magnitude smaller than the other two cases, and this explains
the missed peak in the cross sections at the expected energy of
Evr=6 − Ev=5 = 10.61 eV. The consequence, from a physical
point of view, is that the formation of the resonant state,
when the incident electron energy is close to 10.61 eV and
the target molecule is initially in the excited level v = 5,
is counteracted by the nuclear motion which has a small
probability of transiting from the energy level v = 5 to the
resonant level vr = 6, due to the unfavorable interference of
the corresponding vibrational wave functions.

Another interesting aspect is represented by the fact that the
sharp cross-section peaks end at the energy of the last resonant
vibrational level, in the region where the resonant continuum
starts. Beyond this point, wide oscillations appear in high-
energy cross-section tail [see Fig. 6(b)]. These structures are
present also for other transitions, elastic or inelastic, and even
for different molecules [25,26].

062701-4



ELECTRON-IMPACT VIBRATIONAL EXCITATION OF . . . PHYSICAL REVIEW A 88, 062701 (2013)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 8.5  9  9.5  10  10.5  11  11.5

C
ro

ss
 s

ec
ti

on
s 

(1
0-1

7  c
m

2 )

Energy (eV)

6 v’

6

6

7

7 8 9 10

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 8  8.5  9  9.5  10  10.5  11

C
ro

ss
 s

ec
ti

on
s 

(1
0-1

7  c
m

2 )

Energy (eV)

7 v’

7 7,8

8 9
10 11

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 8  8.5  9  9.5  10  10.5  11

C
ro

ss
 s

ec
ti

on
s 

(1
0-1

7  c
m

2 )

Energy (eV)

8 v’

8

8

9

9 10
11 12

FIG. 3. (Color online) Same as Fig. 1, but for v = 6,7,8.

A clear example can be seen in Fig. 7, where the cross
sections for the elastic transition 10 → 10 (full-blue line) are
shown. Once again, the neutral-resonant vibrational overlap
governs this behavior. To show this effect, we can rewrite
the cross section again in terms of Green’s function, namely
(see Appendix),

σv,v′ (εi) = 2π2

k2
i

∣∣∣∣∣
∫ ∞

0

∫ ∞

0
dR dR′χ∗

v′ (R)�1/2
X (R)

×
(∑

vr

∫
Cvr

(R′)ϕvr
(R)

)[
�X(R′)

2π

]1/2

χv(R′)

∣∣∣∣∣
2

.

(7)

The quantity in parentheses can now be written explicitly in
terms of the two contributions as

∑
vr

∫ = ∑
b.s. +

∫
c
, where the

sum on the r.h.s is extended to the bound vibrational states
and the integration to the continuum. In this way we may
include or exclude the continuum in Eq. (7) at will. We have
recalculated the cross sections for the 10 → 10 transition using
Eq. (7) without the continuum and the result is shown in
Fig. 7 (dot-red line) along with the cross sections obtained
assuming a Green’s function of the form (A3) (full-blue line).
This figure provides evidence of the role of the resonant
vibrational continuum on the cross-section oscillations for
high energies. Similar oscillations were already observed in

the corresponding dissociative attachment process, involving
the same Rydberg state [17]. This process in fact, also occurs
when the total scattering energy is above the dissociation limit
of the resonant state, and the DEA oscillating behavior was
demonstrated to be determined by the vibrational overlap of
the Rydberg continuum and H2 bound wave functions [17].

B. Rate coefficients

The rate coefficients, for the transitions v → v′ of
process (1), calculated by Eq. (4) in the range of the electron
temperature of 0.1–1000 eV (see Sec. IV), are shown for some
cases in Fig. 8, where for clarity the range of temperatures
was cut to 100 eV. In each panel, all the rate maxima occur
practically at the same temperature; and the largest rates, as
expected, are those corresponding to the elastic processes. The
general behavior is similar for all the curves, the difference
being of a quantitative nature only. This regularity suggests
that some universal fitting function can be found.

To get such a function we may try for the cross section the
following ansatz:

σv,v′ (εi) = α σv,v′
(

EL

p

)
δ
(
εi − 
EL

p

)
, (8)

where 
EL
p is the energy position of the largest cross-

section peak, for the given transition v → v′, σv,v′ (
EL
p ) the

corresponding peak value, and δ(εi − 
EL
p ) is the Dirac δ
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FIG. 4. (Color online) Same as Fig. 1, but for v = 9,10,11.

function. α is an unessential constant with the dimension
of energy, introduced for dimension consistency. In view of
the final normalization, it can be assumed equal to 1 without
affecting the treatment. The δ-function behavior is justified by
the sharp nature of the peaks, all placed, as we have seen, at
energies 
Ep, and by the fact that in general only one peak,
of very large intensity, dominates over the others. Substituting
Eq. (8) in Eq. (4), the integral is immediate, so one gets

κv,v′ (T ) ≈
√

8

mπ
σv,v′

(

EL

p

)( 1

T

)3/2


EL
p e− 
EL

p

T . (9)

It can now be easily shown, by constraining the first derivative
to vanish, that the maximum of this expression occurs at the
temperature Tmax = 2

3
EL
p , and its value κmax

v,v′ is given by

κmax
v,v′ =

√
8

mπ
σv,v′

(

EL

p

)(3

2

)3/2

e− 3
2
(

EL

p

)−1/2

= 0.409916

√
8

mπ
σv,v′

(

EL

p

) (

EL

p

)−1/2
. (10)

Inserting this expression in Eq. (9) we obtain

κv,v′
(

EL

p τ
) ≈ κmax

v,v′

(
1

τ

)3/2

e− 1
τ , (11)

where τ , the reduced temperature, is defined by τ = T/
EL
p

and κmax
v,v′ includes also the factor 1/0.409916. The desired

universal function is represented by τ−3/2 e− 1
τ , which is

expected to reproduce the general shape of all the rate
coefficients. Once this quantity is multiplied by κmax

v,v′ , Eq. (11)
provides the fitting expression for the rate coefficients. κmax

v,v′
can be taken from the calculated rates, so that Eq. (11) is
automatically normalized to these last quantities. Its values
are provided in Table II for all the v → v′ (v′ � v) transitions.
The rate coefficients for the inverse processes (v′ < v) can be
obtained, as already stated, by detailed balance [21], once the
transition energies 
Ev,v′ = Ev′ − Ev are provided [27,28].
Regarding the energy positions of the largest peaks, according
to our simple δ-function model, they should depend on both
v and v′ levels. However, we verified that no appreciable
difference can be observed in the fitted rates if we assume

TABLE I. Values of the matrix elements |�v̄r ,v̄r
|2 and the resonant

Franck-Condon factors |Qv̄r ,v|4 for v = 5 and vr = 5,6,7 (see text).

vr |�v̄r ,v̄r
|2 |Qv̄r ,5|4

5 8.6 × 10−6 1.4 × 10−3

6 1.6 × 10−5 2.5 × 10−6

7 2.3 × 10−5 1.3 × 10−3
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FIG. 5. (Color online) Same as Fig. 1, but for v = 12,13,14.

for a given v that 
EL
p (v,v′) ≈ 
EL

p (v,v). This reduces the
number of parameters required in Eq. (11). This approximation
is justified by the fact, noted above, that all the maxima of the
rate coefficients for a given v and different v′ fall practically at
the same temperature, and this temperature, as we have seen, is
linked to the energy positions by the relation Tmax = 2

3
EL
p ,

which gives, in addition, a more concrete physical meaning
to these parameters. The elastic 
EL

p (v = v′) energies are
also provided in the last column of Table II. Examples of
rate fittings are shown also in Fig. 8. The agreement among
the calculated and fitted rate coefficients is exceptionally
good.
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g resonant state vibrational eigenvalues.
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FIG. 7. (Color online) RVE cross sections for the 10 → 10
transition (full-blue curve). The dot-red curve represents the cross
sections calculated by Eq. (7) where the contribution from the
vibrational continuum was excluded (see text).

To assess the role of the RVE process in hydrogen plasmas,
we have compared the present rate coefficients with those for
the vibrational excitation occurring through the X2�+

u state
of the H−

2 ion, generated after the trapping of the incident
electron inside the centrifugal barrier associated with the l = 1
partial wave (shape resonance). This resonant state is known
to play a role of great importance in hydrogen plasmas [1–4],

and cross sections for the RVE process involving the shape
resonance have been reported in the literature by many authors
[5,7,10]. On the other hand, to the best of our knowledge,
theoretical calculations or experimental measurements for rate
coefficients are practically nonexistent. So, to perform the
above comparison, we have calculated the cross sections for
the 0 → v′ RVE transitions occurring through the X2�+

u state
by adopting the computational model of Ref. [5]. Then, from
Eq. (4), the corresponding rate coefficients were obtained.

Figure 9 shows the rate coefficients for the inelastic
transitions 0 → v′ as a function of the final vibrational levels
and for RVE processes occurring through both the shape
and Rydberg resonances at a fixed temperature of 8 eV,
closely corresponding to the maxima of the Rydberg rates. The
figure shows that the rate coefficients for the shape resonance
decrease rapidly with the final quantum number becoming, for
v′ > 4, smaller than the corresponding values for the Rydberg
resonance by several orders of magnitude. Actually, we have
observed the same behavior in a wide range of temperatures
(T ∼ 2–1000 eV) and only for temperatures below ∼2 eV do
the rates for the Rydberg resonance show a fast decrease and
become, at very low temperatures of the investigated range,
dramatically smaller than the corresponding rates for the shape
resonance. This indicates that in hydrogen plasmas charac-
terized by high temperatures, typical, for example, of edge
and divertor regions of the fusion reactors, the RVE process
involving the Rydberg resonance could have a prominent role
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TABLE II. κv,v′
max (10−9 cm3/s), with v′ � v, and largest peak position energies 
EL

p (eV). The notation such as 1.488(−2) stands for
1.488 × 10−2.

�
��v′

v
0 1 2 3 4 5 6

0 1.488(−2)
1 1.247(−2) 2.381(−2)
2 1.137(−2) 1.891(−2) 1.952(−2)
3 1.012(−2) 1.008(−2) 8.10(−3) 1.300(−2)
4 8.25(−3) 3.98(−3) 4.24(−3) 9.25(−3) 9.98(−3)
5 5.98(−3) 1.44(−3) 4.17(−3) 3.51(−3) 5.56(−3) 9.83(−3)
6 3.95(−3) 1.15(−3) 2.88(−3) 1.56(−3) 3.88(−3) 4.00(−3) 7.98(−3)
7 2.46(−3) 1.46(−3) 1.29(−3) 1.76(−3) 1.78(−3) 2.37(−3) 4.20(−3)
8 1.49(−3) 1.59(−3) 5.1(−4) 1.66(−3) 7.3(−4) 2.00(−3) 1.44(−3)
9 8.5(−4) 1.41(−3) 4.1(−4) 9.5(−4) 9.3(−4) 8.3(−4) 1.44(−3)
10 4.4(−4) 1.00(−3) 5.6(−4) 3.2(−4) 8.8(−4) 4.4(−4) 8.1(−4)
11 2.0(−4) 5.9(−4) 5.6(−4) 1.7(−4) 4.1(−4) 5.4(−4) 2.4(−4)
12 1.0(−4) 3.7(−4) 4.4(−4) 2.0(−4) 1.7(−4) 3.9(−4) 2.7(−4)
13 5.(−5) 2.0(−4) 2.7(−4) 1.5(−4) 1.0(−4) 2.2(−4) 2.2(−4)
14 2.(−5) 7.(−5) 1.2(−4) 7.(−5) 2.(−5) 7.(−5) 1.0(−4)

�
��v′

v
7 8 9 10 11 12 13 14 
EL

p

0 10.780
1 11.290
2 10.290
3 10.140
4 9.711
5 9.600
6 9.500
7 6.44(−3) 9.155
8 4.03(−3) 6.22(−3) 9.100
9 1.20(−3) 3.49(−3) 6.46(−3) 9.064
10 8.8(−4) 8.3(−4) 2.63(−3) 5.95(−3) 9.519
11 6.1(−4) 5.6(−4) 4.6(−4) 1.44(−3) 4.54(−3) 9.304
12 2.2(−4) 4.6(−4) 3.9(−4) 6.1(−4) 7.3(−4) 3.12(−3) 9.317
13 1.2(−4) 2.2(−4) 2.7(−4) 2.0(−4) 5.4(−4) 2.4(−4) 1.61(−3) 9.345
14 5.(−5) 7.(−5) 1.0(−4) 7.(−5) 1.7(−4) 1.5(−4) 2.7(−4) 2.2(−4) 9.381

in contributing to the nonequilibrium overpopulation of the
high vibrational levels.

IV. SUMMARY

We have calculated the electron-impact vibrational ex-
citation cross sections for the scattering process involving
vibrationally excited H2 molecules, and occurring through
the formation of the H−

2 transient species in the resonant
Rydberg-excited electronic state 2�+

g . The cross sections are
calculated, as a function of the incident electron energy, by
using the local complex-potential model and for all possible
v → v′ vibrational transitions with v′ � v. Cross sections for
the inverse transition can be obtained by detailed balance. The
main feature of the calculated cross sections is the appearance
of sharp and narrow peaks located at energies corresponding
to vibrational level eigenvalues of the 2�+

g electronic state. In
some cases, however, expected peaks are absent, suppressed
by the small value of the neutral-ion vibrational wave function
overlap. A second aspect of the calculated cross section

is represented by their oscillations above the dissociation
threshold of the Rydberg state, determined by the vibrational
wave function overlap of the resonant and target electronic
states.

The corresponding rate coefficients for the same vibrational
excitations were also calculated as a function of the electron
temperature and by assuming a Maxwellian electron distri-
bution function. An accurate fit expression for the calculated
rates has been also derived by assuming a simple δ function
model for the cross sections. Finally, a comparison of the
rate coefficients for the RVE processes 0 → v′, involving the
H−

2 (X2�+
u ) resonant state with the Rydberg rates, shows that

for high vibrational levels these last quantities exceed the
former by orders of magnitude, which suggests a significant
influence on the vibrational kinetics of high-temperatures H2

plasmas.
The whole cross section and rate coefficient data set

presented here, extended to the range of collision energies
of 0–20 eV and temperatures of 0.1–1000 eV, respectively, is
available online [31].
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FIG. 9. (Color online) Comparison between the rate coefficients
as a function of the final vibrational level v′ � 1 and calculated at
an electronic temperature of 8 eV for the processes (a) H2(X1�+

g ,

v = 0) + e → H−
2 (X2�+

u ) → H2(X1�+
g ,v′) (red-open circles)

and (b) H2(X1�+
g ,v = 0) + e → H−

2 (Rydberg 2�+
g ) → H2(X1�+

g ,v′)
(blue-filled circles).
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APPENDIX: GREEN’S FUNCTION CALCULATION

The nuclear resonant wave function can be obtained from
Eq. (3) written in integral form as [29]

ξv(R) = −
∫ ∞

0
dR′ G(R,R′)

[
�X(R′)

2π

]1/2

χv(R′), (A1)

where Green’s function, G(R,R′), obeys the equation[
− h̄2

2M

d2

dR2
+ V −(R) − i

2
�(R) − E

]
G(R,R′)

= δ(R − R′). (A2)

Green’s function can be calculated by following two
different standard treatments [30]. The first approach consists
in building the function G(R,R′) by obtaining two indepen-
dent solutions of the homogeneous equation associated with
Eq. (A2), say u(R) and v(R), which can be used to write
Green’s function as

G(R,R′) = − 1

W
u(R>)v(R<), (A3)

where, as usual, R> and R< denote the greater and the smaller
between R and R′, and W gives the Wronskian defined by
W = u′(R)v(R) − u(R)v′(R).

A second way to calculate Green’s function is represented
by the expansion of G(R,R′) in terms of an orthonormal set

of basis functions, ϕ(R), as [29,30]

G(R,R′) =
∑

n

Cn(R′)ϕn(R) +
∫

dεCε(R′)ϕε(R)

=
∫∑
ν

Cν(R′)ϕν(R), (A4)

where the sum and the integration are extended to the bound
and the continuum states, respectively, so that, accordingly,
the index ν, in the last compact expression in Eq. (A4),
represents either the integer index n or the continuum energy
ε. Cν(R′) are linear combination coefficients. The functions
ϕν(R), spanning the whole vibrational bound-continuum
spectrum of the resonant potential V −(R), are solutions of the
equation

[
− h̄2

2M

d2

dR2
+ V −(R) − Eν

]
ϕν(R) = 0, (A5)

where Eν are the vibrational eigenvalues.
To find the coefficients Cν(R′), expression (A4) must be

inserted into Eq. (A2). Then, multiplying on the left by the
operator

∫
dRϕ∗

ν ′ (R), we get finally the linear system

∫∑
ν

Cν(R′)
[

(Eν − E)δν ′,ν − i

2
�ν ′ν

]
= ϕ∗

ν ′ (R′). (A6)

Here Kronecker’s δν ′,ν should be replaced by the Dirac
delta function δ(ν − ν ′) for values of ν and ν ′ both in the
continuum. The matrix elements �ν ′,ν are defined as �ν ′,ν =∫

dR ϕ∗
ν ′ (R) �(R) ϕν(R).

In the case of the resonant Rydberg state 2�+
g , the bound

vibrational spectrum includes 13 wave functions only, while
the continuum requires a large number of basis functions,
which makes the solution of system (A6) for each R′ value
computationally expensive. In the present work we have used
Eq. (A3) for the calculations of the cross sections discussed
in the paper by solving Eq. (A2) using Numerov’s method to
get the solutions u(R) and v(R). System (A6) has been solved
for the case v = v′ = 10 only, by excluding the continuum
spectrum, in order to obtain the approximated cross sections
shown in Fig. 7 (dot-red curve).

Equation (A6) can be conveniently approximated. Let us
rewrite the linear system as

Cν ′(R′)(Eν ′ − E) − i

2

∫∑
ν

Cν(R′)�ν ′ν = ϕ∗
ν ′ (R′). (A7)

If we assume now that only the term ν = ν ′ contributes to the
sum we may write

Cν ′(R′) ≈ ϕ∗
ν ′(R′)

Eν ′ − E − i
2�ν ′ν ′

. (A8)

This equation is rigorous when � is a constant since, in this
case, in Eq. (A7) we can write �ν ′,ν = �

∫
dR ϕ∗

ν ′(R) ϕν(R).
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However, we have verified numerically that Eq. (A8) provides
a very good approximation for the combination coefficients,
probably because �ν ′ν ′ is not strongly dependent on ν ′ (see
Table I). It shows also that the largest value for Cν ′ is reached
when Eν ′=ν̄ = E. Assuming that Green’s function (A4) can be

represented by this term only, we may write

G(R,R′) ≈ 2i
ϕ∗

ν̄ (R′) ϕν̄(R)

�ν̄ν̄

. (A9)

This approximation is used in Eqs. (5) and (6) of the paper.
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