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Method for evaluating chemical shifts of x-ray emission lines in molecules and solids
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A method of evaluating chemical shifts of x-ray emission lines for period four and heavier elements is
developed. This method is based on the relativistic pseudopotential model and one-center restoration approach
[Int. J. Quantum Chem. 104, 223 (2005)] to recover a proper electronic structure in heavy-atom cores after the
pseudopotential simulation of chemical compounds. The approximations of instantaneous transition and frozen
core are presently applied to derive an expression for chemical shift as a difference between mean values of
certain effective operator. The method allows one to avoid evaluation of small quantities (chemical shifts ∼0.01–1
eV) as differences of very large values (transition energies ∼1–100 keV in various compounds). The results of
our calculations of chemical shifts for the Kα1, Kα2, and L transitions of group-14 metal cations with respect
to neutral atoms are presented. Calculations of Kα1-line chemical shifts for the Pb core transitions in PbO and
PbF2 with respect to those in the Pb atom are also performed and discussed. The accuracy of approximations
used is estimated and the quality of the calculations is analyzed.
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I. INTRODUCTION

One of the most efficient methods of experimental study
of the electronic density distribution on atoms in materials
is analysis of chemical shifts of the x-ray emission spectra
(XES) [1]. This method is based on the fact that the radiation
caused by an electronic transition between atomic core shells
depends on the redistribution of densities of the valence and
outermost core electrons from one compound to another. The
typical order of magnitude of XES energies is 1–100 keV for
one-electron transitions in atoms with Z � 30; such electrons
are designated below as transition core (TC) electrons, empha-
sizing that the electronic states involved in the transitions are
spatially localized in the atomic core regions.

The XES chemical shift is the difference between energies
of the same characteristic x-ray line in different compounds;
to describe the redistribution of electronic densities based on
experimentally observed chemical shifts, which usually range
within ∼0.01–1 eV, one needs to compare the experimental
data with theoretical calculations of different atomic configura-
tions. This comparison allows one to determine the occupation
numbers of d3/2 and d5/2 shells in transition metals and those
of f shells in lanthanides and actinides [2]. These shells are
spatially localized in the atomic core region, while they can
be rather considered as valence from an energetic point of
view. As a result, the partial charges of d and f elements
in different compounds can be studied and some information
about the electronic spin densities of these shells can also be
extracted. However, the occupation numbers of the outermost
valence (s and p) shells cannot be identified unambiguously.
Nevertheless, taking more x-ray transitions into consideration,
a clearer picture about the state (electron configuration) of
a given atom in a compound can be extracted, meaning the
outermost core- and valence-electron densities.
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The well-known theoretical studies of chemical shifts are
usually based on analyzing isolated atoms. A chemical shift
is then represented as a function of occupation numbers of
valence shells and the aim of these studies is reduced to
calculating these occupation numbers to better reproduce the
experimental chemical-shift values.

Below we give a short review of papers devoted to the
chemical-shift theory during the last decade and related to the
subject of our paper.

Raj et al. [3] showed that it is possible to obtain the 3d

electron population in a transition metal in various compounds
by comparing the experimental data of Kβ-to-Kα x-ray
intensity ratios with results of the atomic multiconfiguration
Dirac–Fock computations (see Refs. [4,5] and references
therein). It is shown in Ref. [4] that the experimentally
determined valence electronic structures for all the metals
except V, Cr, and Mn agree reasonably well with the results of
augmented plane-wave band-structure calculations.

In 2004, Batrakov et al. [6] studied the influence of
relativistic effects on the chemical-shift values of XES in
compounds of uranium. The authors considered the chemical
shift as a sum of two values: the first one being the chemical
shift of the centroid energy of the x-ray line (which is
an average of the chemical shifts over the corresponding
multiplet), while the second one is a correction to the
chemical shift due to the spin-orbit interaction. These terms are
represented as functions of occupation numbers (or “charges”)
of valence shells. The experimental data on the chemical shift
of uranium L lines in UF4 and UO3 with respect to UO2 as the
reference are tabulated. Interpreting these data with the help of
atomic Dirac–Fock-based analysis, the changes in occupation
numbers of the 5f and 6d shells of uranium in the compounds
above are determined with respect to those in UO2. On the basis
of these calculations, the authors conclude that the relativistic
correction to the total value of the chemical shift is independent
of the oxidation state of uranium and is determined by an
intra-atomic redistribution of the electron density between the
subshells 5f5/2 and 5f7/2. Thus, it is shown that the relativistic
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component of XES chemical shift allows one to determine the
distribution of f -electrons within subshells.

The form of the K x-ray line of medium and heavy
atoms was studied by Polasik et al. [7] in 2006. Based
on multiconfiguration Dirac–Fock calculations with quantum
electrodynamic corrections, the K line and its satellites on
Pd, Tb, Ta, and Th with and without the natural linewidths
are modeled. The theoretical decomposition of the spectrum
allows one to predict the overlap and the resolution of different
groups of lines. The authors study effects of removing the
electrons from 3p and 3d shells on the structure and shapes of
x-ray spectra. The x-ray study of the K-line form allows one to
perform reliable quantitative analysis of the experimental data.

To attain a qualitative agreement between ab initio com-
putations of small XES chemical shifts in molecules (and,
especially, in materials) and experimental data, the molecular
calculation must be performed with an accuracy that is usually
a challenge in practice to modern computational methods.
The transition energy is ordinarily calculated as a difference
between total energies of two low-lying many-electron states
of the system containing a given atom. In turn, the chemical
shift is a difference between the transition energies in the
studied system and a reference system. Therefore, when using
“direct” computational procedures, the small chemical-shift
value is obtained as a “double difference” of large energy
eigenvalues and its magnitude often lies within the error margin
of the calculation.

The papers discussed below are devoted to evaluating
binding energies and ionization potentials of the core electrons
in different compounds.

Takahata and Chong (2003) [8] analyzed the problem of
computing the binding energies of the atomic core electrons
in light-atom molecules within the framework of density
functional theory (DFT). The authors calculated the binding
energies as differences between the total molecular energies of
the Kohn–Sham solutions for the ground state and states with
a core hole. It is shown that the accuracy of the calculation
strongly depends on the chosen density functional and basis
set. For various combinations of the functionals and basis
sets, 59 binding energies of the core electrons are determined.
For the most accurate studies, the average absolute deviation
from the experimental values is 0.16 eV. Segala and Chong
(2010) [9] calculated the ionization energies of the 1s electron
of sulfur or phosphorus in different compounds using DFT.
The ionization energies were calculated as differences between
total energies of the corresponding states. The authors used
various density functionals in their studies. The deviations
from the experimental data are within 0.5 eV. The authors
also analyzed how the hybridization of orbitals affects the
ionization energy of the 1s state. It should be emphasized,
however, that the quality of evaluated energies within DFT
significantly depends on applied functionals. Moreover, there
are some problems in choosing the appropriate functional
for certain heavy atoms and systems (e.g., see Ref. [10]
and references therein), whereas for systems containing light
atoms, one can usually estimate the errors associated with
the density functional approximations by comparing the DFT
results to those obtained within ab initio approaches.

The method of computing the core electron energies
based on second-order Møller–Plesset perturbation theory was

discussed by Shim with colleagues (2011) [11]. This method
was applied to obtain the binding energies of core electrons of
the C, N, O, and F atoms. The key feature of this method is in
using the mixed basis set which consists of all-electron basis
functions for the considered atom (with ionized core state) and
the reduced basis sets for all the other atoms of the compound
to be applied together with the pseudopotentials for the atoms.
The authors show that the accuracy of developed method is
about 0.16 eV.

Holme et al. (2011) [12] evaluated chemical shifts of the
ionization energies of the 1s electron in carbon for a variety
of organic compounds with errors of no more than 20 meV
for chemical shifts and no more than 30 meV for ionization
potentials. This level of accuracy comes close to that of modern
experiments. Chemical shifts are calculated using various
methods: Hartree–Fock, Møller–Plesset perturbation theory,
coupled clusters, and DFT. The authors show that the errors
for determining the chemical-shift values by DFT are about
three times larger than those from the coupled cluster theory.

In 2010, Lee et al. [13] presented a systematic study of 12
ferric and ferrous Kβ lines in different compounds. The factors
contributing to the shift of the main line of the spectra and its
satellites are studied both experimentally and theoretically.
It was shown that the shift of the main line depends mainly
on the spin state of Fe, while the valence-to-core region of
the spectra (with the electronic transitions from valence shells
to core) have greater sensitivity to changes in the chemical
environment. DFT is used to calculate transition energies
and intensities at the one-electron-approximation level. The
authors estimate the errors of the methods used in the studies
within a few tenths of eV. It is shown that the electric dipole
transitions from the np to 1s shells of iron dominate in the
spectra.

DeBeer and Neese (2010) [14] proposed a method of
evaluating the x-ray absorption spectra based on DFT. This
method requires a preliminary calibration based on experi-
mental data. Contributions to the transition energies due to the
scalar relativistic effects are taken into account. The authors
estimate the errors in calculating transition energies from the
method at the level of magnitude of 0.1 eV. Lancaster et al.
(2011) [15] studied the form of Kβ lines for neutral and singly
ionized ferrocene. The claim that XES provides information
about molecular orbital energies is justified by studying the
valence-to-core regions of these spectra. The DFT calculations
show that the valence-to-core electronic transitions occur due
to admixture of Fe 4p orbitals to the valence orbitals of the
considered compounds.

To summarize, the computational errors for energies of
x-ray emission and absorption spectra, presented in papers
discussed above [8,9,11–15] and listed in Table I, are at
0.1 eV by the order of magnitude. The accuracy of the
methods applied in these studies is generally sufficient for
evaluating the chemical shifts of x-ray lines for light atoms
or low-energy x-ray transitions (typical chemical-shift values
are within 0.5–1 eV). However, in the case of the x-ray
transitions between inner core shells of heavy atoms, the errors
of evaluating the corresponding energies are in general notably
greater than the chemical-shift values for the transitions. This
problem is aggravated by the computational complexity of
the relativistic calculations required for studying heavy-atom
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TABLE I. Typical errors in ab initio calculations of ionization
potentials, core-electron binding energies, and x-ray chemical shifts.

Computational details Average error (eV)

Takahata and Chong (2003), DFT/PW86-PW91a 0.16
Segala and Chong (2010), DFTb 0.2
Lee et al. (2010), DFTc 0.1–0.5
DeBeer and Neese (2010), DFTd 0.1
Shim et al. (2011), MBPTe 0.163
Holme et al. (2011), HF, MBPT, CC, DFTf 0.03(CC)

–0.1(DFT)

aDFT study of core-electron binding energies of C to F elements with
exchange-correlation functional PW86-PW91 [8].
bDFT study of 1s ionization energies for P- and S-containing
molecules with exchange-correlation functional becke00xx(xc) [9].
cDFT study of the ferric and ferrous Kβ line energies with exchange-
correlation functional BP86 [13,15].
dDFT study of sulfur K-edge x-ray absorption transition energies [14]
with a range of contemporary functionals.
eMBPT study of 1s core-electron binding energies for the C, N, O, F
atoms in molecules [11].
fStudy of 1s carbon energies for a variety of organic compounds using
various methods: Hartree–Fock, Møller–Plesset perturbation theory,
coupled clusters, and DFT [12].

systems. We illustrate this in Sec. V taking the inner-core
transitions in lead as an example.

Our paper is devoted to the development of an ab initio
approach to calculate XES chemical shifts in heavy-atom
compounds. The approach is based on precise relativistic
pseudopotential models [16–18] and one-center restoration
techniques [19,20] to simultaneously provide an optimal
combination of computational savings and high accuracy.

II. FEATURES OF CHEMICAL SHIFT THEORY
IN HEAVY-ATOM SYSTEMS

The precise ab initio study of heavy-atom compounds is
a complicated problem from the technical point of view due
to the importance accounting for relativistic and correlation
effects simultaneously. Below we consider the one-electron
K,L,M transitions in bound and free atoms starting from
period-four elements, i.e., the transitions of interest take place
between the core shells. For the electrons occupying these
shells, the relativistic effects are important. Straightforward
relativistic treatment of such properties requires applying
four-component techniques for all electrons in a compound,
and not just for the core region of a given atom where the
electronic transition takes place. The total number of electrons
can be very large in polyatomic systems (solids, clusters,
supramolecular structures, etc.) which are of primary interest
in practice, and this brute force way of evaluating chemical
shifts is extremely consuming. However, the specifics of the
problem under consideration allows one to introduce a number
of sufficiently valid approximations, considered below, and to
avoid the use of an all-electron relativistic treatment when
studying heavy-atom systems. The proposed approximations
allowing one to reduce dramatically the efforts are based
on a natural supposition that one may divide the set of
one-electron states of the system into the following groups

taking into account their role in the considered inner-core
electron transitions:

Ic: The group of the states which are localized in a small
inner-core (Ic) region of a given atom; their wave functions
(described by four-component one-electron spinors) are nearly
the same in different compounds containing this atom. One
can treat these states as “frozen” with an accuracy sufficient
for applications (see Sec. IV); correlation effects for these
states can also be neglected. We will consider below the x-ray
transitions between the shells belonging to this group only.

Oc: The group of states belonging to the outer-core (Oc)
region, which are relaxed only slightly in a given atom
chemically bound in one compound against the other, but
the energy contributions to the chemical shifts from their
relaxation can be of the same order of magnitude as those
from the valence shells (see below). Nevertheless, one may
take account of small differences between the corresponding
wave functions of the atomic Oc states in distinct compounds
by using the lowest orders of perturbation theory.

V: The group of valence states (V). We assign to this
group either all the valence states of the system (rather for
few-atom molecules), or only those valence states (bonding or
antibonding orbitals, etc.) which have notable wave-function
amplitudes in the valence area near a given atom (in polyatomic
compounds).1 The occupation numbers and space distribution
of these states can differ significantly for various compounds.
These states usually form or contribute notably to the chemical
bonds of the considered atom with its neighbors. Some of basis
functions which are most important to take into account for
the correlation of the Oc and V electrons can also be assigned
to this group.

W: We denote the combined group of the states belonging
to either V or Oc subspaces by the symbol W; W = Oc

⋃
V.

We will use this designation when the distinction between the
states from groups V and Oc is not important.

R: All other one-electron states, which are not attached
to one of the former groups, are assigned to group R (rest);
in particular, core states of other atoms in the system belong
to this group. It is shown below that the influence of these
states on the properties of interest are not essential (since their
densities in the inner core of a selected atom are negligible) and
the states R can be excluded from consideration concerning
chemical-shift theory.

1The total number of the valence states in the case of rather
complex systems, solids, etc. can be too large to be treated explicitly
for the chemical shift’s evaluation. After some electronic structure
calculation of a complex system, the valence states are usually
represented as combinations of either localized (Gaussian) basis
functions or plane waves. In these cases all these valence states may
be re-expanded in a spherical region around the given atom on partial
waves. The radius of the sphere must be greater than the radius,
where one-electrons states are smoothed within the pseudopotential
treatment [16], but less than the distance to the nearest atom. For each
valence state in this re-expansion only the terms which significantly
contribute to the chemical shift (see next sections) should be saved.
Thus, the computational complexity is reduced due to minimizing the
basis-set size used in calculating the system.
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One-electron states may be classified in such a way
already after preliminary self-consistent-field (SCF) treatment
of low-lying electronic states of a given atom, thus avoiding
calculation of the whole system of interest. The given classi-
fication allows us to take into account a number of features of
the problem under consideration to construct a robust model
describing chemical shifts. This approach establishes a direct
link between observable chemical shifts and the corresponding
quantum-mechanical expectation values and leads to serious
savings at the computational stage:

(i) Typical times of transitions between the Ic shells are
τ ∼ 10−16 to 10−13 s (for heavy atoms), the times of transitions
of Oc and V electrons are τ ′ ∼ 10−12 to 10−8 s [21]; thus, the V
and Oc shells do not change significantly during the Ic electron
transitions. In the present study, the many-electron effects such
an Auger transitions of Ic electrons or radiative transitions of V
and Oc electrons are not considered. Effects of the relaxation
of the system during the fast Ic transition are usually small
and are not taken into account here.2 These constraints allow
us to compute transition energies as differences of ionization
potentials from the final and initial shells. Note, however, that
the given constraints are used rather for the manifestation
of our model and are not mandatory in general when some
electron relaxation effects are taken into account.

(ii) One may very accurately take into account the rela-
tivistic effects for valence and outer-core electrons in heavy-
atom compounds by using the pseudopotential approach [18].
Contributions to the energy of the considered Ic transition
in a given atom from interaction of TC electrons with those
occupying the group-R states and nuclei of other atoms largely
compensate each other; therefore, they can be neglected for the
considered problem with good accuracy (see Appendix B for
details).

III. THEORY OF CHEMICAL SHIFTS FOR X-RAY
EMISSION SPECTRA

Denote the many-electron wave functions of initial and final
states, which are obtained after electron ejection from some
Ic shell and after transition of the other electron to the vacant
Ic state (accompanied by x-ray emission), as |�i〉 and |�f 〉,
correspondingly. Since we can usually neglect the correlation
effects for the Ic electrons, these shells are well described
within the Dirac–Fock model.

We define a parent state of the system under consideration
with completely occupied Ic shells, in which the system was
before electron ejection, as the ground eigenstate |�0〉 of some
appropriate Hamiltonian H0 describing our system:

H0|�0〉 = E0|�0〉. (1)

In the sudden-transition approximation, the many-particle
states |�i〉 and |�f 〉 can be obtained from the parent state

2It can be shown that the latter corresponds to the approximation
in which all the transitions between the states belonging to some
fixed initial and final shells, I and F , have equal probabilities and
the energies differ from each other by the values which are much
less than the linewidth. For the case of interest typical values of these
linewidths are � ∼ 2 to 60 eV.

by removing an electron occupying the one-particle |i〉 and
|f 〉 states belonging to the Ic shells I and F , respectively,
whereas all the other one-particle states of the system are
considered unchanged. Below we use the frozen-inner-core
approximation, i.e., neglect the effects of correlation and
relaxation of the inner-core one-electron states (see next
section for details). Let us write the Hamiltonian H0 in the
second-quantization representation:

H0 =
∑
pq

hpqa
+
p aq + 1

2

∑
pqrs

Vpqrsa
+
p a+

q aras, (2)

h = T + V A +
∑
A′ �=A

V A′
. (3)

In this expression the one-electron operator h includes the
kinetic energy of electrons, their interaction with the nucleus
of atom A in the core of which the transition occurs, and the
interaction with nuclei of the other atoms A′ in the system.
The two-electron operator V = 1/r12 takes into account the
Coulomb interaction between electrons (in general, one can
easily include the relativistic interactions between electrons as
well, see Ref. [17]).

In the sudden-transition approximation, the final and initial
states |�f 〉 and |�i〉 can be written as

|�f 〉 = af |�0〉, |�i〉 = ai |�0〉. (4)

In the framework of the frozen-core approximation, the
energies of these states Ex(x = f,i) are

Ex = E0 − hxx − 〈�0|
∑
rs

(Vxxrs − Vxrxs)a
+
r as |�0〉, (5)

where the summation indices r,s and the indices of the
transition core states do not overlap.

Using the one-electron density matrix ρrs = 〈�0|a+
r as |�0〉,

write Ex as

Ex = E0 − hxx − Tr[Fxxρ], (6)

where Fab
xx = Vxxab − Vxaxb.

Let us use the projectors on the introduced above subspaces
W, R, and Ic: PW, PR, and PIc. Acting on ρ by the projectors
PIc + PW + PR = 1 from the left- and right-hand sides we
obtain

ρ = ρIc + ρW + ρR + ρWR + ρRW,

ρIc = PIcρPIc,

ρW = PWρPW, (7)

ρR = PRρPR,

ρWR = PWρPR, ρRW = PRρPW.

In the above expression the off-diagonal terms PIcρPW,
PIcρPR, and PWρPR, as well as their Hermitian conjugates,
vanish because of the frozen-core approximation used.

Substituting this expression for the density matrix into (6),
we obtain

Ex = E0 − EIc
x − εx, (8)
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where

EIc
x = Txx + V A

xx + Tr[FxxρIc],

εx =
∑
A′ �=A

V A′
xx + Tr[Fxx(ρW + ρRW + ρWR + ρR)].

The one-electron state |x〉 and corresponding energy εx

are eigenvector and eigenvalue of some effective one-electron
operator heff defined on the subspace X of one-electron Ic
states. The matrix elements of this operator are

heff
pq =

∑
A′

V A′
pq + Tr[Fpq(ρW + ρRW + ρWR + ρR)],

(9)
p,q ∈ X.

Let us mark out a spherical area around the atom where
|f 〉 and |i〉 are localized. The radius of this area, Rc, is such
that the amplitudes of the Ic states are negligible outside the
area, whereas the amplitudes of the R states are negligible
inside. Denote a submatrix ρW of the density matrix which
corresponds to the electron distribution inside the introduced
spherical area, ρW(r,r′) : |r|,|r′| < Rc (see Appendix A), as
D. Then we can rewrite expression (9) as

heff
pq = Tr[FpqD] + V ext

pq . (10)

The operator V ext describes the interaction of the TC electron
with atomic nuclei and electrons outside the sphere with radius
Rc. For r < Rc we can represent this operator as local (see
Appendix A):

V ext ≈
∑
km

UkmrkYkm(�), for r < Rc. (11)

Let us consider transition energies 	Ef i and 	Ef ′i ′ , where
states |f 〉, |f ′〉 belong to the F shell and |i〉, |i ′〉 belong to the
I shell. In the case of interest these energies differ much less
than the natural linewidths.3

Thus the experimentally observed transition energy is
practically equal to the average over all the transition energies
between the states from shells F and I :

	EFI = 1

N

∑
f ∈F,i∈I

	Ef iζf i, (12)

where N = ∑
f ∈F,i∈I ζf i , and ζf i are the relative probabilities

of transitions between one-electron states |f 〉 and |i〉.
Let us use the average relativistic configuration approx-

imation and consider the probabilities of all the transitions
from F to I to be equal to each other. Then ζf i = 1,

3Energies εx and εx′ (corresponding to states |x〉 and |x ′〉 from
the same shell) do not coincide with each other in general because
of spherically asymmetric contributions from the interaction of the
TC electron with the valence electrons and the other atoms of the
system. Typical values of their differences are less than 10 meV
(see Appendix B). This is much less than the Ic-transition linewidths
(typical values for which are 2 eV by the order of magnitude for
sufficiently heavy atoms).

N = (2jF + 1)(2jI + 1), and the average transition energy is4

	EFI ≈ EIc
F − EIc

I + 1

N
(Tr[〈f |heff|f ′〉]

− Tr[〈i|heff|i ′〉]). (13)

The expression above differs from the exact average energy
due to the inequality of the probabilities of the various
transitions from F to I . The value of this difference is mainly
determined by spherically asymmetric contributions in heff .

Within the framework of the relativistic average-
configuration approximation, the expression for 	EFI can
be written as

	EFI = EIc
F − EIc

I + Tr[χFID] + V ext
F − V ext

I , (14)

where χFI and V ext
X are

χFI
rs = 1

2jF + 1

∑
x∈F

F rs
xx − 1

2jI + 1

∑
x∈I

F rs
xx,

V ext
X = 1

2jX + 1

∑
x∈X

V ext
xx , X = I,F.

Traces of the matrices 〈f |heff|f ′〉 and 〈i|heff|i ′〉 are indepen-
dent for the basis sets used. Let us compute them in the basis of
functions with fixed values of the magnetic quantum number.
We obtain5

V ext
X = U00. (15)

The spherical part U00 depends only on the density of valence
electrons in the region r > Rc, and is the same for shells I and
F . Thus, the last two terms in expression (14) vanish. Matrix
elements of the χFI operator are (see Appendix C)

χFI
rs = δjr ,js

δmr ,ms
[J rs(F ) − J rs(I )

−Krs(F ) + Krs(I )],

Jrs(X) = 〈rx||V0||sx〉
√

2jr + 1

2jx + 1
,

Krs(X) =
∑

k

〈rx||Vk||xs〉, X = F,I. (16)

4The values of EIc
x , x = i, f are contributions to the transition

energy from the kinetic energy of the TC electron and from the
interaction of the TC electron with other (frozen) inner-core electrons
and with the nucleus of the considered atom. Due to the spherical-
symmetry approximation used for these states, EIc

x = EIc
x′ = EIc

X .
5With the help of the Wigner-Eckart theorem (see Ref. [22]), one

can write V ext
xx , x ∈ I,F as

V ext
X = ∑

k〈x||V ext
k ||x〉

(
jx k jx

−mx 0 mx

)
,

where the reduced matrix element 〈x||V ext
k ||x〉 is independent of mx .

It follows from the identity∑
m

(−1)j−m

(
j k j

−m 0 m

)
= δk0

√
2j + 1

that, after averaging this expression over all projection values mx ,
only the term with k = 0 survives.
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TABLE II. Chemical shifts of Kα1 and Kα2 lines for the doubly charged cations of group-14 elements, Pb2+, Sn2+, Ge2+, Si2+, and
corresponding quadruply charged cations with respect to the neutral atoms.c

A2+ with respect to A

χKα1 (meV)a χ fr
Kα1

(meV)b δKα1 (%) χKα2 (meV)a χ fr
Kα2

(meV)b δKα2 (%)

Pb 127 130 2.3 150 150 0.3
Sn 116 123 5.1 170 166 2.3
Ge 214 228 6.5 228 214 6.1
Si 671 981 46 981 671 31

A4+ with respect to A

χKα1 (meV)a χ fr
Kα1

(meV)b δKα1 (%) χKα2 (meV)a χ fr
Kα2

(meV)b δKα2 (%)

Pb 347 359 3.4 362 355 1.9
Sn 379 400 5.5 441 423 4.1
Ge 741 789 6.4 741 789 6.4
Si 1990 3538 77.2 3538 1990 77.2

aThe results of all-electron calculations of the chemical shifts.
bThe results of the chemical shift calculations with the frozen inner core.
cThe relative errors arising from neglecting the inner-core relaxation are δI = |(χ fr

I − χI )/χI | . In the frozen-core calculations, the inner cores
of Pb and Sn cations were taken from evaluation of the relativistic average configuration for the Pb and Sn atoms and from the nonrelativistic
average configurations for the Ge and Si atoms. In these studies, the inner-core shells are 1s to 4f for Pb, 1s to 3d for Sn, 1s to 2p for Ge,
and 1s to 2p for Si.

The final expression for the transition energy in the
relativistic average-configuration approximation is

	EFI = EIc
F − EIc

I + Tr [χFID] . (17)

Terms EIc
F and EIc

I do not depend by definition on the
environment of the given atom and, therefore, they do not
contribute to the chemical-shift value. As a result, the chemical
shift of the transition core energy in a compound M with
respect to that in the reference neutral atom A, χFI (M,A), can
be written as

χFI (M,A) = 	EFI (M) − 	EFI (A)

= Tr[χFI [D(M)−D(A)]]. (18)

Thus, the chemical shift depends only on the change of
the part of density matrix localized (on both variables) in the
region r < Rc, where the core transition takes place and does
not depend directly on any changes of the electronic densities
out of this sphere.

IV. CALCULATION OF CHEMICAL SHIFTS IN ISOLATED
ATOMS AND IONS

The chemical shifts of Kα1 and Kα2 transition energies
in cations of group-14 metals Pb, Sn, Ge, and Si are studied
with respect to the reference transition energies taken from
calculations of the relativistic average ground-state configura-
tions of given neutral atoms. Comparison of chemical shifts
in calculations with frozen and relaxed Ic shells allows us (1)
to estimate the computational errors, which arise as a result
of neglecting the relaxation of Ic states of a given atom in
its various compounds, and (2) to optimally divide the core
electrons into Ic and Oc groups. The evaluation of chemical
shifts is performed in few steps:

(1) Computation of transition energies using the Koop-
mans theorem.

(2) Partitioning the electrons into groups (see Sec. II).

(3) Calculation of ionic states obtained by removing the
electrons from the valence shells. In this calculation the
inner core states are treated as frozen after the reference-state
computation (and marked as “frozen” below in the text and
tables).

(4) Computation of the cations with relaxed inner-core
shells.

(5) Evaluation of a chemical shift as the difference of the
corresponding transition energies.

In our calculations, the Ic groups were chosen to include
all the states belonging to 1s–4f shells of Pb, 1s–3d shells
of Sn, and 1s–2p shells of Ge and Si. The chemical-shift
values for the doubly and quadruply charged cations are
listed in Table II. One can see from these data that the
inner-core relaxation contributes only several percent of the
absolute chemical shift values for the period four and heavier
elements. We have also calculated the chemical shifts of
L-transition energies in Pb2+ compared with those in Pb (see
Table III). The L-line energies are of much smaller magnitude
than the Kα1 and Kα2 energies. Moreover, they are greatly
influenced by relaxation of some core shells, which have the
principal quantum numbers n = nv − 2, where nv stands for
the principal quantum number of the outermost valence shells.
Such shells are usually considered as the Ic shells and can be

TABLE III. The chemical-shift values of XES L lines of Pb2+ with
respect to the neutral Pb atom. The Nfr = 0 column corresponds to
computations with relaxation of all electronic shells; [Kr], [Kr]4d10,
and [Kr]4d104f 14 denote computations with the frozen shells from
1s to 4p, 4d , and 4f , correspondingly.

Frozen shells: Nfr = 0 [Kr] [Kr]4d10 [Kr]4d104f 14

χLβ1 (meV) 10 11 18 21
χLα2 (meV) 30 30 37 39
χLα1 (meV) 35 34 42 44
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frozen when studying chemical and spectroscopic properties.
However, in accordance with the partitioning rules given in
Sec. II these shells should be assigned to the Oc group, at least
for evaluating the given chemical shifts.

The results presented in Table III demonstrate that one
should account for relaxation of the 4d and 4f shells of Pb
together with relaxation of the outer-more shells in order to
evaluate the chemical shifts for L XES lines in Pb with an
accuracy within a few percent. Calculations of neutral Pb and
Pb2+ are performed in two ways: First, using the all-electron
four-component atomic code HFD [23,24] that utilizes spherical
symmetry and, second, employing the molecular spin-orbit
direct configuration interaction code SODCI [25] together with
the relativistic pseudopotential and core-restoration codes
MOLGEP and CORE. The MOLGEP-CORE codes implement the
two-step approach [18,20] to study the properties of heavy-
atom compounds, described by operators heavily concentrated
in atomic cores, with moderate efforts. Comparing the results
of different chemical-shift computations, one can estimate
errors of the pseudopotential and core-restoration method
advanced in the paper to include the chemical-shift evaluation.

Explicit treatment of the outer-core electrons in chemical-
shift evaluation by the molecular code corresponds to a relaxed
outer core in the case of using the atomic code. The results
with and without explicit treatment of the outer-core electrons
are given in Table IV. The computation of the configuration
[Hg]6p2

1/2 for the neutral Pb ground state is used (with atomic
code), whereas the ground-state configuration of Hg is used
for the Pb2+ case. The jj -coupling scheme is exploited in the
Dirac–Fock calculations. The outer core 5s25p65d10 is treated
as frozen after the calculation with nonrelativistic average
configuration 6s26p2 for the valence electrons.

For a given state � of an isolated atom or its ion one
can evaluate a mean value of the spin-angular projector Plj =∑

m |ljm〉〈ljm|, Nlj [�] = 〈�|Plj |�〉, that can be interpreted
as the average number of electrons occupying all the one-
electron states with some fixed quantum numbers l and j .

The Nlj values are not necessarily integers in atomic corre-
lation calculations, particularly employing the 
-S coupling
scheme. Having been obtained in SODCI calculations for Pb
and Pb2+, the Nlj values are given in Table V. The Nlj values
obtained in correlation calculations of the ground state of a
neutral Pb atom differ by less than 10% by order of magnitude
from integer numbers (corresponding to the one-configuration

TABLE IV. The chemical-shift values of the Pb2+ Kα1and Kα2

lines with respect to the neutral Pb atom.

Line χA (meV)a χM (meV)b χA, fr (meV)c χM, fr (meV)d

Kα1 130 88 145 145
Kα2 150 33 165 156

aChemical shift calculated with the atomic code HFD [23]; the outer
core is unfrozen.
bChemical shift calculated with the atomic code HFD [23]; the outer
core is frozen.
cChemical shift calculated with the molecular code MOLGEP-SODCI

[25–27]; the outer core is unfrozen.
dChemical shift calculated with the molecular code MOLGEP-SODCI

[25–27]; the outer core is frozen.

TABLE V. The occupation numbers Nlj of one-electron p1/2 and
p3/2 states of the neutral Pb atom and Pb2+ cation in the ground
states evaluated as the mean values of the spin-angular projectors
Plj = ∑

m |ljm〉〈ljm| for 22-electron MOLGEP-SODCI calculations
with frozen 5p from ionic Pb ground state (“OC-frozen”) and relaxed
5p (“OC-relaxed”).

Pb Pb2+

Np1/2 Np3/2 Np1/2 Np3/2

OC-frozena 1.8 0.2 0 0
OC-relaxed 3.9 4.1 2.0 4.0

aThe occupation numbers of 5p1/2 and 5p3/2, 2 and 4, correspond-
ingly, are added for comparison with the OC-relaxed case.

jj -coupling case) both for the frozen-outer-core treatment and
for relaxed and correlated outer-core cases. The chemical shifts
for the isolated Pb2+ cation with respect to the neutral atom
are approximately proportional to the difference between the
corresponding values of Np1/2 ; thus, we can conclude that the
relative difference between chemical shifts obtained in various
calculations is approximately equal to the difference between
their Np1/2 values:

δχFI

χFI

≈
∣∣∣∣δNp1/2

Np1/2

∣∣∣∣ .
The χFI quantity is a chemical shift obtained in the correlation
calculation, the δχFI quantity is the difference between
chemical shifts obtained in correlation and one-configuration
calculations, and the δNp1/2 quantity is the difference between
corresponding values of Np1/2 .

It is clear from the results for chemical shifts listed in
Table IV that the difference between their values obtained in
jj and 
-S couplings is much greater than could be expected
from the Nlj values given in Table V in the relaxed-core case
while it is consistent with the case of the frozen-outer-core
calculation. This is due to interaction of the TC electrons
with the outer-core electrons; the interaction gives a much
greater contribution—more than one order of magnitude in
our case—to the transition energy as compared with the energy
of interaction of the TC electrons with valence electrons. In
the case of the one-configuration atomic calculation, one can
represent the density matrix as a direct sum of the valence
ρV and outer-core ρOC terms: D = ρV + ρOC. In particular,
the contributions from these terms to the Kα1 and Kα2

transition energies in the neutral and double-charged lead
atom are listed in Table VI. One can see from these results
that the contribution from the interaction of TC electrons

TABLE VI. Contributions to the energies of Kα1 and Kα2

transitions arising from interaction of the TC electron with the valence
(6s,6p) and outer-core (5s,5p,5d) electrons.

Pb Pb2+

Kα1 εOC (eV) 13.788 13.816
εV (eV) 0.543 0.387

Kα2 εOC (eV) 11.538 11.561
εV (eV) 0.501 0.327
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with outer-core electrons is almost independent of the atomic
partial charge as opposed to that with the valence electrons.
The chemical-shift value (computed as a difference of the
mean values of a given one-electron operator in the cases of
the neutral atom and its cation) is the residual between two
very close values, each of them is determined with an error
of 10% by the order of magnitude in calculations given in
Table VI. Taking into account the outer-core contributions
to the XES chemical shifts on a high and identical level
of accuracy (quality) in calculations of different heavy-atom
systems is a challenging problem for modern relativistic
quantum chemistry because of limited sizes of the used basis
sets (leading to the basis-set-superposition error problems;
see Ref. [28] and references therein) and limited levels of
correlation treatment in practical calculations of polyatomic
systems which are of mainstream interest. The discussed
outer-core contributions are rather large and difficult to control
by absolute values in different types of chemical bonding
of a given atom with others. Such kinds of calculation of
chemical shifts between molecules or/and periodic structures
may be numerically unstable due to this fact because of
the inevitable use of the approximate computational methods
for many-electron systems. To minimize the uncertainty, the
contribution from the outer-core relaxation must be taken into
account by some way directly (e.g., by using the perturbation
technique for outer core, etc.) and not as a small difference
between two big values.

V. CHEMICAL SHIFTS OF Pb Kα1 LINE IN PbO
AND PbF2 MOLECULES

We have studied the chemical shifts of Kα1 transition
energies on Pb in the PbO and PbF2 molecules with respect
to the neutral lead atom (the experimental value of neutral
Pb Kα1 line energy is 74.970 11 keV [30]). The oxidation
number of Pb in these molecules is +2, therefore, their
chemical shifts are compared to those of Pb2+ and presented
in Table VII. The results of calculations differ strongly for
the molecules compared to Pb2+ since the chemical bonds in
both molecules are not purely ionic but have notable covalent
admixtures, particularly in the oxide. Partial Mulliken and
electronegativity-based charges of lead in PbO are +0.9 and
+0.86 [31], respectively. However, the change of the total
charge of p electrons is much less in the area significant for
the Kα1 line chemical-shift values. The considered area is
limited by the sphere with radius Rc = 0.5 a.u. and Rc is
selected in such a way that the 2p shell of Pb has negligible
density outside the sphere.

To analyze particular contributions to the chemical shift
in compounds of Pb compared with atomic lead given in
Table VII, we introduce the quantities q<

lj which describe
the partial-wave charges (corresponding to the total electronic
densities for the states with fixed l and j ) concentrated in
the spherical region with radius Rc = 0.5 a.u., in which the
one-center restoration of electronic structure in the Pb core
is performed. These values are calculated by the following
expression for the compound M:

q<
lj (M) = Tr[D(M)Plj ], (19)

TABLE VII. Kα1 chemical shifts and partial wave charge values
in lead compounds.a

100q<
s 100q<

p1/2
100q<

p3/2
χKα1 (meV)

Pb 1.814 0.903 0.1
Pb2+ 2.162 0 0 145
PbOa 1.767 0.432 0.456 40
PbOb 1.789 0.381 0.496 41
PbOc 1.789 0.455 0.503 23
PbO (expt. value)d 54 ± 8
PbF2 1.950 0.153 0.254 85

aq<
lj is the part of the total charge of all the valence electron shells with

given orbital and total-angular-momentum (“partial waves”) numbers
within a sphere of radius Rc = 0.5 a.u. and centered on the lead
nucleus; χKα1 is the chemical shift of Kα1 line with respect to the
neutral Pb atom. Calculations with the oxygen basis set taken from
Ref. [29].
bCalculations with the extended oxygen basis set.
cCalculations with neglecting the oxygen orbital contributions at the
core-restoration stage.
dThe experimental chemical-shift value of the Kα1 lead XES lines in
the PbO crystal with respect to the crystalline metallic lead (see the
discussion in text).

where D(M) is the valence and outer-core electron density
matrix restricted to the spherical region (see Appendix A), and
Plj is the spin-angular projector Plj = ∑j

m=−j |ljm〉〈ljm| on
the states with given quantum numbers l and j .

One can see from Table VII that significant contribution to
the chemical shift, at the level of 10% by order of magnitude,
is coming from the interaction of TC electrons with electrons
occupying the perturbed 6s states. The fraction of the latter
in the atomic core is increased due to disappearance of the
electronegative potential from 6p electrons in this region in the
case of Pb2+, while the perturbation of 6s states is relatively
small in the PbO case due to a high covalent share in the Pb–O
bond and influence of the valence electrons of oxygen.

To estimate the chemical-shift contribution from the atomic
orbitals of oxygen, we have also presented the results of
evaluation of chemical shifts without atomic oxygen orbitals
taken into account at the core-restoration stage. The molecular
calculations are performed within the GRECP–configuration-
interaction method [18] by using the MOLGEP-SODCI codes
[25–27].

The study is performed with the frozen outer core of Pb
including the 5s25p2

1/25p4
3/25d4

3/25d6
5/2 shells. The interatomic

distance is 4.2 a.u. according to the experimental datum for
the PbO molecule given in Ref. [32]. The distance between Pb
and F atoms in PbF2 is taken to be 4.2 a.u. [32]; however, we
have considered the linear geometry of PbF2 here assuming
the comparison with further chemical-shift measurements in
cubic crystalline PbF2.

The experimental chemical shift of the Pb Kα1 line in
the crystalline PbO with respect to that of metallic lead is
54 ± 8 meV [33]. It should be emphasized that one can
compare atomic and molecular Pb and PbO computations
with the experimental solid-state data only qualitatively, since
the difference in the electronic structures of the atomic and
metallic lead as well as of crystalline and molecular PbO is
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significant. Nevertheless, we can conclude that the agreement
between experimental data and our results is satisfactory; both
the experimental and theoretical results differ notably from the
chemical-shift values based on the ionic model and Mulliken
occupancy analysis that gives the Pb partial charges ∼0.9 in
PbO and ∼1.5 for PbF2.

VI. CONCLUSIONS

A method of evaluating the XES-line chemical shift is
developed. This method can be used to study the electronic
transitions in cores of elements starting from period four of
the Periodic Table and below. An analytic expression for the
chemical shift as a difference of mean values of a proposed
effective one-electron operator being calculated in two systems
containing a given element is obtained. It is shown that the
influence of changes in the electronic densities outside the
atomic core, where the TC electrons are localized, on the XES
chemical-shift values is mainly negligible.

The expression for the chemical-shift value is obtained
in the relativistic configuration-average approximation; the
sudden-transition and frozen-inner-core approximations are
also employed. Applying the sudden-transition model, one
neglects the relaxation of the valence and outer-core electron
densities during the transition. This approximation is good
enough for the issues considered, because typical transition
times for inner-core electron are 10−16–10−13 s, whereas the
transition (relaxation) times for the outer-core and valence
electrons are τ ′ ∼ 10−12–10−8 s [21]. Using the frozen-core
approximation for the inner-core one-electron states of a given
atom we assume that their changing in the atom is negligible
when its chemical environment varies from one compound
to the other. The relaxation effects due to the x-ray-induced
ejection of a core electron preceding the considered core
transition is also neglected. Note that using the one-electron
approximation for the inner-core electrons does not assume the
same level of treatment for outer-core and valence electrons
which can be explicitly correlated. The latter is particularly
important to optimize the computational efforts for chemical-
shift evaluation in the systems with complicated valence
structure in contrast to other known theoretical approaches
(mainly based on DFT).

Corrections to the proposed chemical-shift expression
restricted by the relativistic average-configuration approxima-
tion are analyzed. They are shown to be mostly a few percent
compared to the average chemical-shift values.

Atomic calculations of chemical shifts of Kα1 and Kα2

lines for the group-14 transition metal cations compared to
the neutral atoms are performed with the HFD code [23,24].
There are two variations used in our calculations, either with
or without taking account of the inner core relaxation. As one
can see from the results, neglecting the inner-core relaxation
leads to a few percent increase of the chemical-shift errors for
group-14 elements starting from Ge. However, the chemical-
shift error for Si is 78% because the partitioning of the core
shells onto the inner- and outer-core subspaces is meaningless
here.

Study of L XES chemical shifts on the lead cations with
respect to the neutral Pb atom is performed. It is shown that
one needs to account for relaxation of the 4d and 4f core

shells to attain the level of accuracy for chemical-shift values
within 10%.

The GRECP–configuration-interaction study of the Kα1

line chemical shifts for Pb2+ with respect to the neutral Pb
atom as reference is performed with the SODCI code. The errors
due to the electronic structure restoration approximation used
for the valence and outer-core orbitals in atomic cores are
estimated.

The GRECP–configuration-interaction calculations of the
Kα1-line chemical shifts for Pb in PbO and PbF2 with respect
to the neutral atom are also performed. The obtained chemical
shifts for PbO are in a reasonable agreement with available
experimental data for the crystalline PbO.
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APPENDIX A: PARTITIONING ONE-ELECTRON DENSITY
SUBMATRICES INTO “OUTER” AND “INNER” PARTS;

EXTERNAL ELECTRIC FIELD IN ATOMIC CORE

Let us define the one-electron W-group density submatrices
D, ρ<>

W , ρ><
W , and ρ>>

W in coordinate representation using step
functions θ<(	r ) = θ (Rc−|	r|) and θ>(	r ) = 1−θ<(	r ):

ρW(	r,	r ′) = D(	r,	r ′)+ρ<>
W (	r,	r ′)+ρ><

W (	r,	r ′)+ρ>>
W (	r,	r ′),

D(	r,	r ′) ≡ ρ<<
W (	r,	r ′) = θ<(	r )ρW(	r,	r ′)θ<(	r ′),

ρ<>
W (	r,	r ′) = θ<(	r )ρW(	r,	r ′)θ>(	r ′), (A1)

ρ><
W (	r,	r ′) = θ>(	r )ρW(	r,	r ′)θ<(	r ′),

ρ>>
W (	r,	r ′) = θ>(	r )ρW(	r,	r ′)θ>(	r ′).

Consider the off-diagonal submatrices ρWR = PWρPR and
ρRW = PRρPW defined in Eq. (7) in coordinate representation.
For ρWR(	r,	r ′), the radius vector 	r corresponds to states of
group W and 	r ′ to states of group R; for ρRW(	r,	r ′), 	r
corresponds to R, and 	r ′ to W. We define the submatrices
ρ<

WR and ρ>
WR such that ρWR = ρ>

WR + ρ<
WR analogously to

Eq. (A1):

ρ<
WR(	r,	r ′) ≡ ρ<>

WR = θ<(	r )ρWR(	r,	r ′),

ρ>
WR(	r,	r ′) ≡ ρ>>

WR = θ>(	r )ρWR(	r,	r ′).

Similarly, we also define ρ<
RW and ρ>

RW.
Furthermore, substitute ρWR = ρ<

WR+ρ>
WR and ρRW =

ρ<
RW+ρ>

RW into Eq. (9) and consider the traces of product
of operators Fxx with these submatrices in coordinate rep-
resentation. Taking into account that the one-electron states
of group R have negligible densities in the Ic region of atom
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A (see Sec. III), we can write

Tr[Fxxρ
<
WR] =

∫
|	r|<Rc

d	r
∫

| 	r ′|>Rc

d 	r ′Fxx(	r ′,	r)ρWR(	r,	r ′),

(A2)

where Fxx(	r,	r ′) is defined as a sum of Coulomb and exchange
terms, correspondingly:

Fxx(	r,	r ′) = δ(	r−	r ′)
∫

d 	r1[V ( 	r1−	r ′)|ϕx( 	r1)|2]

−ϕ∗
x (	r )ϕx(	r ′)V (	r−	r ′).

One can easily realize that expression (A2) vanishes because
the integration domains over 	r and 	r ′ are not overlapping and
the TC state ϕx(	r ) amplitude is vanishing outside the sphere
with radius Rc. Analogously, the expressions for chemical shift
with the submatrices ρ<

RW , ρ<>
W , and ρ><

W will also be zero.
Thus, only the following parts of the total density matrix

can contribute to the chemical-shift value: ρR, ρ>
WR, ρ>

RWρ>>
W ,

ρIc, and D.
Let us represent the contribution to TC energy arising from

the interaction of the TC electron with nuclei of other atoms
and the electronic components corresponding to ρR, ρ>

WR, ρ>
RW,

and ρ>>
W submatrices with the domains localized outside the

sphere: |	r|,| 	r ′| > Rc as action of a “crystal” (or “molecular”)
external-field operator V ext:

V ext
xx =

∑
A′

V A′
xx

+
∑
rs

(
ρR+ρ>

WR+ρ>
RW + ρ>>

W

)
rs

(Vxxrs − Vxrxs),

x = i,f. (A3)

With appropriate choice of Rc, when the tails of the core states
in the region with |	r| > Rc become small enough, the exchange
terms Vxrxs are negligible and V ext inside the sphere becomes
a local operator that can be written as a multipole expansion
on the nucleus A:

V ext(	r) ≈
∑
km

UkmrkYkm(�), r < Rc. (A4)

APPENDIX B: FIRST-ORDER PERTURBATION THEORY
ANALYSIS OF ERRORS ARISING FROM ASSUMPTION OF

EQUIPROBABILITY OF TC ELECTRON TRANSITIONS

Evaluating a chemical shift for core-to-core transition
energies, we average them over all the projections of total
angular momenta both for the initial and final one-electron
states. As is shown in Sec. III, the chemical-shift contributions
arising from interactions of TC electrons with electronic
densities localized outside the sphere with radius Rc (centered
on the nucleus of a given atom A or all the other atoms in
the considered system) vanish in this case. Such an averaging
corresponds to a situation in which all the transitions between
I and F shells have equal probabilities. We can estimate
the errors arising from this approximation when considering
only the electric-dipole transitions for simplicity. Then, after
averaging the initial and final states over all the total-angular-
momentum projections, mi and mf , we have to take into

account the constraint on possible values of mi and mf :

|mi − mf | � 1. (B1)

Note, however, that the electric-dipole approximation works
well for light atoms. For compounds containing heavy atoms,
the magnetic and higher multipole electric transitions become
significant due to relativistic effects and perturbation of the
spherical symmetry of atomic cores in compounds; therefore,
the constraint Eq. (B1) is weakened in practice. Thus, using
Eq. (B1) we can only estimate the upper bound on the
errors arising from assumption of equal probabilities for the
transitions between I and F shells with different mi and mf .

Let us estimate the difference in the average transition
energies evaluated with and without condition (B1). Consider
the case when all the final and initial states are eigenvectors of
the projection of the total-angular-momentum operator, which
can have different energies:

	EFI = 1

N

∑
|mi−mf |�1

εF ;mf
− εI ;mi

, (B2)

where εI ;mi
and εF ;mf

are energies of the one-electron states
belonging to the I and F shells, with the projections mi and
mf , correspondingly. The coefficient N takes the following
values:

N = 3(2jI − 1) + 4, jI = jF
(B3)

N = 3[2 min(jI ,jF ) + 1], jI �= jF .

The constraint (B2) does not influence the averaging over mi

and mf only for JI = JF = 1
2 , otherwise, the independent and

constrained averages do not coincide. Let us write the energies
of one-electron states εi , εf as

εx = εX + (εx − εX), (B4)

where εX = ∑
x∈X εx is the average orbital energy for shell

X = I,F .
After substituting εX,mx

into expression (B2) we obtain

	EFI = (εF − εI ) + δεFI ,

δεFI = − 1

N

∑
|mf |>jI ,

|mf ±1|>jI

(εF,mf
− εF ). (B5)

Note that the dependence of δεFI on the initial I shell arises
from dependence of the summation index limits in the above
equation on the total angular momentum jI .

Consider the matrix elements of effective one-electron
Hamiltonian Eq. (10), heff

xx ′ ≡ 〈x|heff|x ′〉, where |x〉 and |x ′〉
are eigenvectors of the total-angular-momentum projection
operator; they belong to the Ic shell X with a fixed total angular
momentum jX,X = I,F . According to the Wigner–Eckart
theorem, matrix elements of heff

xx ′ can be written in the form

heff
xx ′ =

∑
0�k�2jx

〈x|∣∣heff
k

∣∣|x ′〉
(

jX k jX

−mx k mx ′

)
, (B6)

where mx and mx ′ are projections of total angular
momentum of the corresponding states, 〈x||heff

k ||x ′〉 =
〈x||V ext

k ||x ′〉+〈x||Tr[FkD]||x ′〉 are the conventional reduced
matrix elements [22] for the k-rank operators given in the
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spherical tensor representation, and the terms 〈x||V ext
k ||x ′〉 and

〈x||Tr[FkD]||x ′〉 are defined below.
Only the terms with k �= 0 contribute to the average

orbital energy correction δεFI . Estimate the 〈x||V ext
k ||x ′〉 and

〈x||Tr[FkD]||x ′〉 terms by their order of magnitude. The
external field (A4) V ext = ∑

k UkmrkYkm(�) is created by
the other atoms of a compound and the electronic density
outside the sphere with radius Rc centered on the considered
atom. For electroneutral compound, Ukm can be estimated as
�QV /Rk+1

V , where QV is the valence of the given atom and
RV > Rc is the radius of its valence shells.

Let us write matrix elements 〈x||V ext
k ||x ′〉 as6

〈x|∣∣V ext
k

∣∣|x ′〉 = UkmR<>
kX

(
lX 2 lX

0 0 0

)
, (B7)

where the radial integrals R<>
kX are defined as

R<>
kX =

∫
r<Rc

drrk+2|ϕX(r)|2.

Consider the contributions to δεFI correction to the average
energy of electronic transitions from the shell with jI = 1/2
to the shell with jF = 3/2 of the lead atom (in standard
notation: p3/2→s1/2, d3/2→p1/2) arising from interaction with
the external field. For K-series transitions (np → 1s), the
energy correction for the s shell is zero, whereas the correction
for the p shell is determined by the matrix elements

〈x|V ext|x ′〉 = R<>
k=2,X

2∑
m=−2

〈x|Ykm|x ′〉.

Let us estimate now contributions to the δεFI correction
from the terms 〈x||Tr[FkD]||x ′〉 by their order of magnitude
and, therefore, consider only the direct Coulomb interaction
terms with assessment 〈x||Tr[FkD||x ′〉 ∼ 〈x||Tr[ JkD]||x ′〉.

Write 〈x||Tr[ JkD]||x ′〉 analogously to Eq. (B7):

〈x||Tr[ JkD]||x ′〉 ∼ R<<
kX , (B8)

where the radial integral R<<
kX is

R<<
kX =

∫
r1<Rc

dr1

∫
r2<Rc

dr2
rk+2
>

rk−1
<

|ϕX(r1)|2ρV (r2), (B9)

and the valence-electron density ρV (r) is

ρV (r) =
∑
rs

Drsϕr (r)ϕ∗
s (r).

The values of the radial integrals R<>
kX and R<<

kX for the
inner-core shells of Pb in the case of k = 2 are given in Table
VIII.

6One may estimate the upper bound of the radial integral R<>
kX as

R<>
kX � 〈rX〉k,

where 〈rX〉 is the average radius of the X shell. Thus,

〈x||V ext
k ||x ′〉 � QV

RV

( 〈rX〉
RV

)k

.

TABLE VIII. The values of R<>
kX and R<<

kX for outer-core np3/2

and nd3/2 shells of the Pb atom when k = 2.a

X R<>
kX (meV) R<<

kX (meV)

2p3/2 15.5 155
3p3/2 130 243
3d3/2 120 240
4p3/2 430 163
4d3/2 460 163

aThe core radius Rc = 3.16 a.u. is enlarged here (compared to the
value Rc = 0.5 a.u. used elsewhere in this paper) to cover inside the
4p3/2 and 4d3/2 shells.

To derive the final estimation for correction to the average
transition energy one has to take into account the value of N−1

in expression (B2):

δεFI ∼ 2

N

(
QV

R3
V

R<<
2F +R<>

2F

) (
jF 2 jF

jF 0 −jF

)(
jV 2 jV

−jV 0 jV

)

×
(

lF 2 lF

0 0 0

)(
lV 2 lV

0 0 0

)
, (B10)

where jF and lF are the total and orbital angular momenta
of the final TC shell, jV and lV are quantum numbers for
the most populated valence shell. The corresponding product
of the angular multipliers and 2

N
is ∼1/50 by the order of

magnitude for p and d shells. Multiplying the latter by the
radial integrals R<>

kX and R<<
kX , we obtain that the order of

magnitude of δεFI corrections is 10 meV or less, whereas the
experimental uncertainties for chemical shifts in most cases of
common interest are larger.

APPENDIX C: DERIVATION OF CONTRIBUTION
TO INNER-CORE TRANSITION ENERGY FROM

INTERACTION OF TC ELECTRON WITH
VALENCE AND OUTER-CORE SHELLS IN
SUDDEN-TRANSITION APPROXIMATION

In Sec. III we show that the chemical shift of Ic transition
energy in an atom bound in some compound M compared
to the free neutral atom A, χFI , in the relativistic average-
configuration approximation is a difference of the correspond-
ing mean values of the one-electron operator χFI .

Let us denote the one-electron states belonging to shells F

and I with fixed projection numbers mf and mi as |f 〉 and |i〉.
The operator χf i is a combination of Coulomb and exchange
operators:

χf i = J(f ) − J(i) − K (f ) + K (i), (C1)

the matrix elements of which are

Jrs(x) = 〈rx|r−1
12 |sx〉,

Krs(x) = 〈rx|r−1
12 |xs〉, x = i,f.

For the case of unconstrained averaging (over all the
possible indices mi and mf ), the average operator χFI is the
sum of average operators J and K:

χF I = J(F ) − J(I ) − K (F ) + K (I ). (C2)
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Applying the Wigner–Eckart theorem, one can express the
corresponding two-electron matrix elements as follows (e.g.,
see Ref. [34] for details):

〈rx|r−1
12 |sx〉 =

∑
k

(−1)jr−mr+jx−mx+k〈rx||Vk||sx〉 ·

×
(

jx k jx

−mx 0 mx

)(
jr k js

−mr 0 ms

)
, (C3)

〈rx|r−1
12 |xs〉 =

∑
kq

(−1)jr−mr+jx−mx+k−q〈rx||Vk||xs〉 ·

×
(

jx k jr

mx −q −mr

) (
jx k js

−mx q ms

)
, (C4)

where mx, mr , and ms are magnetic quantum numbers of
the corresponding one-electron states; 〈rx||Vk||sx〉 are the
reduced matrix elements which are independent of the mx, mr ,
and ms indices. These matrix elements are proportional to the
radial integrals Rk(rxsx). In the case of Coulomb interaction
between electrons, V = r−1

12 , and for α,β,γ,δ ∈ W, Ic, the
former integrals are equal to

Rk(αβγ δ) =
∫ Rc

0

∫ Rc

0
r2

1 dr1r
2
2 dr2,ρ

e
αγ (r1)ρe

βδ(r2)
rk
<

rk+1
>

,

ρe
ξζ (r) = pξ (r)p∗

ζ (r) + qξ (r)q∗
ζ (r)ξ, ζ = α,β,γ,δ,

(C5)

In these expressions pξ (r),qξ (r) are the large and small
components of the one-electron state |ξ 〉.

Let us first consider the direct Coulomb matrix elements
Jrs(x). Using the equality [22]

∑
m

(−1)j−m

(
j k j

−m 0 m

)
= δk0

√
2j + 1,

we obtain

J rs(X) = 1

2jx + 1

∑
i

〈rx|r−1
12 |sx〉

= 〈rx||V0||sx〉
√

2jr + 1

2jx + 1
δmrms

δjr js
.

Consider the exchange matrix elements 〈rx|r−1
12 |xs〉. Taking

into account (
ji k jr

mx −q −mr

)
�= 0,

one can write

mx − q − mr = 0, (C6)

(−1)jr−mr+ji−mx+k−q = (−1)1+jr+ji+k. (C7)

Using the equalities [22](
jr js jx

mr ms mx

)
=

(
jr js jx

−mr −ms −mx

)

× (−1)ja+js+jx ,

∑
mrms

(
jr js jx

mr ms mx

) (
jr js j ′

x

mr ms m′
x

)
= δmxm′

x
δjxj ′

x

2jx + 1
,

we obtain

Krs(x) = δmr ,ms
δjr ,js

(2jr + 1)(2jx + 1)

∑
k

〈rx||Vk||xs〉. (C8)

The final expression for the χFI matrix elements with
independent averaging over mi and mf is

χFI
rs = δjr ,js

δmr ,ms
(J rs(F ) − J rs(I ) − Krs(F ) + Krs(I )).
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