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Polarization correlations in the elastic Rayleigh scattering of photons by hydrogenlike ions
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The (elastic) Rayleigh scattering of hard x rays by hydrogenlike ions has been investigated within the framework
of second-order perturbation theory and Dirac’s relativistic equation. The focus of this study was, in particular,
on two questions: (i) How is the polarization of scattered photons affected if the incident light is itself (linearly)
polarized, and (ii) how do the nondipole contributions to the electron-photon interaction and the relativistic
contraction of the wave functions influence such a polarization transfer? Detailed calculations were performed
for Ne9+, Xe53+, and U91+ targets and for photon energies up to ten times the 1s ionization threshold of the ions.
From the comparison of these fully relativistic computations with the (nonrelativistic) dipole approximation we
conclude that relativistic and higher-multipole effects often lead to a significant or even complete depolarization
for heavy targets and at high photon energies.
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I. INTRODUCTION

The elastic scattering of photons by bound atomic (or
ionic) electrons, also known as Rayleigh scattering, has been
investigated since the mid-1930s [1]. Apart from the funda-
mental interest in this second-order quantum electrodynamical
(QED) process, a good and quantitative understanding of
its details is essential for quite a few applications, such as
medical imaging, material research, and the spectroscopy
of atoms, complex molecules, and even nano-objects (see
Refs. [2–4], and references therein). Detailed knowledge of the
Rayleigh scattering is also required in order to determine the
contributions of two other γ + A → γ + A channels at high
photon energies, namely, the nuclear Thomson and Delbrück
scattering [5,6]. In particular, the latter process has attracted
considerable interest since it proceeds via the production of
virtual electron-positron pairs and might hence be used to
study the nonlinear properties of the quantum vacuum.

For many decades, experimental and theoretical Rayleigh
studies were focused not only on the total and angle-differential
cross sections [7–13] but also on the on the polarization
effects in elastic photon-atom scattering. However, most of the
previous investigations have dealt with (just two) scenarios
in which either (i) the polarization of the scattered photons
was measured for unpolarized incident light or (ii) the angular
distribution of the Rayleigh scattered photons was observed
for some initially linearly polarized beam [14–17]. Owing to
the recent advances in developing coherent light sources and
efficient detection techniques, a new generation of experiments
has currently become feasible, in which the polarization of both
the incident and outgoing photons can be explored. For exam-
ple, a measurement of the linear polarization of the Rayleigh
scattered light for completely linearly polarized incoming x-
rays has been performed recently at the PETRA III synchrotron
at DESY [18]. Moreover, further experiments, based on
novel-type solid-state detectors [19,20], are presently planned
for heavy atomic or ionic targets and at hard x-ray energies.

In order to analyze the current and future experiments on
the polarization transfer in Rayleigh scattering of x rays by
high-Z targets, a detailed theoretical analysis is needed that
accounts for the effects of relativity and of the nondipole
contributions to the electron-photon interaction. The first steps
towards such an analysis have been undertaken by Manakov
et al. [21] and Safari et al. [22], who investigated how the
polarization of the incident radiation influences the cross
sections in polarization-resolved measurements. In the present
work, we continue this research and explore the behavior
of the polarization Stokes parameters, i.e., the observables
that are available in present-day experiments. The theoretical
background for the evaluation of these parameters is laid down
in Sec. II within both the nonrelativistic dipole and rigorous
relativistic frameworks. Even though all basic expressions are
derived for the general case of a many-electron atom (or
ion), here we restrict our study to the x-ray scattering by
hydrogenlike ions. The numerical computation of the transition
amplitudes for such one-electron systems is discussed in
Sec. III. Results of calculations are presented later in Sec. IV
for the Ne9+, Xe53+, and U91+ ions in their ground state and
for a wide range of photon energies. These results demonstrate
that the Rayleigh scattering of completely linearly polarized
light may lead to a significant reduction of the (degree of)
polarization of outgoing photons. Such a depolarization is
caused by the relativistic and mainly nondipole effects and
becomes most pronounced for the backward x-ray scattering.
A summary of these results and a brief outlook is given
in Sec. V.

Hartree atomic units (� = e = me = 1) are used throughout
the paper unless stated otherwise.

II. THEORETICAL BACKGROUND

In this section, we shall first present the basic formulas
that are needed for describing the angular and polarization
properties of elastically scattered light. These formulas are
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derived for the general case of (many-electron) open-shell
atoms and ions and are later applied to hydrogenlike ions in
their 1s ground state, as discussed in Secs. III and IV.

A. Evaluation of the transition matrix element

The theoretical analysis of the Rayleigh scattering of
photons on atoms and matter is usually performed within

the Furry picture, in which the electron-nucleus interaction
is directly included in the unperturbed Hamiltonian and where
the coupling of the atoms to the radiation field is treated
perturbatively. In this picture, the properties of the (scattered)
outgoing photons can be traced back to the evaluation of the
second-order transition amplitude [10,13,22–24]. For the light
scattering by heavy ions (or atoms) and in the high-energy
regime, moreover, the relativistic form of this amplitude has
to be employed:

Mf i(Mf ,Mi) =
∑

ανJνMν

〈αf Jf Mf |R̂†(k2,ε2)|ανJνMν〉 〈ανJνMν |R̂(k1,ε1)|αiJiMi〉
Ei − Eν + ω

+ 〈αf Jf Mf |R̂(k1,ε1)|ανJνMν〉 〈ανJνMν |R̂†(k2,ε2)|αiJiMi〉
Ei − Eν − ω

, (1)

where k1,2 and ε1,2 are the wave and polarization vectors of the incident and outgoing photons, respectively, and where |αiJiMi〉
and |αf Jf Mf 〉 denote the (many-electron) states of the ion just before and after the scattering has occurred. In addition to the
total angular momenta Ji,f and their projections Mi,f , here αi,f refers to all the additional quantum numbers as needed for a
unique specification of these states. Since we shall restrict ourselves to the elastic scattering of the photons on the ground state
of the atoms, we have Ei = Ef and also assume αi = αf and Ji = Jf , and that the atomic levels are nondegenerate.

The transition operator R̂ in Eq. (1) describes the interaction of the electrons with the electromagnetic field. It can be written
as a sum of one-particle operators, which in the Coulomb gauge is given by

R̂(k,ε) =
∑
m

Am(k,ε) =
∑
m

αm · ε eik·rm , (2)

where rm and αm = (αx,m,αy,m,αz,m) are the coordinate and the vector of the Dirac matrices for the mth particle. One can further
evaluate the second-order matrix element (1) if one expands the one-particle interaction operators Am(k,ε) in Eq. (2) into partial
waves. For the propagation of a photon in some direction k̂ = (θ,φ) with regard to the quantization (z) axis, such an expansion
reads [25,26]

Am(k,ε) = 4π
∑
pLM

iL−|p| [ε · Y (p)∗
LM (k̂)

]
αm ap

LM,m(k) , (3)

where Y (p)
LM (k̂) is a vector spherical harmonics [27] and where ap

LM (k) denote the electric (p = 1) and magnetic (p = 0)
multipole components of the electromagnetic field. The explicit form of these components has been discussed elsewhere in the
literature [25,26,28].

By inserting multipole expansion (3) into Eqs. (1) and (2) and performing some angular momentum algebra, we can rewrite
the transition amplitude as [21,25,29]

Mf i(Mf ,Mi) =
∑
kq

√
2k + 1〈kq Jf Mf |JiMi〉 Uk q(αf Jf ; αiJi) , (4)

where the summation over index k runs from |Ji − Jf | to Ji + Jf , q = −k,−k + 1, . . . ,k, and where the function Ukq is
defined by

Uk q(αf Jf ; αiJi) = (4π )2

√
2Ji + 1

∑
L1p1

∑
L2p2

iL1+|p1|−L2−|p2| (−1)Jf +Ji T
L1p1;L2p2
k q (k̂1,ε1 ; k̂2,ε2)

×
∑
Jν

( {
L2 L1 k

Ji Jf Jν

}
S

Jν

L2p2,L1p1
(ω) + (−1)L1+L2+k

{
L2 L1 k

Jf Ji Jν

}
S

Jν

L1p1,L2p2
(−ω)

)
. (5)

In this expression, moreover, SJν denotes a reduced second-order matrix element that is independent of both the spin state of the
photon and the magnetic quantum number of the ion,

S
Jν

L1p1, L2p2
(±ω) =

∑
αν

〈
αf Jf

∥∥ ∑
m αm âp1

L1,m
(k)

∥∥ανJν

〉〈
ανJν

∥∥∑
m αm âp2

L2,m
(k)

∥∥αiJi

〉
Eν − Ei ∓ ω

, (6)
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while Tk q designates an irreducible tensor in order to describe the polarization as well as the angular dependence of the scattering
process. Most generally, such a tensor can be written as [21,25]

T
L1p1;L2p2
k q (k̂1,ε1; k̂2,ε2) = {[

ε1 · Y (p1)
L1

(k̂1)
] ⊗ [

ε∗
2 · Y (p2)

L2
(k̂2)

]}
k q

=
∑
M1M2

〈L1M1 L2M2|kq〉[ε1 · Y (p1)
L1M1

(k̂1)
] [

ε∗
2 · Y (p2)

L2M2
(k̂2)

]
.

(7)

This polarization tensor Tk q has been further evaluated in terms
of the spherical harmonics by Manakov and coworkers [21,25]
for an arbitrary polarization state of the incoming and scattered
photons and, more recently, by us [29] for linearly polarized
light. Here we shall not repeat this discussion and just refer
the reader to these papers for all additional details.

B. Cross sections and polarization parameters

With the decomposition of the second-order transition
amplitude (4) into products of radial and angular factors, we are
now ready to analyze the properties of the Rayleigh scattered
photons. We start from the differential cross section:

dσ (k̂1,ε1; k̂2,ε2)

d

= 1

2Ji + 1

∑
MiMf

|Mf i(Mf ,Mi)|2

=
∑
kq

|Uk q(αf Jf ; αiJi)|2 , (8)

and here we assume that the initial state |αiJi〉 of the ion
is unpolarized and that the magnetic sublevel population of
the final state |αf Jf 〉 remains unobserved in the scattering
process. As seen from this expression and Eqs. (4)–(7),
the differential cross section dσ/d
 depends on both the
propagation directions k̂1,2 and the (two) polarization vectors
ε1,2 of the incident and outgoing photons. Therefore, Eq. (8)
can be utilized in order to explore the angular and polarization
properties of the scattered light for every possible setup and
geometry of the measurements. In the present study, for
instance, we shall consider a setup in which the incident light
is completely linearly polarized. If the wave vectors k1 and
the polarization vectors ε1 of such a light are chosen along
the z and the x axes, as shown in Fig. 1, dσ/d
 simplifies
considerably. Namely, for this choice of the coordinates, the
differential cross section (8) depends, apart from the photon
energy, on the polarization vector ε2 and the (two) angles
k̂2 = (θ,φ) of the outgoing photon:

dσ (k̂1 = ẑ,ε1 = x̂; k̂2,ε2)

d

= dσ (θ,φ,ε2)

d

. (9)

If, in addition, the (Rayleigh) scattered photons are observed
with a polarization-insensitive x-ray detector, the angular
distribution of the emitted radiation is simply obtained by a
summation over the polarization states:

dσ0(θ,φ)

d

=

∑
ε2

dσ (θ,φ,ε2)

d

. (10)

Apart from the angular distribution, the cross section (9) can
also be utilized to derive the linear polarization of the scattered
photons. As usual in atomic and optical physics, the degree and
direction of the linear polarization are characterized by the

two Stokes parameters P1 and P2 [30,31]. While parameter
P1 = (I0 − I90)/(I0 + I90) is determined by the intensities of
light, linearly polarized at an angle χ = 0◦ or χ = 90◦,
parameter P2 is given by a similar ratio but for χ = 45◦
and χ = 135◦, respectively. Here the angle χ is defined with
respect to the scattering plane, as spanned by the directions of
incident and outgoing photons (cf. Fig. 1). Since the intensity
Iχ is proportional to the cross section σ (θ,φ,ε2 = nχ ) for the
emission of a photon with the polarization vector along nχ ,
we obtain

P1(θ,φ) = dσ (θ,φ,n0◦ )/d
 − dσ (θ,φ,n90◦ )/d


dσ0(θ,φ)/d

, (11)

P2(θ,φ) = dσ (θ,φ,n45◦ )/d
 − dσ (θ,φ,n135◦ )/d


dσ0(θ,φ)/d

. (12)

As seen from these expressions, the Stokes parameters
still depend on the direction of scattered light. In Sec. IV,
therefore, we will make use of Eqs. (11) and (12) to investigate
the polarization correlations in the Rayleigh scattering for
different geometries. However, before we present the results
from our relativistic computations below, let us briefly recall
the form of parameters P1 and P2 and the angular distribution
σ0 as obtained within the nonrelativistic electric dipole
approximation.

C. Nonrelativistic formulas

Although the nonrelativistic expressions for the cross
section and polarization parameters of the Rayleigh scat-
tered light have been discussed in the literature (see, e.g.,
Refs. [2,16,21–23]), let us briefly demonstrate how they follow

FIG. 1. (Color online) Geometry of the Rayleigh scattering for
initially linearly polarized light. The wave and polarization vectors
of the incoming photons define the xz plane (reaction plane), while
the emission direction of the outgoing photons is characterized by
the two angles, (θ,φ). The direction of linear polarization of scattered
light is defined with respect to the scattering plane, as spanned by
vectors k1 and k2.
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rather easily from the general formulas (4)–(12). We here focus
on the scattering of photons by the K-shell electrons of low-Z
hydrogenlike ions for which the electron spin can be neglected
in the first instance. With these two assumptions in mind, the
1s → 1s transition of the ions due to the elastic scattering
is described by a function U00 that enters the transition
amplitude (4). Within leading order, i.e., if the absorbed
and emitted photons are both of electric dipole type (E1),
the angular and polarization dependence of U00 and hence
the amplitude Mf i arises solely from the single zero-rank
irreducible tensor [21,29]:

T
L1=1, p1=1; L2=1, p2=1

00 (θ ) = −
√

3

8π
(ε1 · ε2) . (13)

By inserting this expression into Eqs. (4), (5), and (8), we
immediately obtain the well-known nonrelativistic formula for
the cross section:

dσ nr(k̂1,ε1; k̂2,ε2)

d

∝ |(ε1 · ε2)|2 , (14)

which implies the angular distribution (10) of scattered
photons whose polarization state remains unobserved:

dσ nr
0 (θ,φ)

d

∝ sin2 φ + cos2 θ cos2 φ . (15)

Moreover, one can also use Eq. (14) to derive the Stokes
parameters of Rayleigh photons:

P nr
1 (θ,φ) = − sin2 φ + cos2 φ cos2 θ

sin2 φ + cos2 φ cos2 θ
, (16)

P nr
2 (θ,φ) = 2 sin φ cos φ cos θ

sin2 φ + cos2 φ cos2 θ
. (17)

As seen from these expressions, parameter P nr
2 vanishes iden-

tically if the photons are emitted either within or perpendicular
to the xz plane, defined by the wave and polarization vectors of
the incident light. In contrast, the first Stokes parameter takes
the values P nr

1 = 1 and P nr
1 = −1 for φ = 0◦ and φ = 90◦,

which implies that the polarization of the incident light is
transferred completely to the scattered photons. The validity
of this nonrelativistic result will be discussed in Sec. IV, where
we present our fully relativistic computations of the P1 and P2

polarization parameters.

III. COMPUTATIONS

As follows from our discussion above, any numerical
analysis of the scattering cross sections and polarization
parameters requires a computation of the reduced second-order
transition amplitude (6), which involves the summation over
the complete basis of the intermediate states |ανJν〉. Accurate
calculations of these amplitudes are rather demanding, in
particular for many-electron atoms and/or large intermediate
energies Ei ± ω. In the present study, we restrict ourselves to
the case of relativistic hydrogenlike ions, for which the summa-
tion over the intermediate states can be performed consistently
up to a high accuracy. Two independent numerical methods
were employed that provided almost identical results, thus
confirming the high numerical accuracy of our calculations.

The first method uses a finite-basis-set representation of
the spectrum of the Dirac equation, with basis functions
constructed in terms of B splines [32–35]. In this approach, the
Dirac equation is solved in a spherical cavity with impenetrable
walls and a radius R, which is chosen to be so large that it does
not affect the calculational results. The B-spline method yields
very precise results when the absolute value of the intermediate
energy |Ei ± ω| is smaller than the electron rest mass. For
higher energies, however, the convergence of the results (with
respect to the number of the basis functions) drops down.
The reason is that the dominant contribution in this energy
range comes from the Dirac continuum, which is difficult to
accurately describe in any finite-basis-set method.

In the second method, the spectrum of the Dirac equation is
represented by means of the Dirac-Coulomb Green’s function.
Here we employed the analytical representation of such a
function in terms of the regular and irregular Whittaker func-
tions [36–38]. This representation has been used in calcula-
tions by some of us, with the implementation details described
in Ref. [39]. The Green’s-function method is numerically
more complicated than the B-spline approach, but it provides
accurate results for both low and high intermediate energies.

All methods for treating the Dirac-Coulomb spectrum
involve the expansion of the spectrum in partial waves (more
specifically, in the angular momentum Jν and parity Pν of
the intermediate states). It is important that contrary to the
nonrelativistic case, the relativistic second-order transition
amplitude contains contributions from all partial waves. For
small intermediate energies |Ei ± ω| � mc2, the partial-wave
expansion converges very quickly, with the dominant contribu-
tion coming from just the first two to three expansion terms. In
the high-energy region, however, the convergence of the expan-
sion becomes rather slow. In the most difficult case considered
here, which is Rayleigh scattering of ≈1.3 MeV photons by the
hydrogenlike uranium, we had to take into account 20 partial
waves in order to get the convergence under control.

IV. RESULTS AND DISCUSSIONS

A. Angular distributions and asymmetry ratio

Before we consider the Stokes parameters (11) and (12)
for the Rayleigh scattered light, let us start with the angular
distribution of these photons and study how it is affected by the
polarization of the incident radiation. In Fig. 2, for example, we
display the differential cross section (10) for the Rayleigh scat-
tering of x-rays by hydrogenlike Ne9+ (top row), Xe53+ (mid-
dle row), and U91+ (bottom row) ions. Calculations have been
performed for the photon energies �ω = 1.1 Ith (solid line),
5 Ith (dashed line), and 10 Ith (dotted line), with Ith ≡ Ith(Z)
being the one-photon ionization threshold, and for three differ-
ent geometries of the scattering process. The left column, for
example, shows the angular distribution of the scattered pho-
tons if they are emitted within the xz reaction plane, as spanned
by the wave and polarization vectors of the incoming radiation.
For this coplanar geometry, a ∝ cos2 θ angular distribution is
predicted by the nonrelativistic dipole approach (15). However,
as seen from our calculations, such an (electric dipole) emis-
sion pattern holds only for relatively light elements and photon
energies not too far from the threshold energy. At increased
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FIG. 2. (Color online) Angle-differential cross section of Rayleigh scattered linearly polarized x rays for hydrogenlike Ne9+ (top row),
Xe53+ (middle row), and U91+ ions (bottom panel) in their ground state. Relativistic calculations were performed for three energies of the
incident light, �ω = 1.1 Ith (solid line), 5 Ith (dashed line), and 10 Ith (dotted line), where Ith ≡ Ith(Z) refers to the 1s ionization threshold.
Results are shown for different emission angles φ of the scattered photons with regard to the xz reaction plane: φ = 0◦ (left column), 45◦

(central column), and 90◦ (right column); see Fig. 1.

photon energies, dσ0(θ,φ = 0◦)/d
 is no longer symmetric
with regard to θ = 90◦ but is enhanced in the forward direction.
Moreover, the backscattering is significantly suppressed, and
this effect is most clearly seen for the heavy ions. This asym-
metric shift in the angular distribution of scattered photons,
which was discussed before in a number of studies (see, for
example, Refs. [8,12,13]), is caused mainly by the higher
nondipole contributions to the electron-photon interaction
operator (2). This is easily seen from the fact that the (nonrela-
tivistic) behavior (15) is fairly well reproduced by our relativis-
tic calculations if the multipole decomposition (3) of R(k,ε)
is restricted to the electric-dipole term only (p = 1, L = 1).

Strong nondipole effects in the angular distribution of
the elastically scattered light can be observed also for a
noncoplanar “experimental” geometry. For example, in the
scattering plane, perpendicular to the xz one (φ = 90◦), these
effects may again lead to the pronounced forward emission.
Similar to what was described before, the Rayleigh emission
anisotropy becomes most pronounced for the high energies,
while for �ω ≈ Ith and Z � 54 the angular distribution
dσ0(θ,φ = 90◦)/d
 is almost isotropic, as predicted by the
nonrelativistic dipole approximation (15).

A series of experiments has been performed in the past
to measure the angular distribution of scattered photons
within and perpendicular to the xz plane (see Refs. [2,14,16],
and references therein). The experimental data were usually
presented in terms of the asymmetry ratio:

R = dσ0(θ,φ = 0◦)

d


/
dσ0(θ,φ = 90◦)

d

. (18)

Within the nonrelativistic dipole approximation (15) and for
completely polarized incident light, this ratio reads R nr =
cos2 θ , independent of the nuclear charge Z and photon energy.
As seen from Fig. 3, such a simple prediction holds only
for relatively light elements. With the growth of the nuclear
charge Z, the (absolute value of) asymmetry ratio generally
decreases, and its minimum is shifted towards the forward
emission angles. Again, such a departure from Rdip arises, to a
great extent, from the higher-multipole terms in the expansion
of the electron-photon interaction.

B. Polarization correlations

In addition to the angular distribution, the linear polar-
ization of elastically scattered x rays can be observed in
current experiments. As we mentioned already in Sec. II B,
such a polarization is characterized by the Stokes parameters
P1 and P2. These parameters, evaluated for three photon
energies in the range 1.1 Ith � �ω � 10 Ith and for the Xe53+
and U91+ targets, are presented in Figs. 4 and 5. As done
above, calculations have been performed for the completely
polarized (along the x axis) incident light and for different
scattering planes, tilted by an angle φ with respect to the
xz one. In the first column of the figures, for example,
one sees the Stokes parameters of the light scattered within
the plane of the incident polarization, i.e., at φ = 0◦. In
this coplanar case, the nonrelativistic formulas (16) and (17)
predict P nr

1 = 1 and P nr
2 = 0 for all angles except θ = 90◦, for

which dσ nr
0 (θ = 90◦,φ = 0◦)/d
 = 0, and hence, the photon

emission is forbidden. Following general symmetry properties
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FIG. 3. (Color online) Asymmetry ratio (18) for the Rayleigh
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Relativistic calculations were performed for three energies of the
incident light, �ω = 1.1 Ith (solid line), 5 Ith (dashed line), and 10 Ith

(dotted line); see Fig. 2.

of the scattering amplitude Mf i (see Refs. [16,21] for details),
the second parameter P2(θ,φ = 0◦) remains identically zero
also within the rigorous relativistic approach. In contrast, P1 is
strongly affected by relativistic and, mainly, nondipole effects.
As seen from the right column of Figs. 4 and 5, such effects
lead to the decrease of the polarization, which becomes most
pronounced for high photon energies, �ω � 5 Ith, and large an-
gles, θ � 90◦. In this domain and for the uranium U91+ target,
P1 may even become negative, thus implying that the outgoing
photons are polarized perpendicular to the scattering plane. A
similar tilt of the polarization, also known as the “crossover,”
is also known for other radiative atomic processes such
as the photoionization and radiative recombination [40–42].
Observation of such a crossover behavior for the Rayleigh
scattering may be hampered, however, by a small cross section
for a light emission in the backward hemisphere (see Fig. 2).
For the forward angles in the range 30◦ � θ � 50◦, where the
photon yield is high, the first Stokes parameter may be reduced
from P nr

1 = 1 to 0.95 for Xe53+ and to almost 0.8 for U91+
ions if the nondipole effects are taken into account. Such a
depolarization is large enough to be observed with the help of
available solid-state detectors.

Until now, we have explored the Stokes parameters of
x rays scattered within the plane of polarization of incident
light (xz plane). However, as was discussed in Sec. IIC, a
remarkable φ dependence of these parameters is expected in

the nonrelativistic dipole theory. For example, if the x-rays
are emitted within the plane tilted by the angle φ = 45◦,
both P nr

1 and P nr
2 show strong variations as functions of the

polar angle θ . Namely, while for the forward (θ = 0◦) photon
emission P nr

1 = 0 and P nr
2 = 1, they change to P nr

1 = −1
and P nr

2 = 0 for θ = 90◦ and, further, to P nr
1 = 0 and

P nr
2 = −1 for the backward angle [see Eqs. (16) and (17)]. Our

relativistic calculations confirm fairly well such a behavior for
the scattering of (relatively) low-energy photons by light- and
medium-Z ions, as seen, for example, from the middle column
of Fig. 4. However, with the growth of the nuclear charge Z and
the photon energy, the higher-multipole contributions become
increasingly important and lead generally to a depolarization
of emitted radiation. Again, the nondipole effects are most
pronounced for the large angles, θ � 90◦, where the variation
of the Stokes parameters may reach 70%–100%. The strong
depolarization can also be observed in the scattering plane,
orthogonal to the xz one (cf. right columns of Figs. 4 and 5). For
this geometry, the nonrelativistic predictions read P nr

1 (θ,φ =
90◦) = −1 and P nr

2 (θ,φ = 90◦) = 0 at all emission angles.
While keeping P2 unchanged, the relativistic and nondipole
effects reduce the (absolute value) of P1, the effect which is
most pronounced for energies �ω � 5 Ith and θ = 180◦.

Our analysis of the Rayleigh scattering by hydrogenlike
ions has been restricted so far to the case of completely
(linearly) polarized incident light. This can be expected,
for example, for the synchrotron x-rays emitted within the
plane of the storage ring. In practice, however, the degree
of linear polarization of synchrotron radiation is about P =
97%–99%. Based on the formulas derived in Sec. II, one
can investigate how the angular and polarization properties
of elastically scattered photons are influenced by the variation
of P . Such a study is traced back to the superposition of the
cross sections (8):

dσ (θ,φ,ε2; P)

d

= 1 + P

2

dσ (k̂1 = ẑ,ε1 = x̂; k̂2,ε2)

d


+ 1 − P
2

dσ (k̂1 = ẑ,ε1 = ŷ; k̂2,ε2)

d

,

(19)

where we assume, for simplicity, that the (degree of) circular
polarization of incoming x rays is identically zero. By inserting
this expression into Eqs. (10), (11), and (12) one immediately
derives the differential cross section and Stokes parameters
that, in addition to the emission angles (θ,φ), also depend on
the degree P . Calculations made for various values of P and
for Rayleigh scattering of 206.7 keV (�ω = 5 Ith) photons by
the hydrogenlike xenon ion are presented in Fig. 6. Here we
restrict our analysis to the coplanar emission geometry, φ = 0◦,
where the single Stokes parameter P1(θ ; P) is nonzero. As
seen from the right panel of Fig. 6, P1 appears to be very
sensitive to the degree of polarization of incident radiation.
For example, an about 13%–20% reduction of the polarization
of emitted photons can be observed for the forward emission
angles θ � 45◦ if P just changes from 1 to 0.90. These results
stress the importance of the control of polarization properties
of radiation employed in elastic scattering experiments.
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FIG. 4. (Color online) Stokes parameters P1 (top row) and P2 (bottom row) of elastically scattered x rays on hydrogenlike Xe53+ ions in
their ground state. Calculations were performed for the same energies as above, �ω = 1.1 Ith (solid line), 5 Ith (dashed line), and 10 Ith (dotted
line), and for the emission angles φ = 0◦ (left column), 45◦ (middle column), and 90◦ (right column) with regard to the reaction plane.

V. SUMMARY AND OUTLOOK

In summary, second-order perturbation theory and Dirac’s
relativistic equation have been employed to reinvestigate the

Rayleigh scattering of photons by hydrogenlike ions. In this
analysis, attention was given to the angular distribution and
linear polarization of the scattered light. We have shown, in
particular, how all the (angular and polarization) properties
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FIG. 5. (Color online) The same as Fig. 4, but for the Rayleigh scattering by hydrogenlike U91+ ions.
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FIG. 6. (Color online) Stokes parameter P1 of elastically scat-
tered x rays within the (xz) reaction plane for hydrogenlike Xe53+.
Calculations were performed for energy �ω = 5 Ith of the incident
light and for various degrees of its linear polarization: P = 1 (solid
line), 0.95 (dashed line), and 0.9 (dotted line).

of the emitted radiation can be traced back to the differential
(scattering) cross section, which depends on the wave and
polarization vectors of both the incident and outgoing photons.
The general formula for such a cross section was obtained
by including also all higher-order (nondipole) effects in the
electron-photon interaction.

Indeed, the derived expressions for the differential cross
section and polarization parameters can be utilized to predict
the properties of the Rayleigh scattered photons for an arbitrary
polarization of the incident light and state of the target ion. In
the present work, however, we have restricted our computa-
tions to the elastic K-shell scattering of linearly polarized light,
a scenario which can be realized by combining modern ion-trap
facilities with high-energy synchrotron radiation from sources
such as PETRA III in Hamburg. Detailed calculations of
the angular distribution and polarization (Stokes) parameters
of outgoing x rays were performed for hydrogenlike neon,
xenon, and uranium ions and for different photon energies.
From the comparison of our fully relativistic calculations
with the nonrelativistic dipole predictions, we explain and
show explicitly how the properties of the scattered light are
affected by the relativistic and nondipole effects. In particular,

we demonstrate here that, in addition to a strongly enhanced
forward emission, these relativistic effects may result in
a significant depolarization of the outgoing radiation. The
depolarization is largest for the backward scattering but may
also reach about 20% in the forward direction at emission
angles θ � 45◦. As expected, the deviation of our fully
relativistic results from nonrelativistic data becomes most
pronounced if the nuclear charge of the ions as well as
the photon energy is increased. Besides the analysis of the
relativistic and nondipole effects, we have demonstrated also
that the linear polarization of the scattered photons may vary
significantly if the incident light is incompletely polarized.
Therefore, our calculations also clearly reveal the importance
of a good polarization control of the light beams that are to be
employed in future Rayleigh scattering experiments.

Although our present computations were carried out for
hydrogenlike ions only, the theoretical background and expres-
sions derived here can also be employed directly to explore
the elastic photon scattering by neutral atoms. While for
sufficiently hard x rays the major contribution to the scattering
cross sections is expected to arise from the K-shell electrons,
the study of interelectronic-interaction and outer-shell effects
on the Rayleigh scattering would require computation of
second-order amplitudes for complex (many-electron) atoms.
These matrix elements can be evaluated in an accurate and
efficient way by making use, for instance, of B splines
and the multiconfiguration Dirac-Fock method. The first
implementations for such relativistic many-body calculations
of the angular and polarization properties of scattered photons
are currently underway and will be presented in a forthcoming
publication.
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