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Open quantum random walks: Bistability on pure states and ballistically induced diffusion
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2Laboratoire de Physique Théorique de l’ENS, CNRS and Ecole Normale Supérieure de Paris, 75005 Paris, France
(Received 1 April 2013; revised manuscript received 13 November 2013; published 30 December 2013)

Open quantum random walks (OQRWs) deal with quantum random motions on a line for systems with internal
and orbital degrees of freedom. The internal system behaves as a quantum random gyroscope coding for the
direction of the orbital moves. We reveal the existence of a transition, depending on OQRW moduli, in the
internal system behaviors from simple oscillations to random flips between two unstable pure states. This induces
a transition in the orbital motions from the usual diffusion to ballistically induced diffusion with a large mean free
path and large effective diffusion constant at large times. We also show that mixed states of the internal system
are converted into random pure states during the process. We touch upon possible experimental realizations.
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I. INTRODUCTION

Random walks [1] are ubiquitous in our understanding of
physical phenomena with a plethora of applications in biology
or economics. They are instrumental in mathematics and
computer science. Quantum generalizations were considered
decades ago [2] and they find numerous applications in
quantum computation or quantum cryptography [3]. They
have recently been experimentally implemented [4–6]. Greatly
influenced by quantum interferences, quantum random walks
behave very differently from their classical analogs, for
instance they do not diffuse in the same way [2,7].

Open quantum random walks (OQRWs) were introduced
[8] using concepts from quantum dynamical maps [9] aiming
at incorporating decoherence effects. They specify random
motions of quantum systems with both internal and orbital
degrees of freedom (DOFs), and these moves depend on
interactions with quantum coins. Contrary to quantum random
walks, OQRWs implement resettings of the quantum coins at
each time step, and this difference has profound consequences.

Studying classes of OQRWs, we find a transition in their
behaviors separating the usual diffusion from ballistically in-
duced diffusion with a large mean free path between trajectory
flips. Of course diffusion is always due to ballistic behaviors
at a small enough scale; what matters is the time separation
between flips. In OQRWs, these are not due to disordered
collisions but to abrupt tilts of the internal gyroscope induced
by the interaction with quantum coins and their measurement.
Behaviors in the ballistic regime are consequences of random
switches of the internal state between unstable pure states.

The study of OQRWs is a too recent research field to
reliably predict its future domains of application, which,
we may expect, will include quantum deformation of those
of classical random walks. The scaling limit we discuss
here provides an elementary and pathology-free definition
of quantum Brownian motion [10,11] with clear poten-
tial outputs to this subject [12]. One may also contem-
plate applications of the mechanism of ballistically induced
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diffusion, and its large effective diffusion constant, to possibly
quantum-mechanically-induced biological phenomena, espe-
cially photosynthetic energy transfer [13,14]. Notice that our
results about convergence to unstable pure states apply to a
qubit interacting repeatedly with a series of qubits without
considering orbital DOFs.

II. OPEN QUANTUM RANDOM WALKS AND THEIR
CONTINUOUS LIMIT

A. Definition

To be closer to possible experimental realizations and to
quantum trajectory theories [15,16], we define OQRWs using
a picture slightly different from but equivalent to that of
[8] in which the system interacts recursively with identical
quantum coins, called probes [17]. We shall represent the
quantum system, with Hilbert space Hc ⊗ Ho, as a particle
with internal and orbital DOFs: the former may be represented
by an effective spin or by colors and the latter, labeled as |n〉o,
refer either to localized positions on a line or to energy levels
in a potential well. The probe Hilbert space Hp is chosen
to be two dimensional with a specified basis {|±〉p}. At each
time step, the system interacts quantum mechanically with one
sample of identically prepared copies of the probe on which
a measurement is performed after the interaction period. The
system-probe interaction is such that if the outgoing probe is
measured in the state |+〉p (|−〉p) the system moves by one
step to the right (to the left) along the line, and this move
is accompanied by a modification of the internal DOFs. The
system position is thus slave to the measurement outputs.

Although experimental realizations of OQRWs do not
yet exist we may contemplate possible scenarios. One may
imagine using ions trapped in harmonic potentials, as in
[18,19], each ion being possibly in two states with different
angular momenta, and photons as probes. For an appropriately
adjusted frequency and linearly polarized ingoing photons, the
ion-photon interaction may induce internal flips and energy
shifts conditioned on the measurements of outgoing photons
[20]. One may also imagine using cold atoms with internal
DOFs and localized on potential lattices, as in [4], and probing
them coherently with photons [20]. If one is interested only
in the internal system [21], a setup dealing with recursive
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couplings of a qubit to a series of probe qubits, as in [22], may
be considered.

To make this description concrete, let Hsys := Hc ⊗ Ho

be the system Hilbert space, with Hc and Ho respectively
associated with the internal and orbital DOFs. We take Hc

finite dimensional and Ho � CZ with the orthonormal basis
{|n〉o, n ∈ Z}. Let U be the unitary operator acting on Hsys ⊗
Hp coding for the system-probe interaction. We demand that
its action on states |ψ〉c ⊗ |n〉o ⊗ |φ〉p gives the entangled
normalized states

(B+|ψ〉c) ⊗ |n + 1〉o ⊗ |+〉p + (B−|ψ〉c) ⊗ |n − 1〉o ⊗ |−〉p
for any |ψ〉c ∈ Hc. Unitarity imposes B

†
+B+ + B

†
−B− = I.

OQRWs consist in iterating system-probe interactions and
outgoing probe measurements. Since the latter are random
with probabilities governed by quantum mechanics, this yields
stochastic evolutions called quantum trajectories [15,16]. If
the system density matrix is initially localized in the orbital
space, say ρ0 ⊗ |x0〉o〈x0|, it remains so after each iteration
with internal density matrix ρn and orbital position xn. These
are randomly updated,

ρn ⊗ |xn〉o〈xn| → B±ρnB
†
±

p±
n

⊗ |xn ± 1〉o〈xn ± 1|, (1)

with probability p±
n := trHc

(B±ρnB
†
±). The process n →

(ρn,xn) is Markovian on a probability space whose events are
the recursive output probe measurements. By construction the
mean system density matrix evolves according to the OQRW
quantum dynamical map [8], and the mean internal density
matrix ρ̄n := E[ρn] satisfies ρ̄n+1 = B+ρ̄nB

†
+ + B−ρ̄nB

†
−. In

the absence of internal DOFs OQRW behaviors parallel those
of classical random walks. We take Hc � C2 and represent the
internal system by an effective spin one-half gyroscope.

B. Heuristics

In the numerical simulations we look for OQRWs generated
by matrices of the form

B+ = δ−1

(
u r

s v

)
, B− = δ−1

( −v s

r −u

)

with δ = √
u2 + v2 + r2 + s2. This is not the most general

parametrization but we use it only to give numerical illus-
trations of our results which concern mostly the continuous
limit. In the scaling limit the most general matrix solutions of
the unitarity constraint and consistent with the existence of a
continuous limit will be

B± = 1√
2

[
I ± √

εN + ε

(
−iH± ± M − 1

2
N †N

)
+ o(ε)

]

with ε a small parameter and H± and M Hermitian but not N .
We take H := 1

2 (H+ + H−) = ω0σ
2 and N = aσ 3 with σ 1,2,3

the usual Pauli matrices. Numerical simulations are done with
real matrices B±, and these fit with our choice of H and N .
We fix r = −s but vary u and v, and this amounts to fixing ω0

but modifying a.
Numerical simulations reveal the existence of different

regimes for OQRWs corresponding in the scaling limit to
a2/ω0 below or above a critical value. For a2/ω0 small

FIG. 1. (Color online) Typical OQRW trajectory generated by
B± as in the text with u = 1.005, v = 1.00, and r = −s = 0.000 15
(corresponding to a2/ω0 � 0.2 at the continuous limit): (a) Position
Xn; (b) and (c) σ 1 and σ 3 components of ρn.

enough, the position xn is nearly Brownian and the internal
density matrix ρn oscillates almost regularly; see Fig. 1.
More interesting behaviors occur for a2/ω0 above the critical
value; see Fig. 2. The position xn follows a random seesaw
trajectory, with tiny fluctuations, whose slopes are determined
by the internal state which fluctuates around two unstable fixed
points and toggles randomly from one to the other. The abrupt
changes in the position moves are due to the random flips
of the internal gyroscope. The parameter a2/ω0 controls the
mean free path between flips. Although ballistic on this time
scale, the position is diffusive on larger time scales. Albeit
the proof is not completely obvious, this result is expected
from the central limit theorem. In addition, whatever the initial
value, the internal density matrix converges rapidly to pure
states, so that the fixed points are also pure states. It is quite
remarkable that a series of indirect probe measurements project

FIG. 2. (Color online) Typical OQRW trajectory generated by
B± as in the text with u = 1.1, v = 1.00, and r = −s = 0.000 15
(corresponding to a2/ω0 � 4 at the continuous limit): (a) Position
Xn; (b) and (c) σ 1and σ 3 components of ρn.
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FIG. 3. (Color online) Probability distribution p(x,T ) for an
OQRW generated by B± as in the text with u = 1.1, v = 1.00,
and r = −s = 0.0006 (corresponding to a2/ω0 � 2 at the continuous
limit). In black (narrowest curve) T = 2000, in blue (middle curve)
T = 6000, in red (widest curve) T = 15 000. The right-moving peak
corresponds to the trajectories with no gyroscope flip, i.e., that went
up in a quasistraight line. The nearly uniform plateau in the middle
is the signature of the trajectories with one flip. More details can be
found in the Appendix. Notice that for large times the profile indeed
starts to become Gaussian.

mixed states on pure states. The progressive collapses elegantly
observed in [23], and proved in [24] are a particular illustration
of this phenomenon, but in the OQRW context the target states
keep on evolving randomly.

This peculiar behavior bears similarities with that of a
noisy particle in a double-well potential subject to Kramers
transitions from one well to the other. This is the picture that
we are going to make explicit in the following. In that case we
also look at a more common observable (see Figs. 3 and 4),
i.e., the probability distribution function (PDF) of the process
and notice an interesting intermediate time scale giving rise to
a skewed profile which is a direct consequence of the seesaw
profile of the trajectories. In the Appendix, we present a simple
classical model which mimics this behavior.

C. State purification

The convergence towards pure states can be understood
as follows. Let 	n := det ρn � 0 be the determinant of the
internal density matrix. In dimension 2, it vanishes only for
pure states. A simple computation shows that E[	1/2

n ] =
cn 	

1/2
0 with c := det1/2(B+B

†
+) + det1/2(B−B

†
−) < 1 unless

B+ and B− are proportional to unitary matrices and the
walk is classical which thus implies limn→∞ E[	1/2

n ] = 0, the
convergence being exponentially fast.

Actually we can prove that limn→∞ 	
1/2
n = 0 almost surely

using the submartingale convergence theorem of probability
theory [25]. Indeed, computing the mean of 	

1/2
n+1 conditioned

on the n first output measurements gives E[	1/2
n+1|Fn] =

c 	
1/2
n < 	

1/2
n , so that 	

1/2
n is a submartingale, and since it

is bounded, it converges almost surely and in L1. The limit

FIG. 4. (Color online) Probability distribution p(x,T ) at fixed
time T = 5000 for an OQRW generated by B± as in the text
with v = 1.00, r = −s = 0.0006, and u = 1.005 for the narrowest
distribution in red (corresponding to a2/ω0 � 0.1 at the continuous
limit), u = 1.05 (a2/ω0 � 1) for the distribution with the medium
width in blue, and u = 1.15 (a2/ω0 � 3) for the widest distribution
in black. As expected, for small a2/ω0 
 1, the distribution looks
Gaussian and gets more and more skewed as this ratio increases.

can only be zero as the limit in L1 is zero and the internal
density matrix localizes on pure states.

D. Fokker-Planck picture

In the continuous limit, the mean system density ma-
trix reads

∫
dx ρ(x,t) ⊗ |x〉o〈x| with p(x,t) := trHc

ρ(x,t) the
probability density of finding the system at position x at time t ,
and ρ̄t := ∫

dx ρ(x,t) the mean internal state. At each time step
dt , it is updated using OQRW rules (1),

ρ(x,t + dt) = B−ρ(x + dx,t)B†
− + B+ρ(x − dx,t)B†

+.

A continuous limit exists if one imposes the scaling relation
ε = dt = dx2 [26]. Taylor expansion then gives

∂tρ = 1
2∂2

xρ − (N∂xρ + ∂xρN †) − i[H,ρ] + LN (ρ), (2)

with Lindbladian LN (ρ) := NρN † − 1
2 (N †Nρ + ρN †N ).

Equation (2) mixes pieces from the diffusive Fokker-Planck
equation and from Lindbladian quantum evolution for ρ̄t [27].
The term (N∂xρ + ∂xρN †) is at the origin of the ballistic
behavior seen in Fig. 2 and of the large effective diffusion
constant but the Hamiltonian term is required for the tilting
effect. The probability density p(x,t) is not associated with a
Markov process and does not satisfy a linear equation but it
becomes Gaussian at large t .

E. Quantum trajectory

Let us now make precise the heuristic description by
deriving the stochastic differential equations (SDEs) governing
OQRWs in the scaling limit. OQRWs are defined on the proba-
bility space whose events are the series (s1,s2, . . .) with sk = ±
depending on whether the kth outgoing probe is measured
in the state |±〉p. Functions which depend only on the first
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n data (s1, . . . ,sn) define a natural filtration Fn [25], and
p±

n := E[I{sn+1=±}|Fn] = tr(B±ρnB
†
±) are the probabilities for

sn+1 = ± conditioned on the value of the internal state at
the nth step. A quick and neat way to obtain the scaling
limit consists in decomposing the process ρn as a sum of a
martingale Mn plus a predictable process On. This is called a
Doob decomposition [25]. In the scaling limit the martingale
(predictable) contribution converges to the noisy source (the
drift) of the SDEs. Equation (1) may be tautologically written
as

ρn+1 = ρ(+)
n I{sn+1=+} + ρ(−)

n I{sn+1=−}

and xn+1 − xn = I{sn+1=+} − I{sn+1=−}, with ρ(±)
n :=

B±ρnB
†
±/p±

n . By construction the Doob martingale is
Mn = ∑n

k=1 πk with πk := ρk − E[ρk|Fk−1] given by

2πk = (ρ(+)
k − ρ

(−)
k )

(
I{sk+1=+} − p+

k + p−
k − I{sk+1=−}

)
.

The predictable process is defined by complementarity, On :=
ρn − Mn. Taking the scaling limit ε → 0, t = nε fixed, is
a matter of Taylor expanding dMt := Mn+1 − Mn, dρt :=
ρn+1 − ρn, and dXt := √

ε(xn+1 − xn). Identifying ε with dt ,
we get dMt = DN (ρt ) dBt , and

dρt = {−i[H,ρt ] + LN (ρt )}dt + DN (ρt ) dBt , (3)

dXt = UN (ρt ) dt + dBt , (4)

with Bt a normalized Brownian motion, DN (ρ) := Nρ +
ρN † − ρ UN (ρ), and UN (ρ) := tr(Nρ + ρN †). Not surpris-
ingly, Eq. (3) is of Belavkin’s type [28,29]. The drift in Eq. (4)
is governed by the internal state and this is responsible for
the behaviors observed in Figs. 1 and 2. Let us emphasize
that this SDE does not contain any jump process (which
are nevertheless allowed in general Belavkin equations). As
we will see in the following section, jump statistics do not
necessarily emerge directly from scaling limits but can be a
simple consequence of a nonlinearity in the SDE.

III. BISTABILITY AND BALLISTIC DIFFUSION

We take H = ω0σ
2 and N = aσ 3. Equations (3) and (4) are

then compatible with reality of the internal density matrix. We
parametrize it as ρt = 1

2 (I + q1σ
1 + q3σ

3) with q2
1 + q2

3 � 1.
Equations (3) and (4) then read

dq3 = 2ω0 q1 dt + 2a
(
1 − q2

3

)
dBt ,

dq1 = −2(ω0 q3 + a2 q1) dt − 2a q1q3 dBt .

One can check again the convergence to pure states that has
been shown in the discrete case. Let 	t := det ρt . We have
d	

1/2
t = 	

1/2
t [−2a2dt + aq3dBt ] with nonpositive drift so

that 	
1/2
t is a submartingale [25]. It converges exponentially

quickly to 0, so we may describe ρt as a pure state, q1 = sin θ ,
q3 = cos θ . The angle θt then satisfies

dθt = −2(ω0 + a2 sin θt cos θt )dt − 2a sin θt dBt . (5)

The behavior of θt is quantitatively different depending on
whether a2 ≷ ω0, and this corresponds to the two regimes
we mentioned. For a2 < ω0, θt rotates randomly but regularly
enough around the unit circle, so that the internal state ρt

FIG. 5. (Color online) Potential V (y): ω0 is fixed to 1, in red
(lowest curve) a = 2 the potential shows a minimum, in black (middle
curve) a = 1 gives the limiting case, and in blue (highest curve) a = 0
it has no minimum.

oscillates almost regularly. For a2 > ω0, θt is trapped during
random periods in the vicinity of θ∗

− � 0− or θ∗
+ � π−. The

points θ∗
± are the minima of the effective potential obtained

from Eq. (5) once correctly normalized. Although it fluctuates,
θt turns predominantly clockwise (for ω0 > 0) around the unit
circle, never crossing 0 or π counterclockwise.

To make this description quantitative, let yt :=
− ln | tan θt/2|. It satisfies a normalized SDE with constant
noise source dyt = 2adBt − V ′(yt )dt with potential

V (y) = −2(±ω0 sinh y + 2a2 ln cosh y).

The sign in the above equation is that of tan θt/2, i.e., + (−) for
θt on the upper (lower) half unit circle. What happens in these
two sectors is symmetrical, so we concentrate on the upper
sector (see Fig. 5). The potential shape is that of a cubiclike
function but it is exponentially large for large |y|, i.e., V (y) �
−ω0 sgn(y)e|y|. It possesses a minimum and a maximum for
a2 > ω0, and neither if a2 < ω0 (see Fig. 5). The minimum
is at y∗

+ � −2a2/ω0 for large a, i.e., tan θ∗
+ � e−y∗

+ so that
θ∗
+ is close to π−, with Vmin � −4a2 ln a2/ω0 and Vmax � 0.

When θt enters the upper sector, it does it from π . For yt this
corresponds to −∞, so that yt experiences an exponentially
steep down ramp that it can never climb back up, and this means
that θt never escapes the upper sector from π but only from 0.
Going down the ramp, yt reaches the potential minimum and
spends time fluctuating around there, and this means that θt

fluctuates around θ∗
+. At a random time τflip, large fluctuations

allow yt to cross the energy barrier in a Kramers-like process.
Once this has happened, yt is again on a steep ramp that it
steps down to +∞, and this translates to θt moving towards
0+ and crossing it irreversibly towards the lower sector. The
process then starts on the lower half circle and repeats itself.
We estimate the mean flip time as E[τflip] � e	V/4a2 � a2/ω2

0
by Kramers rule, and a more precise study allows us determine
the probability distribution of τflip.

The internal state drives the system position via Eq. (4)
which reads dXt = 2a cos θt dt + dBt . The slopes of the
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seesaw profiles of Xt are 2a cos θ∗
± � ∓2a. Fluctuations are

negligible for large a but the noise is instrumental for tilting
from one slope to the other via Kramers transitions. The
mean system density matrix heuristically introduced above
is rigorously defined by

ρ̂t :=
∫

dx ρ(x,t) ⊗ |x〉o〈x| := E[ ρt ⊗ |Xt 〉o〈Xt | ]. (6)

Routine applications of stochastic Itô calculus [25] show that
the SDEs (3) and (4) imply Eq. (2) for ρ(x,t). Equation (2) is
of Lindblad form on Hc ⊗ L2(R). Indeed ρ̂t verifies

∂t ρ̂t = −i[H,ρ̂t ] + LN (ρ̂t ) − 1
2 [P,[P,ρ̂t ]]

− i(N [P,ρ̂t ] + [P,ρ̂t ]N
†) (7)

with P = −i∂x the momentum operator. This formally shows
that ρ̂t defines a completely positive map on Hc ⊗ L2(R). It
may be used to check that Xt/

√
t becomes Gaussian at large

times, in a way compatible with the central limit theorem of
[30,31], and E[X2

t ] � Deff t with effective diffusion constant
Deff = 1 + 4a4/ω2

0 [12]. The factor 1 comes from the bare dif-
fusion constant [26] while the second term, which dominates
for large a, is induced by the ballistic seesaws.

IV. CONCLUSION

The transition from the usual diffusion to ballistically in-
duced diffusion is an echo of the internal gyroscope behaviors.
In the ballistic regime the internal state switches randomly
between two pure states in a way similar to Kramers transition.
Since the system position is slave to the output measurements,
our results about convergence from a mixed state to pure states
and about random flips between them apply to the coupled
probe plus internal spin system without considering orbital
DOFs. Our analysis of the continuous scaling limit leads us
to define open quantum Brownian motion. More details will
be given elsewhere [12]. In the ballistic regime the effective
diffusion constant is much larger than the bare one, and one
may wonder about other scenarios of ballistically induced
diffusion providing large effective diffusion constants.
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APPENDIX: A SIMPLE TOY MODEL

In this appendix, we study a rather simple model of
diffusion with large mean free path whose PDF behaves like the
OQRW we studied for large a. In this simplified example, the
absence of the small Brownian fluctuations around the ballistic
trajectories will give a clearer understanding of the non-
Gaussianity previously observed in the PDFs.

Let us consider a walker continuously going back and forth
on a line with a speed ±1 whose changes are triggered by a
counting process of intensity 1 (see Fig. 6). Such a process can
be written rather pompously with a trivial SDE:

dXt = (−1)Nt dt, (A1)

t

X

FIG. 6. A typical trajectory of a walker on a line.

where Nt is just a normalized counting process. We add the
initial condition that the walker starts with velocity +1. This
is just a simplified Brownian trajectory with a large mean free
path and we expect a Gaussian probability distribution for
large times. We are interested here in the short time behavior
of this probability density. As the process is not Markovian in
position, one needs to introduce p±(x,t), the probabilities of
being in x at time t with a speed ±1. We collect those two
probabilities into a vector �P which can easily be shown to
verify the following Fokker-Planck equation:

∂t
�P +

(
1 0

0 −1

)
∂x

�P +
(

1 −1

−1 1

)
�P = 0. (A2)

Notice the similarity with the Fokker-Planck equation verified
by the OQRW we previously studied. This equation has no
second-order term and the large time Gaussian profile comes
only from the connection of two transport parts.

The short time behavior can be understood using an
expansion of the probability distribution function p in the
number of velocity changes or flips (see Fig. 7):

p(x,t) =
+∞∑
i=0

P (i flips)P (x,t |i flips). (A3)

t

X

FIG. 7. (Color online) Illustration of the expansion in number of
flips for the first two terms. On the left, zero flip and only one possible
trajectory which gives a Dirac mass. On the right, one flip and one
possible trajectory for every end point and thus a uniform distribution.
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The first few terms can be computed geometrically and give

p(x,t) = 1[−x,x](t)

{
δ(x − t) + 1

2
+ t

4
(x + 1) + O(t2)

}
e−t

(A4)

where 1I is the indicator function of the interval I . The
Dirac peak corresponds to the situation when no flip occurred.
Indeed, in that case the walker goes straight up and all
the weight is concentrated on a single point. In the full
OQRW model, this straight line is blurred, even for very

large a, by small Brownian fluctuations. This noise just
changes the PDF by a convolution with a sharp Gaussian
and the behavior observed remains qualitatively the same.
The constant term corresponds to one flip, and the reader
can easily become convinced that one flip indeed gives rise
to a uniform distribution and that this is what explains the
plateau in Fig. 3. A similar analysis can be carried on with
the linear term corresponding to two flips and so on. This
example shows that puzzling non-Gaussianities in a PDF can
be easily understood when one looks directly at trajectories,
which in the case of OQRWs are also observable and thus
physical.

[1] W. Feller, An Introduction to Probability Theory and its
Applications (Wiley, New York, 1968).

[2] See, e.g., J. Kempe, Contemp. Phys. 44, 307 (2003); S. Venegas-
Andraca, Quantum Inf. Process. 11, 1015 (2012), and references
therein.

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
2005).

[4] M. Karski et al., Science 325, 174 (2009).
[5] A. Peruzzo et al., Science 329, 1500 (2010).
[6] H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert,

M. Enderlein, T. Huber, and T. Schaetz, Phys. Rev. Lett. 103,
090504 (2009).

[7] N. Konno, in Quantum Walks, edited by U. Franz and
M. Schurmann, Lecture Notes in Mathematics Vol. 1954
(Springer, Berlin, 2008), p. 309; S. Goswami and P. Sen, Phys.
Rev. A 86, 022314 (2012).

[8] S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy, J. Stat. Phys.
147, 832 (2012).

[9] See, e.g., Open Quantum Systems Vols. I, II, and III, edited by
S. Attal, A. Joyce, and C. A. Pillet, Lectures Notes in Mathe-
matics Vols. 1880–1882 (Springer, Berlin, 2006).

[10] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).
[11] W. De Roeck and J. Fröhlich, Commun. Math. Phys. 303, 613

(2011).
[12] M. Bauer, D. Bernard, and A. Tilloy, arXiv:1312.1600.
[13] G. S. Engel et al., Nature (London) 446, 782 (2007).
[14] M. Mohseni et al., J. Chem. Phys. 129, 174106 (2008).
[15] H. J. Charmichael, An Open System Approach to Quantum

Optics, Lecture Notes in Physics Vol. 18 (Springer, Berlin,
1993).

[16] J. Dalibard, Y. Castin, and K. Molmer, Phys. Rev. Lett. 68, 580
(1992); arXiv:0805.4002.

[17] In mathematical terms, this defines a dilation of the OQRW
quantum map, which is reproduced when tracing out the
probe space. In contrast, quantum trajectories emerge when
performing probe measurements and keeping track of their
outputs.

[18] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J.
Wineland, Phys. Rev. Lett. 75, 4714 (1995).

[19] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
[20] Obviously, the tremendous experimental problem is to act on

trapped ions with a few photons and not with a pulse containing
a large number of them.

[21] The system position behaves classically if it initially starts
localized and if one always measures the probe observable
with eigenbasis |±〉p , as is done here. In this case, a quantum
implementation of the orbital DOFs is not really needed.
However, this is clearly a restriction and one could decide either
to initially start with a more general state or to measure other
observables.
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Probabilités (Cassini, Paris, 2003).
[26] Here we make a choice of length and time normalizations, and

this fixes the bare diffusion constant D0 = 1.
[27] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[28] A. Barchielli, Phys. Rev. A 34, 1642 (1986).
[29] V. P. Belavkin, J. Math. Phys. 31, 2930 (1990); ,Commun. Math.

Phys. 146, 611 (1992).
[30] S. Attal, N. Guillotin-Plantard, and C. Sabot, arXiv:1206.1472

[Annales H. Poincare (to be published)].
[31] N. Konno and H. J. Yoo, arXiv:1209.1419.

062340-6

http://dx.doi.org/10.1080/00107151031000110776
http://dx.doi.org/10.1080/00107151031000110776
http://dx.doi.org/10.1080/00107151031000110776
http://dx.doi.org/10.1080/00107151031000110776
http://dx.doi.org/10.1126/science.1174436
http://dx.doi.org/10.1126/science.1174436
http://dx.doi.org/10.1126/science.1174436
http://dx.doi.org/10.1126/science.1174436
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1103/PhysRevLett.103.090504
http://dx.doi.org/10.1103/PhysRevLett.103.090504
http://dx.doi.org/10.1103/PhysRevLett.103.090504
http://dx.doi.org/10.1103/PhysRevLett.103.090504
http://dx.doi.org/10.1103/PhysRevA.86.022314
http://dx.doi.org/10.1103/PhysRevA.86.022314
http://dx.doi.org/10.1103/PhysRevA.86.022314
http://dx.doi.org/10.1103/PhysRevA.86.022314
http://dx.doi.org/10.1007/s10955-012-0491-0
http://dx.doi.org/10.1007/s10955-012-0491-0
http://dx.doi.org/10.1007/s10955-012-0491-0
http://dx.doi.org/10.1007/s10955-012-0491-0
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1007/s00220-011-1222-0
http://dx.doi.org/10.1007/s00220-011-1222-0
http://dx.doi.org/10.1007/s00220-011-1222-0
http://dx.doi.org/10.1007/s00220-011-1222-0
http://arxiv.org/abs/arXiv:1312.1600
http://dx.doi.org/10.1038/nature05678
http://dx.doi.org/10.1038/nature05678
http://dx.doi.org/10.1038/nature05678
http://dx.doi.org/10.1038/nature05678
http://dx.doi.org/10.1063/1.3002335
http://dx.doi.org/10.1063/1.3002335
http://dx.doi.org/10.1063/1.3002335
http://dx.doi.org/10.1063/1.3002335
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://arxiv.org/abs/arXiv:0805.4002
http://dx.doi.org/10.1103/PhysRevLett.75.4714
http://dx.doi.org/10.1103/PhysRevLett.75.4714
http://dx.doi.org/10.1103/PhysRevLett.75.4714
http://dx.doi.org/10.1103/PhysRevLett.75.4714
http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1016/j.physrep.2008.09.003
http://dx.doi.org/10.1016/j.physrep.2008.09.003
http://dx.doi.org/10.1016/j.physrep.2008.09.003
http://dx.doi.org/10.1016/j.physrep.2008.09.003
http://dx.doi.org/10.1038/nature06057
http://dx.doi.org/10.1038/nature06057
http://dx.doi.org/10.1038/nature06057
http://dx.doi.org/10.1038/nature06057
http://dx.doi.org/10.1103/PhysRevA.84.044103
http://dx.doi.org/10.1103/PhysRevA.84.044103
http://dx.doi.org/10.1103/PhysRevA.84.044103
http://dx.doi.org/10.1103/PhysRevA.84.044103
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1103/PhysRevA.34.1642
http://dx.doi.org/10.1103/PhysRevA.34.1642
http://dx.doi.org/10.1103/PhysRevA.34.1642
http://dx.doi.org/10.1103/PhysRevA.34.1642
http://dx.doi.org/10.1063/1.528946
http://dx.doi.org/10.1063/1.528946
http://dx.doi.org/10.1063/1.528946
http://dx.doi.org/10.1063/1.528946
http://dx.doi.org/10.1007/BF02097018
http://dx.doi.org/10.1007/BF02097018
http://dx.doi.org/10.1007/BF02097018
http://dx.doi.org/10.1007/BF02097018
http://arxiv.org/abs/arXiv:1206.1472
http://arxiv.org/abs/arXiv:1209.1419



