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We study the measurement-device-independent quantum key distribution (MDI-QKD) in practice with limited
resources, when there are only three different states in implementing the decoy-state method. We present a tighter
explicit formula to estimate the lower bound of the yield of two-single-photon pulses sent by Alice and Bob.
Moreover, we show that the bounding of this yield and phase flip error of single-photon pulse pairs can be further
improved by using other constraints which can be solved by a simple and explicit program. Our methods here
can significantly improve the key rate and the secure distance of MDI-QKD with only three intensities.
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I. INTRODUCTION

Security for real setups of quantum key distribution (QKD)
[1,2] has become a major problem in the area under study
in the recent years. The major problems here include the
imperfection of the source and the limited efficiency of the
detection device. The decoy-state method [3–12] can help to
make a setup with an imperfect single-photon source be as
secure as that with a perfect single-photon source [13,14].

Besides the source imperfection, the limited detection is
another threat to the security [15]. Theories of the device
independent security proof [16] have been proposed to
overcome the problem. However, these theories cannot apply
to the existing real setups because violation of Bell’s inequality
cannot be strictly demonstrated by existing setups.

Very recently, an idea of measurement-device-independent
QKD (MDI-QKD) was proposed based on the idea of entan-
glement swapping [17,18]. There, one can make secure QKD
simply by virtual entanglement swapping; i.e., both Alice and
Bob send BB84 states to the relay, which can be controlled by
an untrusted third party (UTP). After the UTP announced his
measurement outcome, Alice and Bob will postselect those bits
corresponding to a successful event and prepared in the same
basis for further processing. In the realization, Alice and Bob
can really use entanglement pairs [17] and measure halves of
the pair inside the laboratory before sending other halves to the
UTP. In this way, the decoy-state method is not necessary even
though imperfect entangled pairs (such as the states generated
by the type II parametric down conversion) are used. Even
though there are multipair events with small probability, these
events do not affect the security. Alice and Bob only need to
check the error rates of their postselected bits. However, in our
existing technologies, high-quality entangled-pair-state gener-
ation cannot be done efficiently. In the most matured technol-
ogy, the generation rate is lower than 1 from 1000 pump pulses.
If we want to obtain a higher key rate, we can choose to directly
use an imperfect single-photon source such as the coherent
state [18]. If we choose this, we must implement the decoy-
state method for security. This has been discussed in [18], and
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calculation formulas for the practical decoy-state implemen-
tation with only a few different states were first presented in
[19] and then further studied both experimentally [20–22] and
theoretically [23–27]. In particular, Tittel’s group [20] did the
MDI-QKD experiment with three intensities [19], in the labo-
ratory over more than 80 km of spooled fiber, as well as across
different locations within the city of Calgary. By developing
up-conversion single-photon detectors with high efficiency and
low noise, Liu et al. did it over a 50-km fiber link [22] and
transmitted a 24192 image with one-time pad protocol. These
pioneering experiments in Calgary [20] and in Shanghai [22]
and also the proof of principle experiment [21] make a big
step toward the final goal of real application because they
clearly show the practical feasibility of MDI-QKD. Sun et al.
[24] presented a variant formula of three-intensity MDI-QKD
with numerical simulation. However, the earlier formula [19]
actually behaves better than the Sun et al. result. Xu et al. [25]
studied the more general case when each side uses three non-
vacuum states. One can see that the major formula there [25] is
identical with the one in [19] in the case when the weakest pulse
is the vacuum. Wang and Wang [23] and Zhou et al. [26] stud-
ied the MDI-QKD with heralded single-photon sources. Curty
et al. studied some finite-key effects [27]. Actually, using the
idea clearly stated in Ref [12], one can straightly formulate the
effects of statistical fluctuations in the decoy state MDI-QKD.

There are two directions for the future study of the MDI-
QKD. One is to improve the experimental techniques, so as to
improve the robustness and efficiency. The other is to upgrade
the theoretical results so as to obtain a higher key rate given
the same experimental data.

Here in this work, we shall first give better explicit formulas
of the three-state decoy-state method for the MDI-QKD. We
then estimate the infimum of yield and the supremum of error
rate single-photon pulse pairs to the UTP with a simple and
efficient program. In the fifth section, we present the numerical
simulations. The article is ended with a concluding remark.

II. DECOY-STATE METHOD WITH ONLY
THREE STATES FOR MDI-QKD

In the protocol, each time, a pulse pair (two-pulse state) is
sent to the relay for detection. The relay is controlled by a UTP.
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The UTP will announce whether the pulse pair has caused a
successful event. Those bits corresponding to successful events
will be postselected and further processed for the final key.
Since real setups only use imperfect single-photon sources,
we need the decoy-state method for security.

We assume Alice (Bob) has three sources, oA,xA,yA

(oB,xB,yB), which can only emit three different states ρoA
=

|0〉〈0|,ρxA
,ρyA

(ρoB
= |0〉〈0|,ρxB

,ρyB
), respectively, in photon

number space. Suppose

ρxA
=

∑
k

ak|k〉〈k|, ρyA
=

∑
k

a′
k|k〉〈k|, (1)

ρxB
=

∑
k

bk|k〉〈k|, ρyB
=

∑
k

b′
k|k〉〈k|, (2)

and we request the states satisfying the following very
important condition:

a′
k

ak

� a′
2

a2
� a′

1

a1
,

b′
k

bk

� b′
2

b2
� b′

1

b1
, (3)

for k � 2. The imperfect sources used in practice such as the
coherent state source, the heralded source out of the parametric
down conversion, satisfy the above restriction. Given a specific
type of source, the above listed different states have different
averaged photon numbers (intensities), and therefore the states
can be obtained by controlling the light intensities. At each
time, Alice will randomly select one of her three sources to
emit a pulse, and so does Bob. The pulse from Alice and
the pulse from Bob form a pulse pair and are sent to the
untrusted relay. We regard equivalently that at each time a
two-pulse source is selected and a pulse pair (one pulse from
Alice, one pulse from Bob) is emitted. There are many different
two-pulse sources used in the protocol. We denote α̃β̃ for the
two-pulse source when the pulse pair is produced by source
α̃ at Alice’s side and source β̃ at Bob’s side; α̃ can be one of
{oA,xA,yA}, and β̃ can be one of {oB,xB,yB}. For example,
at a certain time j when Alice uses source oA and Bob uses
source yB , we say the pulse pair is emitted by source oAyB .

In the protocol, two different bases, the Z basis consisting
of horizontal polarization |H 〉〈H | and vertical polarization
|V 〉〈V | and the X basis consisting of π/4 and 3π/4 polar-
izations, are used. The density operator in photon number
space alone does not describe the state in the composite space.
We shall apply the decoy-state method analysis in the same
basis (e.g., the Z basis or X basis) for pulses from sources
xA,xB,yA,yB . Therefore we only need consider the density
operators in the photon number space. For simplicity, we
consider pulses from the source prepared in the Z basis first.

According to the decoy-state theory, the yield of a certain set
of pulse pairs is defined as the happening rate of a successful
event (announced by the UTP) corresponding to pulse pairs
out of the set. Mathematically, the yield is n/N where n is the
number of successful events that have happened corresponding
to pulse pairs from the set and N is the number of pulse
pairs in the set. Obviously, if we regard the pulse pairs of
two-pulse source α̃β̃ as a set, the yield Sα̃β̃ for source α̃β̃

is Sα̃β̃ = nα̃β̃

Nα̃β̃
, where nα̃β̃ is the number of successful events

that have happened corresponding to pulse pairs from source
α̃β̃ and Nα̃β̃ is the number of times source α̃β̃ is used. In

the protocol, there are nine different two-pulse sources. The
yields of these nine sources can be directly calculated from the
observed experimental data nα̃β̃ and Nα̃β̃ . We use capital letter
Sα̃β̃ for these known values.

We can regard any source as a composite source that
consists of many (virtual) subsources, if the source state can
be written in a convex form of different density operators.
For example, two-pulse source yAyB includes a subsource of
pulse pairs of state ρ1 ⊗ ρ1 (ρ1 = |1〉〈1|) with weight a′

1b
′
1.

This is to say, after we have used source yAyB for N times, we
have actually used the subsource of state ρ1 ⊗ ρ1 for a′

1b
′
1N

times, asymptotically. Similarly, the source xAxB also includes
a subsource of state ρ1 ⊗ ρ1 with weight a1b1. These two
subsources of state ρ1 ⊗ ρ1 must have the same yield s11

because they have the same two-pulse state and the pulse
pairs are randomly mixed. Most generally, denoting s,s ′ as
the yields of two sets of pulses, if pulse pairs of these two
sets are randomly mixed and all pulses have the same density
operator, then

s = s ′ (4)

asymptotically. This is the elementary assumption of the
decoy-state theory.

In the protocol, since each source is randomly chosen,
pulses from each subsource or source are also randomly mixed.
Therefore, the yield of a subsource or a source is dependent on
the state only, and it is independent of which physical source
the pulses are from. Therefore, we can also define the yield of
a certain state: whenever a pulse pair of that state is emitted,
there is a probability that a successful event happens. Denote

�αβ = ρα ⊗ ρβ (5)

for a two-pulse state. The yield of such a state is also the
yield of any source which produces state �αβ only, or the
yield of a subsource from any source, provided that the state
of the pulse pairs of the subsource is �αβ . Note that we don’t
always know the value of yield of a state, because we don’t
know which subsource was used in each time. We shall use
the lower case symbol sα,β to denote the yield of state �α,β .
In general, the yields of a subsource (a state), such as s11, are
not directly known from the experimental data, but some of
them can be deduced from the yields of different real sources.
Define ρ0 = |0〉〈0|. According to Eq. (4), if α ∈ {0,xA,yA} and
β ∈ {0,xB,yB}, we have

sαβ = Sα̃β̃ (6)

with the mapping of α̃ = (oA,xA,yA) for α = (0,xA,yA),
respectively; and β̃ = (oB,xB,yB) for β = (0,xB,yB ), respec-
tively. To understand the meaning of the equation above, we
take an example for pulses from source yAyB . By writing the
state of this source in the convex form we immediately know
that it includes a subsource of state ρ0 ⊗ ρyB

. By observing
the results caused by source yAyB itself we have no way to
know the yield of this subsource because we do not know
exactly which time source yA emits a vacuum pulse when
we use it. However, the state of this subsource is the same
with the state of the real source oAyB , and therefore the yield
of any subsource of state ρ0 ⊗ ρyB

must be just the yield of
the real source oAyB , which can be directly observed in the
experiment. Mathematically, this is s0yB

= SoAyB
, where the
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right-hand side is the known value of yield of real source
oAyB , and the left-hand side is the yield of a virtual subsource
from real source yAyB .

Our first major task is to deduce s11 from the known values,
i.e., to formulate s11, the yield of state |1〉〈1| ⊗ |1〉〈1| in
capital-letter symbols {Sα̃β̃}. We shall use the following convex
proposition to do the calculation.

Denote S to be the yield of a certain source of state �. If �

has the convex forms of � = ∑
αβ cαβ�αβ , we have

S =
∑
α,β

cαβsαβ. (7)

This equation is simply the fact that the total number of
successful events caused by pulses from a certain set is equal
to the summation of the numbers of successful events caused
by pulses from each subsets.

Consider the convex forms of source xAxB , xAyB , yAxB

and source yAyB . Without causing any ambiguity, we omit the
subscripts A and B in the remainder of this paper. Explicitly,

S̃xx = a1b1s11 + a1b2s12 + a2b1s21 + a2b2s22 + Jxx, (8)

S̃xy = a1b
′
1s11 + a1b

′
2s12 + a2b

′
1s21 + a2b

′
2s22 + Jxy, (9)

S̃yx = a′
1b1s11 + a′

1b2s12 + a′
2b1s21 + a′

2b2s22 + Jyx, (10)

S̃yy = a′
1b

′
1s11 + a′

1b
′
2s12 + a′

2b
′
1s21 + a′

2b
′
2s22 + Jyy, (11)

where

S̃xx = Sxx − a0S0x − b0Sx0 + a0b0S00, (12)

S̃xy = Sxy − a0S0y − b′
0Sx0 + a0b

′
0S00, (13)

S̃yx = Syx − a′
0S0x − b0Sy0 + a′

0b0S00, (14)

S̃yy = Syy − a′
0S0y − b′

0Sy0 + a′
0b

′
0S00, (15)

and

Jxx =
∑

(m,n)∈J0

ambnsmn, Jxy =
∑

(m,n)∈J0

amb′
nsmn,

Jyx =
∑

(m,n)∈J0

a′
mbnsmn, Jyy =

∑
(m,n)∈J0

a′
mb′

nsmn,

with J0 = {(m,n)|m � 1,n � 1,m + n � 4,(m,n) �= (2,2)}.
In order to get a lower bound of s11, we should derive the

expression of s11 with Eqs. (8)–(11) first. Combining Eqs. (8)–
(10), we obtain the expression of s11 by eliminating s12 and s21

such that

s11 = s
(123)
11 +

∑
(m,n)∈J1

f
(123)
11 (m,n)smn, (16)

where J1 = {(m,n)|m � 1,n � 1,m + n � 4},

s
(123)
11 = (a1a

′
2b1b

′
2 − a′

1a2b
′
1b2)S̃xx − b1b2(a1a

′
2 − a′

1a2)S̃xy − a1a2(b1b
′
2 − b′

1b2)S̃yx

a1b1(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
, (17)

and

f
(123)
11 (m,n) = a2bn(a1a

′
m − a′

1am)(b1b
′
2 − b′

1b2) + amb1(a1a
′
2 − a′

1a2)(b2b
′
n − b′

2bn)

a1b1(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
. (18)

In these expressions, we use the superscript ∗(123) to denote the result obtained with the first three equations from Eqs. (8)–(11).
Under the conditions presented in Eq. (3), we can easily find out that (a1a

′
2 − a′

1a2) � 0, (b1b
′
2 − b′

1b2) � 0, (a1a
′
m − a′

1am) � 0
for all m � 1 and (b2b

′
n − b′

2bn) � 0 for all n � 2. Then we know that f
(123)
11 (m,n) � 0 hold for all (m,n) ∈ J1. With this fact,

we obtain a lower bound from Eq. (16) by setting smn = 0,(m,n) ∈ J1 such that

s11 = s
(123)
11 � s11, (19)

where s
(123)
11 is defined by Eq. (17). This and Eq. (17) are our major formulas for the decoy-state method implementation for

MDI-QKD in this section.
Similarly, we can get other expressions by choosing any other three equations from Eqs. (8)–(11). For example, we choose

Eqs. (8), (9), and (11). By eliminating s12 and s21, we get another expression of s11 such that

s11 = s
(124)
11 +

∑
(m,n)∈J1

f
(124)
11 (m,n)smn, (20)

where

s
(124)
11 = b′

1b
′
2(a1a

′
2 − a′

1a2)S̃xx + (a′
1a2b1b

′
2 − a1a

′
2b

′
1b2)S̃xy − a1a2(b1b

′
2 − b′

1b2)S̃yy

a1b
′
1(a1a

′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
(21)

and

f
(124)
11 (m,n) = a2b

′
n(a1a

′
m − a′

1am)(b1b
′
2 − b′

1b2) + amb′
1(a1a

′
2 − a′

1a2)(b2b
′
n − b′

2bn)

a1b
′
1(a1a

′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
. (22)
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Under the conditions presented in Eq. (3), we can also find
out that f

(124)
11 (m,n) � 0 for all (m,n) ∈ J1. Then we know

that s
(124)
11 is also a lower bound of s11. On the other hand, by

comparing f
(123)
11 (m,n) and f

(124)
11 (m,n), we have

f
(123)
11 (m,n) − f

(124)
11 (m,n)

= −a2(a1a
′
m − a′

1am)(b1b
′
n − b′

1bn)

a1b1b
′
1(a1a

′
2 − a′

1a2)
� 0, (23)

for any (m,n) ∈ J1. Then we know that

s
(123)
11 � s

(124)
11 , (24)

with Eqs. (16) and (20). With the relation presented in Eq. (24)
we know that the lower bound s

(123)
11 is tighter than the lower

bound s
(124)
11 . In the same way, we can get another two lower

bounds s
(134)
11 and s

(234)
11 of s11 with Eqs. (8), (10), and (11) and

Eqs. (9)–(11), respectively. Furthermore, we can also prove
that

s
(123)
11 � s

(134)
11 , s

(123)
11 � s

(234)
11 . (25)

Now we only consider Eqs. (8) and (11). By eliminating s12

or s21, respectively, we get two expressions of s11 such that

s11 = s
(14a)
11 +

∑
(m,n)∈J2

f
(14a)
11 (m,n)smn, (26)

s11 = s
(14b)
11 +

∑
(m,n)∈J2

f
(14a)
11 (m,n)smn, (27)

where J2 = {(m,n)|m � 1,n � 1,m + n � 3},

s
(14a)
11 = a′

1b
′
2S̃xx − a1b2S̃yy

a1a
′
1(b1b

′
2 − b′

1b2)
, (28)

s
(14b)
11 = a′

2b
′
1S̃xx − a2b1S̃yy

b1b
′
1(a1a

′
2 − a′

1a2)
, (29)

and

f
(14a)
11 (m,n) = a1b2a

′
mb′

n − a′
1b

′
2ambn

a1a
′
1(b1b

′
2 − b′

1b2)
, (30)

f
(14b)
11 (m,n) = a2b1a

′
mb′

n − a′
2b

′
1ambn

b1b
′
1(a1a

′
2 − a′

1a2)
. (31)

For any sources used in the protocol, we must have either
Ka = a′

1b
′
2

a1b2
� a′

2b
′
1

a2b1
= Kb or Ka � Kb. Supposing the former

one holds, we can easily find out that f
(14a)
11 (m,n) � 0 for all

(m,n) ∈ J2 and s
(14a)
11 is a lower bound of s11. On the other hand,

if Ka � Kb holds, we have f
(14b)
11 (m,n) � 0 for all (m,n) ∈ J2

and s
(14b)
11 is a lower bound of s11. Considering the following

two relations,

Ka − Kb = a′
1a2b1b

′
2 − a1a

′
2b

′
1b2

a1a2b1b2
(32)

and

f
(14a)
11 (m,n) − f

(14b)
11 (m,n)

= (a1a
′
mb1b

′
n − a′

1amb′
1bn)(a′

1a2b1b
′
2 − a1a

′
2b

′
1b2)

a1a
′
1b1b

′
1(a1a

′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
, (33)

we know that Ka − Kb and f
(14a)
11 − f

(14b)
11 have the same

sign, which means that they are both positive or negative
simultaneously. Then we can write the lower bound of s11

with Eqs. (8) and (11) into the following compact form:

s
(14)
11 = min

{
s

(14a)
11 ,s

(14b)
11

}
, (34)

that is the result presented in [19]. In the following, we will
prove that the lower bound s

(123)
11 given in Eq. (17) is more tight

than s
(14)
11 . First, if we suppose Ka � Kb holds, then we know

that a′
1a2b1b

′
2 � a1a

′
2b

′
1b2 and s

(14)
11 = s

(14a)
11 . For any (m,n) ∈

J1 we have

f
(123)
11 (m,n) − f

(14a)
11 (m,n)

= − (a1a
′
m − a′

1am)Da

a1a
′
1b1(a1a

′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
, (35)

where Da = (a1a
′
2b1b2b

′
n + a′

1a2b
′
1b2bn − a′

1a2b1b
′
2bn −

a′
1a2b1b2b

′
n) � b2(a1a

′
2 − a′

1a2)(b1b
′
n − b′

1bn). Then we know
that

f
(123)
11 (m,n) − f

(14a)
11 (m,n)

� −b2(a1a
′
m − a′

1am)(b1b
′
n − b′

1bn)

a1a
′
1b1(b1b

′
2 − b′

1b2)
� 0. (36)

We can easily know that s
(123)
11 � s

(14)
11 when Ka � Kb with

this equation. Second, if we suppose Ka � Kb holds, we
can easily prove that f

(123)
11 (m,n) − f

(14b)
11 (m,n) � 0 for all

(m,n) ∈ J1 within the same way. Then we get s
(123)
11 � s

(14)
11

when Ka � Kb.
In the last part of this section, we will derive another lower

bound of s11 with Eqs. (8)–(11). The idea presented in [19,24]
inspires us to do the following deduction:

S̃yy − S̃xx = (a′
1b

′
1 − a1b1)s11 +

∑
n�2

(a′
1b

′
n − a1bn)s1n +

∑
m�2

(a′
mb′

1 − amb1)sm1 +
∑

m,n�2

(a′
mb′

n − ambn)smn

� (a′
1b

′
1 − a1b1)s11 + A

∑
n�2

(a′
1bn + a1b

′
n)s1n + B

∑
m�2

(a′
mb1 + amb′

1)sm1 + C
∑

m,n�2

(a′
mbn + amb′

n)smn

� (a′
1b

′
1 − a1b1)s11 + α

[ ∑
n�2

(a′
1bn + a1b

′
n)s1n +

∑
m�2

(a′
mb1 + amb′

1)sm1 +
∑

m,n�2

(a′
mbn + amb′

n)smn

]
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= (a′
1b

′
1 − a1b1)s11 + α(S̃xy − a1b

′
1s11 + S̃yx − a′

1b1s11)

= [a′
1b

′
1 − a1b1 − α(a1b

′
1 + a′

1b1)]s11 + α(S̃xy + S̃yx), (37)

where we have used the condition presented in Eq. (3), and
α = min{A,B,C} with

A = a′
1b

′
2 − a1b2

a′
1b2 + a1b

′
2

, B = a′
2b

′
1 − a2b1

a′
2b1 + a2b

′
1

, C = a′
2b

′
2 − a2b2

a′
2b2 + a2b

′
2

.

Actually, under the condition in Eq. (3), we know that

A − C = −
(
b2

2 + b′
2

2)(a1a
′
2 − a′

1a2)

(a′
1b2 + a1b

′
2)(a′

2b2 + a2b
′
2)

� 0,

B − C = −
(
a2

2 + a′
2

2)(b1b
′
2 − b′

1b2)

(a′
2b1 + a2b

′
1)(a′

2b2 + a2b
′
2)

� 0.

Then α can be written as α = min{A,B}. According to the
relation presented in Eq. (37), we obtain the other expression
of s11:

s11 = s
(α)
11 +

∑
(m,n)∈J2

f
(α)
11 (m,n)smn, (38)

where

s
(α)
11 = S̃xx − S̃yy + α(S̃xy + S̃yx)

a1b1 − a′
1b

′
1 + α(a1b

′
1 + a′

1b1)
, (39)

and

f
(α)
11 (m,n) = −ambn − a′

ma′
n + α(amb′

n + a′
mbn)

a1b1 − a′
1b

′
1 + α(a1b

′
1 + a′

1b1)
. (40)

With the condition presented in Eq. (3), we can easily prove
that f

(α)
11 (m,n) � 0 for all (m,n) ∈ J2. So we know that s

(α)
11 is

the other lower bound of s11. In the coming, we will discuss
the relation among s

(α)
11 , s

(14)
11 , and s

(123)
11 .

First, we consider the special case with ak = bk and a′
k = b′

k

for any k � 1. In this case, we have Ka = Kb = a′
1a

′
2

a1a2
, A = B =

a′
1a

′
2−a1a2

a′
1a2+a1a

′
2
, and

f
(α)
11 (m,n) − f

(14)
11 (m,n)

= (a′
1a

′
2 − a1a2)(a1a

′
m − a′

1am)(a1a
′
n − a′

1an)

a1a
′
1

(
a2

1 + a′
1

2)(a1a
′
2 − a′

1a2)
� 0,

for any (m,n) ∈ J2. Then we know that s(14)
11 � s

(α)
11 in this case.

Second, for the general case, we can prove that

s
(123)
11 � s

(α)
11 . (41)

In the situation with A � B, we have

A − B = DA1 − DA2

(a′
1b2 + a1b

′
2)(a′

2b1 + a2b
′
1)

� 0,

where DA1 = a′
1a2b1b2 − a1a

′
2b1b2 − a1a2b

′
1b2 +

a1a2b1b
′
2 + a′

1a
′
2b1b

′
2, and DA2 = a′

1a
′
2b

′
1b2 − a′

1a2b
′
1b

′
2 +

a1a
′
2b

′
1b

′
2. With this condition, we can do the following

calculation:

f
(α=A)
11 (m,n) − f

(123)
11 (m,n)

= − (a1a
′
m − a′

1am)
(
a1bnDA1 + DA3

)
a1b1

(
a2

1 + a′
1

2)(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)

� − (a1a
′
m − a′

1am)
(
a1bnDA2 + DA3

)
a1b1

(
a2

1 + a′
1

2)(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)

= (a1b
′
2 + a′

1b2)(a1a
′
m − a′

1am)(b1b
′
n − b′

1bn)

a1b1
(
a2

1 + a′
1

2)(b1b
′
2 − b′

1b2)

� 0. (42)

On the other hand, in the situation with A � B, we have

A − B = DB1 − DB2

(a′
1b2 + a1b

′
2)(a′

2b1 + a2b
′
1)

� 0,

where DB1 = a′
1a2b1b2 − a1a

′
2b1b2 − a1a2b

′
1b2 +

a1a2b1b
′
2 − a1a

′
2b

′
1b

′
2, and DA2 = a′

1a
′
2b

′
1b2 − a′

1a
′
2b1b

′
2 −

a′
1a2b

′
1b

′
2. With this condition, we can do the following

calculation:

f
(α=B)
11 (m,n) − f

(123)
11 (m,n)

= (b1b
′
n − b′

1bn)
(
b1amDB1 + DB3

)
a1b1

(
b2

1 + b′
1

2)(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)

�
(b1b

′
n − b′

1bn)
(
b1amDB2 + DB3

)
a1b1

(
b2

1 + b′
1

2)(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)

= (a2b
′
1 + a′

2b1)(a1a
′
m − a′

1am)(b1b
′
n − b′

1bn)

a1b1
(
b2

1 + b′
1

2)(a1a
′
2 − a′

1a2)

� 0. (43)

Summing up the results presented in Eqs. (42) and (43), we
complete the proof of Eq. (41).

In order to estimate the final key rate, we also need the upper
bound of error rate caused by the two single-photon pulses,
say e11. Similar to the total gain, the total error rate with source
αβ chosen by Alice and Bob can be written as [18]

T̃xx = a1b1t11 + a1b2t12 + a2b1t21 + a2b2t22 + Kxx, (44)

T̃xy = a1b
′
1t11 + a1b

′
2t12 + a2b

′
1t21 + a2b

′
2t22 + Kxy, (45)

T̃yx = a′
1b1t11 + a′

1b2t12 + a′
2b1t21 + a′

2b2t22 + Kyx, (46)

T̃yy = a′
1b

′
1t11 + a′

1b
′
2t12 + a′

2b
′
1t21 + a′

2b
′
2t22 + Kyy, (47)

where Tαβ = EαβSαβ , tmn = smnemn,

T̃xx = Txx − a0T0x − b0Tx0 + a0b0T00, (48)

T̃xy = Txy − a0T0y − b′
0Tx0 + a0b

′
0T00, (49)
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T̃yx = Tyx − a′
0T0x − b0Ty0 + a′

0b0T00, (50)

T̃yy = Tyy − a′
0T0y − b′

0Ty0 + a′
0b

′
0T00, (51)

and

Kxx =
∑

(m,n)∈J0

ambntmn, Kxy =
∑

(m,n)∈J0

amb′
ntmn,

Kyx =
∑

(m,n)∈J0

a′
mbntmn, Kyy =

∑
(m,n)∈J0

a′
mb′

ntmn,

with J0 = {(m,n)|m � 1,n � 1,m + n � 4,(m,n) �= (2,2)}.
According to Eq. (44), we can find out the upper bound of
e11 such that

e11 � e
(1)
11 = T̃xx

a1b1s11
= e11. (52)

In the protocol, there are two different bases. We denote sZ
11

and sX
11 for yields of single-photon pulse pairs in the Z and X

bases, respectively. Consider those postselected bits caused by
source xAxB in the Z basis. After an error test, we know the
bit-flip error rate of this set, say T Z

xAxB
= EZ

xAxB
SZ

xAxB
. We also

need the phase-flip rate for the subset of bits which are caused
by the two single-photon pulse, say e

ph
11, which is equal to the

flip rate of postselected bits caused by a single photon in the X

basis, say eX
11. Given this, we can now calculate the key rate by

the well-known formula. For example, for those postselected
bits caused by source yAyB , it is

R = a′
1b

′
1s

Z
11

[
1 − H

(
eX

11

)] − SZ
yAyB

f H
(
EZ

yAyB

)
, (53)

where f is the efficiency factor of the error correction method
used.

III. EXACT MINIMUM OF YIELD WITH ONLY THREE
STATES FOR MDI-QKD

In the previous section, we show the lower bound of yield
s11 and the upper bound of error rate e11 with explicit formulas.
The lower bound s

(123)
11 is obtained with Eqs. (8)–(10) by

setting smn = 0, where (m,n) ∈ J1. The upper bound of e
(1)
11 is

obtained with Eq. (44) by setting emn = 0, where (m,n) ∈ J2.
Obviously, the relation with source yAyB is not used in deriving
s

(123)
11 and e

(1)
11 . Keeping sight of this fact, we suspect that a

tighter bound can be found out considering all relations given
by Eqs. (8)–(11) [or Eqs. (44)–(47)]. In the rest of this section,
we will present an explicit algorithm within a finite number of
steps to get an exact minimum of yield s11. An exact maximum
of error rate e11 will be given in the next section.

According to Eqs. (8)–(11), we can find out the expression
of s11,s12,s21, and s22 uniquely:

s11 = s
(1234)
11 +

∑
(m,n)∈J0

f
(1234)
11 (m,n)smn, (54)

s12 = s
(1234)
12 +

∑
(m,n)∈J0

f
(1234)
12 (m,n)smn, (55)

s21 = s
(1234)
21 +

∑
(m,n)∈J0

f
(1234)
21 (m,n)smn, (56)

s22 = s
(1234)
22 +

∑
(m,n)∈J0

f
(1234)
22 (m,n)smn, (57)

where

s
(1234)
11 = a′

2b
′
2S̃xx − a′

2b2S̃xy − a2b
′
2S̃yx + a2b2S̃yy

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
,

s
(1234)
12 = −a′

2b
′
1S̃xx + a′

2b1S̃xy + a2b
′
1S̃yx − a2b1S̃yy

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
,

s
(1234)
21 = −a′

1b
′
2S̃xx + a′

1b2S̃xy + a1b
′
2S̃yx − a1b2S̃yy

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
,

s
(1234)
22 = a′

1b
′
1S̃xx − a′

1b1S̃xy − a1b
′
1S̃yx + a1b1S̃yy

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
,

and

f
(1234)
11 (m,n) = − (a2a

′
m − a′

2am)(b2b
′
n − b′

2bn)

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
, (58)

f
(1234)
12 (m,n) = − (a2a

′
m − a′

2am)(b1b
′
n − b′

1bn)

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
, (59)

f
(1234)
21 (m,n) = − (a1a

′
m − a′

1am)(b2b
′
n − b′

2bn)

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
, (60)

f
(1234)
22 (m,n) = − (a1a

′
m − a′

1am)(b1b
′
n − b′

1bn)

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
. (61)

In the following, we denote the superscript (1234) by (∗) for
short.

In order to estimate the lower bound of s11, we
need to present some properties about the functions
f

(∗)
11 (m,n),f (∗)

12 (m,n),f (∗)
21 (m,n),f (∗)

22 (m,n). With the condition
given by Eq. (3), we know that f

(∗)
11 (2,k) = f

(∗)
11 (k,2) =

0 for all k � 3, f
(∗)
11 (1,k) � 0,f

(∗)
11 (k,1) � 0 for all k � 3,

and f
(∗)
11 (m,n) � 0 for all m,n � 3. Similarly, we know

that f
(∗)
12 (1,k) � 0, f

(∗)
12 (k,1) = f

(∗)
12 (2,k) = 0, f

(∗)
12 (k,2) �

0, f
(∗)
12 (m,n) � 0, f

(∗)
21 (k,1) � 0, f

(∗)
21 (1,k) = f

(∗)
21 (k,2) = 0,

f
(∗)
21 (2,k) � 0, f

(∗)
21 (m,n) � 0, f

(∗)
22 (1,k) = f

(∗)
22 (k,1) = 0 for

all k,m,n � 3, and f
(∗)
22 (m,n) � 0 for all m,n � 2. With these

facts, we can find out a lower bound of s11 by setting s1k =
sk1 = 0,(k � 3) and smn = 1,(m,n � 3) crudely. Actually, all
smn(m,n � 3) do not have to equal to 1 at the same time as the
constraint conditions such that s12,s21,s22 ∈ [0,1]. Thus, the
problem of estimating the lower bound of s11 can be written
into the following constrained optimization problem (COP):

min: s11 = s
(∗)
11 +

∑
(m,n)∈J3

f
(∗)
11 (m,n)smn

(62)
st: s22 = s

(∗)
22 +

∑
(m,n)∈J3

f
(∗)
22 (m,n)smn � 0,

where J3 = {(m,n)|m � 2,n � 2,(m,n) �= (2,2)}. In this
COP, there is an infinite number of variables. If s

(∗)
22 +∑

(m,n)∈J3
f

(∗)
22 � 0, the problem can be solved by taking

smn = 1 for all (m,n) ∈ J3, but in practice this trivial situation
never or almost never occurs.

Generally, we cannot solve this COP analytically. In what
follows we will show that the problem can be solved by an
explicit algorithm. Still, as shown below, it can always be
determined within a finite number of steps.
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A. Definition of the lower bound

In order to solve this COP presented in Eq. (62), we need
to analyze the ratio

h
(22)
11 (m,n) = f

(∗)
11 (m,n)

f
(∗)
22 (m,n)

= ha(m)hb(n), (63)

where

ha(m) = a2a
′
m − a′

2am

a1a′
m − a′

1am

, hb(n) = b2b
′
n − b′

2bn

b1b′
n − b′

1bn

. (64)

Under the condition in Eq. (3), we can easily prove that
ha(k),hb(k) are two non-negative monotone increasing func-
tions of variable k � 3. This fact tells us that sm+1,n and sm,n+1

have priority to be equal to 1 over smn in order to minimize s11

in Eq. (62). Back to the COP, we can solve it by introducing
the three subsets JL,Js = {(ms,ns)},JU of J3, and one positive
real number sL ∈ (0,1] such that

h
(22)
11 ((m,n) ∈ JL) � h

(22)
11 (ms,ns)

� h
(22)
11 ((m,n) ∈ JU ), (65)

with J3 = JL ∪ Js ∪ JU and

s
(∗)
22 +

∑
(m,n)∈JU

f
(∗)
22 (m,n) > 0, (66)

s
(∗)
22 +

∑
(m,n)∈JU ∪Js

f
(∗)
22 (m,n) � 0, (67)

s
(∗)
22 +

∑
(m,n)∈JU

f
(∗)
22 (m,n) + sLf

(∗)
22 (ms,ns) = 0. (68)

Then we can define the lower bound of s11 by

s∗
11 = s

(∗)
11 +

∑
(m,n)∈JU

f
(∗)
11 (m,n) + sLf

(∗)
11 (ms,ns). (69)

With the definitions of JL,Js,JU given by Eqs. (65)–(68), we
know that the set J3 is decomposed into three subsets JL,Js,JU .
It is important to point out that the subsets JL,Js,JU need
not be unique but the lower bound s∗

11 given by Eq. (69) is
always uniquely determined. If the subsets JL,Js,JU have
two different choices which are denoted by JL1 ,Js1 ,JU1 and
JL1 ,Js1 ,JU1 , then we must have

h
(22)
11

(
(m,n) ∈ JL12

) = h
(22)
11

(
ms1 ,ns1

)
= h

(22)
11

(
ms2 ,ns2

) = h
(22)
11

(
(m,n) ∈ JU12

)
, (70)

and the numbers of elements in the two sets JL1 ,JL2 are the
same, and the number of elements in the two sets JU1 ,JU2 are
also the same. In Eq. (70), JL12 = (JL1 − JL2 ) ∪ (JL2 − JL1 )
contains the elements that are only included in JL1 or only
in JL2 , and JU12 = (JU1 − JU2 ) ∪ (JU2 − JU1 ) contains the
elements that are only included in JU1 or only in JU2 . Here and
after in this article, we use A − B to denote the set which con-
tains the elements in A but not in B. Thus, we get sL1 = sL2 and∑

(m,n)∈JU1

f
(∗)
11 (m,n) + sL1f

(∗)
11

(
ms1 ,ns1

)

=
∑

(m,n)∈JU2

f
(∗)
11 (m,n) + sL2f

(∗)
11

(
ms1 ,ns1

)
. (71)

With this fact, we can conclude that the lower bound s∗
11 given

by Eq. (69) is unique.

B. An algorithm for finding JL,Js,JU , and sL

In order to confirm the value of s∗
11, we need to determine

the elements in sets JL,Js,JU and the proper value of sL. In the
following, we will present an algorithm for finding it within
finite steps.

We know that h(22)
11 (m + 1,n) � h

(22)
11 (m,n) and h

(22)
11 (m,n +

1) � h
(22)
11 (m,n) for any (m,n) ∈ J3. But we cannot pick the

larger one between h
(22)
11 (m + 1,n) and h

(22)
11 (m,n + 1) unless

we preset the sources used by Alice and Bob. Fortunately, this
defect does not affect our derivation of the algorithm within
finite steps.

In order to describe the algorithm clearly, we need to do the
following preparations. First, we define two limits:

ĥa = lim
m→∞ ha(m), ĥb = lim

n→∞ hb(n), (72)

where ha(m) and hb(n) are defined in Eq. (64). As discussed
before, we know that ha(k),hb(k) are two non-negative
monotone increasing functions of k � 3. Furthermore, under
the condition in Eq. (3), we can also prove that ha(a′

m,am)
is monotone increasing about a′

m ∈ [0,1] and monotone
decreasing about am ∈ [0,1]. Then we can find out a upper
bound of the function ha such that ha(a′

m,am) � a2/a1. By the
same method, we also have hb(b′

n,bn) � b2/b1. The function
ha(k) is a non-negative monotone increasing function with
finite upper bound, which means that limitations of it must
exist. The same is true for hb(k). This completes the proof of
Eq. (72). Explicitly, if Alice and Bob send out coherent pulses,
we have ĥa = (a′

2 − a2)/(a′
1 − a1),ĥb = (b′

2 − b2)/(b′
1 − b1).

Second, we also need the notations

Fc(m0,n0) =
∑

m�m0

f
(∗)
22 (m,n0), (73)

Fr (m0,n0) =
∑
n�n0

f
(∗)
22 (m0,n). (74)

Considering the normalizing conditions
∑
k�0

xk = 1, (x = a,b,a′,b′), (75)

we can calculate Fc(m0,n0),Fr (m0,n0) by the following
explicit formulas:

Fc(m0,n0) = −
(
a1ā

′
m0

− a′
1ām0

)(
b1b

′
n0

− b′
1bn0

)
(a1a

′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
, (76)

Fr (m0,n0) = −
(
a1a

′
m0

− a′
1am0

)(
b1b̄

′
n0

− b′
1b̄n0

)
(a1a

′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
, (77)

where x̄k0 = 1 − ∑k0−1
k=0 xk,(x = a,b,a′,b′).

Furthermore, for given JL,Js , and JU we introduce a vector
Vs with ls elements and two natural number mJ ,nJ such that

mJ = min
(m,n)∈JU

m, nJ = min
(m,n)∈JU

n. (78)
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The number ls is defined by

ls = max
(m�mJ ,n�nJ )∈JL

n. (79)

The kth element of Vs can be defined by

Vs(k) =
{

min(m,k)∈JU
m, 2 � k < ls

mJ , k = ls
. (80)

Actually, given the vector Vs , we know that Js = {(ms,ns)}
can only be one element chosen from the following set:

Ĵs = {(m,n) = (Vs(k),k)|nJ � k � ls}. (81)

With Ĵs , we define three sets, which contain only one element
in each as follows:

Ks =
{

(k,l)|h(22)
11 (k,l) = min

(m,n)∈Ĵs

h
(22)
11 (m,n)

}
, (82)

Kc =
{

(k,l)|h(22)
11 (k,l) = min

(m,n)∈Ĵ
(c)
s

h
(22)
11 (m,n)

}
, (83)

Kr =
{

(k,l)|h(22)
11 (k,l) = min

(m,n)∈Ĵ
(r)
s

h
(22)
11 (m,n)

}
, (84)

where Ĵs is defined in Eq. (81), and Ĵ (c)
s = Ĵs − {(Vs(nJ ),nJ )},

Ĵ (r)
s = Ĵs − {(Vs(ls),ls)}.

Finally, for given Js and JU , we define

G(JU ) = s
(∗)
22 +

∑
(m,n)∈JU

f
(∗)
22 (m,n), (85)

Gs(Js,JU ) = s
(∗)
22 +

∑
(m,n)∈Js∪JU

f
(∗)
22 (m,n). (86)

With these preparations, we are ready to present the
algorithm as follows:

Step 1. Initially, we have JL = ∅, Js = {(m,n)|h(∗)
11 (m,n) =

min[h(∗)
11 (2,3),h(∗)

11 (3,2)]}, JU = J3 − Js , and ls = 2, if Js =
{(2,3)},Vs = (3,3), else if Js = {(3,2)},Vs = (4,2) and mJ =
nJ = 2. Calculate Gs using Eq. (86). Actually, with JL = ∅,
Gs can be calculated by the following explicit formula:

Gs = s
(∗)
22 − (a1ā

′
2 − a′

1ā2)(b1b̄
′
2 − b′

1b̄2)

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
+ 1. (87)

As discussed before, we suppose G′ = G(L3) < 0 initially.
After these preparations, we initialize Gf with Gf = G(JU )
according to Eq. (85). If Gf < 0 we go to step 2, else we go
to step 3.

Step 2. Find out J ′
s = {(m′

s ,n
′
s)} such that f

(∗)
22 (m′

s ,n
′
s) =

min(m,n)∈JU
f

(∗)
22 (m,n) = min(m,n)∈Ĵs

f
(∗)
22 (m,n), where Ĵs is de-

fined in Eq. (81). So we need to find out the set F̂s . First, we
check whether the following two inequalities are fulfilled or
not:

h
(22)
11 ((m,n) ∈ Kr ) � ha[Vs(nJ )]ĥb, (88)

h
(22)
11 ((m,n) ∈ Kc) � ĥahb(ls), (89)

where ha(k),hb(k) are defined in Eq. (64) and ĥa,ĥb are defined
in Eq. (72). If Eq. (88) holds, we go to step 2.1, else if Eq. (89)
holds we go to step 2.2, else we go to step 2.3.

Step 2.1. In this situation, we know that h
(22)
11 ((m,n) ∈ Kr )

is greater than all the values h
(22)
11 (Vs(ls),k) for all k � 2. We

need to calculate the value

G′(JU ) = Gf −
∑

(m,n)∈Jr

f
(∗)
22 (m,n), (90)

where Jr = {(m,n)|m = Vs(ls),n � ls}. If G′(JU ) � 0 we
need to remove all the elements in Jr from the set of JU . Then
we can renew the values with mJ = mJ + 1,nJ = nJ ,ls =
ls − 1,JL = JL ∪ Jr,Js = Kr,JU = J3 − JL − Js and Gf =
Gf − f

(∗)
22 ((m,n) ∈ Js). If Gf < 0, we go back to step 2,

else we go to step 3. On the other hand, if G′(JU ) >

0, then we know that the element in the final set of
Js must be included in Jr . In this case we need to re-
new JL = JL ∪ Js,Js = {(Vs(ls),ls)},JU = JU − Js,Vs(ls) =
Vs(ls) + 1,ls = ls + 1,Vs(ls) = Vs(ls − 1) − 1, and Gf =
Gf − f

(∗)
22 ((m,n) ∈ Js). If Gf < 0, we go back to step 2, else

we go to step 3.
Step 2.2. In this situation, we know that h

(22)
11 ((m,n) ∈ Kc)

is greater than all the values h
(22)
11 (k,nJ ) for all k � 2. We need

to calculate the value

G′(JU ) = Gf −
∑

(m,n)∈Jc

f
(∗)
22 (m,n), (91)

where Jc = {(m,n)|m � Vs(nJ ),n = nJ }. If G′(JU ) � 0
we need to remove all the elements in Jc from the set of
JU . Then we can renew the values with mJ = mJ ,nJ =
nJ + 1,ls = ls ,JL = JL ∪ Jc,Js = Kc,JU = J3 − JL − Js

and Gf = Gf − f
(∗)
22 ((m,n) ∈ Js). If Gf < 0, we go back

to step 2, else we go to step 3. On the other hand, if
G′(JU ) > 0, then we know that the element in the final set
of Js must be included in Jc. In this case we need to renew
JL = JL ∪ Js,Js = {(Vs(nJ ),nJ )},JU = JU − Js,Vs(nJ ) =
Vs(nJ ) + 1,ls = ls , and Gf = Gf − f

(∗)
22 ((m,n) ∈ Js). If

Gf < 0, we go back to step 2, else we go to step 3.
Step 2.3. In this situation, we should renew JL = JL ∪

Js,Js = Ks,JU = JU − Js . Denoting Ks = {(km,kn)}, we can
renew ls and Vs by the following method. If kn = ls , we
have Vs(ls) = Vs(ls) + 1,ls = ls + 1,Vs(ls) = Vs(ls − 1) − 1.
If kn < ls , we have Vs(kn) = Vs(kn) + 1,ls = ls . Finally, we
renew Gf = Gf − f

(∗)
22 ((m,n) ∈ Js). If Gf < 0, we go back

to step 2, else we go to step 3.
Step 3. Now we have already found out the final sets

JL,Js,JU with step 2. In this step, we will calculate the value of
sL. According to the relation presented in Eq. (68), we should
define

sL = − Gf

f
(∗)
22 ((m,n) ∈ Js)

. (92)

Then we can calculate the lower bound s∗
11 of s11 by using

Eq. (69).

IV. EXACT MAXIMUM ERROR RATE WITH ONLY
THREE STATES FOR MDI-QKD

In Sec. II, we showed the upper bound of error rate e11 with
an explicit formula. The upper bound of e

(1)
11 is obtained with

Eq. (44) by setting emn = 0, where (m,n) ∈ J2. Obviously, the
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condition with source yA and yB is not used in deriving e
(1)
11 .

Keeping sight of this fact, we suspect that a tighter bound can
be found out considering all relations given by Eqs. (44)–(47).
In the rest of this section, we will show that we can find out an
exact maximum of error rate e11 within a finite number steps.

According to Eqs. (44)–(47), we can find out the expression
of t11,t12,t21, and t22 uniquely:

t11 = t
(∗)
11 +

∑
(m,n)∈J0

f
(∗)
11 (m,n)tmn, (93)

t12 = t
(∗)
12 +

∑
(m,n)∈J0

f
(∗)
12 (m,n)tmn, (94)

t21 = t
(∗)
21 +

∑
(m,n)∈J0

f
(∗)
21 (m,n)tmn, (95)

t22 = t
(∗)
22 +

∑
(m,n)∈J0

f
(∗)
22 (m,n)tmn, (96)

where

t
(∗)
11 = a′

2b
′
2T̃xx − a′

2b2T̃xy − a2b
′
2T̃yx + a2b2T̃yy

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
,

t
(∗)
12 = −a′

2b
′
1T̃xx + a′

2b1T̃xy + a2b
′
1T̃yx − a2b1T̃yy

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
,

t
(∗)
21 = −a′

1b
′
2T̃xx + a′

1b2T̃xy + a1b
′
2T̃yx − a1b2T̃yy

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
,

t
(∗)
22 = a′

1b
′
1T̃xx − a′

1b1T̃xy − a1b
′
1T̃yx + a1b1T̃yy

(a1a
′
2 − a′

1a2)(b1b
′
2 − b′

1b2)
,

and f
(∗)
11 (m,n),f (∗)

12 (m,n),f (∗)
21 (m,n),f (∗)

22 (m,n) are defined by
Eqs. (58)–(61).

With the properties of the functions
f

(∗)
11 (m,n),f (∗)

12 (m,n),f (∗)
21 (m,n),f (∗)

22 (m,n) discussed in
the previous section, we can find out an upper bound of t11 by
setting t1k = tk1 = 1,(k � 3) and tmn = 0,(m,n � 3) crudely.
As discussed in the previous section, all t1k,tk1,(k � 3) do not
have to equal to 1 at the same time as the constraint conditions
such that t12,t21,t22 ∈ [0,1]. Thus, the problem of estimating
the upper bound of t11 can be written into the following
constrained optimization problem:

max: t11 = t
(∗)
11 +

∑
k�3

f
(∗)
11 (1,k)t1k + f

(∗)
11 (k,1)tk1

st: t12 = t
(∗)
12 +

∑
k�3

f
(∗)
12 (1,k)t1k � 0, (97)

t12 = t
(∗)
12 +

∑
k�3

f
(∗)
21 (k,1)tk1 � 0.

In this COP, there is an infinite number of variables. Consid-
ering the independence between variables t1k and tk1, the COP
in Eq. (97) can be decomposed into the following two COPs:

max: t1 =
∑
k�3

f
(∗)
11 (1,k)t1k

(98)
st: t12 = t

(∗)
12 +

∑
k�3

f
(∗)
12 (1,k)t1k � 0

and

max: t2 =
∑
k�3

f
(∗)
11 (k,1)tk1

(99)
st: t12 = t

(∗)
12 +

∑
k�3

f
(∗)
21 (k,1)tk1 � 0.

In order to solve the two COPs, we need to analyze the ratios
f

(∗)
11 (1,k)/f (∗)

12 (1,k) and f
(∗)
11 (k,1)/f (∗)

21 (k,1). Actually, we have

f
(∗)
11 (1,k)

f
(∗)
12 (1,k)

= −hb(b′
k,bk),

f
(∗)
11 (k,1)

f
(∗)
21 (k,1)

= −ha(a′
k,ak),

where ha,hb are defined in Eq. (64). As discussed before, under
the condition in Eq. (3), ha(k),hb(k) are two non-negative
monotone increasing functions of variable k � 3. This fact
predicts that t1,k+1 (tk+1,1) has priority to be equal to 1 over
t1,k (tk,1) in order to maximize t1 (t2). Back to the COPs, we
can solve them by introducing two neutral numbers ka,kb and
two positive real numbers sa,sb ∈ (0,1] such that

t
(∗)
12 +

∑
k>kb

f
(∗)
12 (1,k) > 0

t
(∗)
12 +

∑
k�kb

f
(∗)
12 (1,k) � 0 (100)

t
(∗)
12 +

∑
k�kb

f
(∗)
12 (1,k) + sbf

(∗)
12 (1,kb) = 0

and

t
(∗)
21 +

∑
k>ka

f
(∗)
21 (k,1) > 0

t
(∗)
21 +

∑
k�ka

f
(∗)
21 (k,1) � 0 (101)

t
(∗)
21 +

∑
k�ka

f
(∗)
21 (k,1) + saf

(∗)
21 (ka,1) = 0.

Then we can define the upper bound of t11 by

t∗11 = t
(∗)
11 +

∑
k�kb

f
(∗)
11 (1,k) + sbf

(∗)
11 (1,kb)

+
∑
k�ka

f
(∗)
11 (k,1) + saf

(∗)
11 (ka,1), (102)

where ka,kb and sa,sb are defined in Eqs. (100) and (101),
which can be easily found out by using the algorithm presented
in the previous section.

After getting the lower bound of s11 and the upper bound
of t11, we can easily obtain the upper bound of the error rate
e11 such that

e
(∗)
11 = t

(∗)
11

/
s

(∗)
11 , (103)

where s
(∗)
11 is defined in Eq. (69) and t

(∗)
11 is defined in Eq. (102).

V. NUMERICAL SIMULATION

In this section, we will present some numerical simulations
to compare our results with the pre-existing results [19,23,24].
As discussed before, we know that the methods presented in
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TABLE I. List of experimental parameters used in numerical
simulations: e0 is the error rate of the background; ed is the
misalignment-error probability; pd is the dark count rate of UTPs
per detector; f is the error correction inefficiency; ηv is the detection
efficiency of Alice and Bob’s detector; pdv is the dark count rate of
Alice and Bob’s detector.

e0 ed pd f ηv pdv

0.5 1.5% 3.0 × 10−6 1.16 0.75 1.0 × 10−6

this paper apply to any sources that satisfy the condition given
by Eq. (3). Below, for simplicity, we consider the following two
cases. In the first case, we suppose that Alice and Bob use weak
coherent states (WCS). In the second one, we suppose they
use heralded single-photon sources (HSPS) with Poissonian
distributions [23]. The UTP is located in the middle of Alice
and Bob, and the UTP’s detectors are identical, i.e., they have
the same dark count rate and detection efficiency, and their
detection efficiency does not depend on the incoming signals.
We shall estimate what values would be probably observed for
the gains and error rates in the normal cases by a linear lossy
channel model as used elsewhere, e.g., [18,29]:

|n〉〈n| =
n∑

k=0

Ck
nξ

k(1 − ξ )n−k|k〉〈k|

where ξk is the transmittance for a distance from Alice to
the UTP. For fair comparison, we use the same parameter
values used in [18,24] for our numerical evaluation, which
follow the experiment reported in [28]. For simplicity, we
shall put the detection efficiency to the overall transmittance
η = ξ 2ζ . We assume all detectors of UTP have the same
detection efficiency ζ and dark count rate pd . In the second
case with HPSP, we assume all detectors of Alice and Bob
have the same detection efficiency ηv and dark count rate pdv .
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FIG. 1. (Color online) The relative value between the estimated
parameter of s11 and the asymptotic limit of the infinite decoy-state
method vs the total channel transmission loss using three-intensity
decoy-state MDI-QKD with WCS. We set μ1 = ν1 = 0.1, μ2 = ν2 =
0.5 for decoy state and signal states, respectively.
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FIG. 2. (Color online) The estimated parameter of e11 vs the
total channel transmission loss using three-intensity decoy-state
MDI-QKD with WCS. We set μ1 = ν1 = 0.1, μ2 = ν2 = 0.5 for
decoy state and signal states, respectively.

The values of these parameters are presented in Table I. With
this, by taking the photon number cutoff approximation up to
six photon number states, the total gains Sω

μi,νj
,(ω = X,Z)

and error rates Sω
μi,νj

Eω
μi,νj

,(ω = X,Z) of Alice’s intensity
μi(i = 0,1,2) and Bob’s intensity νj (j = 0,1,2) can be calcu-
lated. By using these values, we can estimate the lower bounds
of yield sZ

11 with Eq. (19). Also, we can estimate the upper
bounds of error rate eX

11 with Eq. (52). In order to see more
clearly, in Fig. 1, we plot the relative value of s11 to the result
obtained with the infinite decoy-state method. The simulation
of the upper bound of e11 is shown in Fig. 2. These figures
clearly show that our results are tighter than the pre-existing
ones. Furthermore, with these parameters, we can estimate the
final key rate R of this protocol with Eq. (53), which is shown
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FIG. 3. (Color online) The estimated key rate R vs channel
transmission using three-intensity decoy-state MDI-QKD with WCS.
We set μ1 = ν1 = 0.1, μ2 = ν2 = 0.5 for decoy state and signal
states, respectively.
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FIG. 4. (Color online) The optimal key rate vs the total channel
transmission loss using three-intensity decoy-state MDI-QKD. We
set μ1 = ν1 = 0.1 for decoy states.

in Fig. 3. In these three figures, the dotted lines are obtained by
the method presented in [24], the dash-dotted lines are obtained
by the method presented in [19], the dashed lines are obtained
by the analytical method presented in Sec. II with Eqs. (19) and
(52), and the solid lines are obtained by the infinite decoy-state
method. In the simulation, the intensities used by Alice and
Bob are assigned to μ1 = ν1 = 0.1, μ2 = ν2 = 0.5.

Furthermore, if we fix the densities of the decoy-state pulses
used by Alice and Bob, the final key rate will change with
Alice and Bob taking different intensities for their single-state
pulses. Here, we also take μ1 = ν1 = 0.1 and assume that
μ2 = ν2 > μ1. In Fig. 4, we present the optimal key rates with
different methods. In order to see more clearly, in Fig. 5, we
plot the relative value of the optimal key rate to the result
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FIG. 5. (Color online) The relative value between the optimal key
rate obtained with different methods and the asymptotic limit of the
infinite decoy-state method vs the total channel transmission loss
using three-intensity decoy-state MDI-QKD. We set μ1 = ν1 = 0.1
for decoy states.
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FIG. 6. (Color online) The optimal intensity vs the total channel
transmission loss using three-intensity decoy-state MDI-QKD with
WCS. We set μ1 = ν1 = 0.1 for decoy states.

obtained with the infinite decoy-state method. We can ob-
serve that our results are better than the pre-existing re-
sults. The optimal densities with the optimal key rate vs
the total channel transmission loss are given in Fig. 6.

If we use a source of HSPS, we can obtain a similar
conclusion, as illustrated by Fig. 7.

In Fig. 8, we plot the relative value of the optimal final
key rate R to the result obtained with the infinite decoy-state
method. We find that the results are further improved if we use
a program based on Eqs. (69) and (103). In the simulation, we
also take μ1 = ν1 = 0.1 and assume that μ2 = ν2 > μ1.
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FIG. 7. (Color online) Key rates with HSPS. Top: Optimal key
rate with infinite decoy states. Bottom: Relative value between
the optimal key rate obtained with different methods and the
asymptotic limit of the infinite decoy-state method vs the total channel
transmission loss using three-intensity decoy-state MDI-QKD with
HSPS. We set μ1 = ν1 = 0.1 for decoy states.
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FIG. 8. (Color online) The relative value between the optimal key
rate obtained with different methods and the asymptotic limit of the
infinite decoy-state method vs the total channel transmission loss
using three-intensity decoy-state MDI-QKD. We set μ1 = ν1 = 0.1
decoy states.

VI. CONCLUSION

We study the MDI-QKD in practice with only three
different states in implementing the decoy-state method. First,
we present tighter analytical formulas for the decoy-state
method for two-pulse sources with three different states. Then
we show an exact maximum of the yield s11 and an exact
minimum of the error rate e11 with an efficient algorithm.
These methods can be applied to the recently proposed
MDI-QKD with an imperfect single-photon source such as
the coherent states or the heralded states from the parametric
down conversion. Our methods here can significantly improve
the key rate and secure the distance of MDI-QKD with only
three intensities.
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