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In quantum error-correcting code (QECC), many quantum operations and measurements are necessary to
correct errors in logical qubits. In the stabilizer formalism, which is widely used in QECC, generators Gi (i =
1,2, . . .) consist of multiples of Pauli matrices and perform encoding, decoding, and measurement. In order
to maintain encoding states, the stabilizer Hamiltonian Hstab = −∑

i Gi is suitable because its ground state
corresponds to the code space. On the other hand, Hamiltonians of most solid-state qubits have two-body
interactions and show their own dynamics. In addition solid-state qubits are fixed on substrate and qubit-qubit
operation is restricted in their neighborhood. The main purpose of this paper is to show how to directly generate the
stabilizer Hamiltonian Hstab from conventional two-body Hamiltonians with Ising interaction and XY interaction
by applying a pulse control method such as an NMR technique. We show that generation times of Hstab for
nine-qubit code, five-qubit code, and Steane code are estimated to be less than 300 ns when typical experimental
data of superconducting qubits are used, and sufficient pulse control is assumed. We also show how to prepare
encoded states from an initial state |0, . . . ,0〉. In addition, we discuss an appropriate arrangement of two- or
three-dimensional arrayed qubits.
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I. INTRODUCTION

Similar to the digital computer, a rigid error-correcting
system is required in the quantum computer. Various quantum
error-correcting codes (QECC) have been developed such as
the standard code [1–9], the subsystem codes [10–12], and
the topological code [13–18]. In QECC, it is necessary for
many qubits to be coherently entangled for constructing logical
qubits. For instance, nine qubits are required for a logical
qubit of the nine-qubit code [1], seven qubits are required for
the seven-qubit Steane code, which is the smallest code of
the general CSS code [2], and so on [3,4]. In any quantum
codes, many operations and measurements are required for
encoding, decoding, and error-correcting processes. There are
strict requirements concerning the maximum error rate for the
success of QECC [3–5,18]. All manipulations of many qubits
should be done sufficiently within the coherence time.

In general, it is difficult to produce desired encoded states
consisting of many qubits. However, it is also difficult to
maintain each entangled state during the time required in a
flow of quantum computation [6–9]. This problem arises when
the encoded state is not the eigenstate of a system Hamiltonian.
The encoded state changes following the dynamics of the
system Hamiltonian. Assume that a computer system consists
of many blocks. Each block must correlate with every other
block to carry out a definite set of quantum computations.
As a simple structure of a computing system, let us consider
a system in which operations are synchronized to a system
clock, which is the case with the present widely used digital
computers. Then, all operations are carried out step by step
as the system clock ticks the system time. Entangled states
produced by controlled-NOT (CNOT) gates or other quantum
gates appear only periodically when the entangled states are
not the ground states of the system Hamiltonian. In such case,
if each block of a system includes an individual entangled
state, it will be difficult to control the synchronization of the
total system because the period of the desired entangled states

differs depending on the dynamics of each block. Thus, it
will be desirable for encoded states to be the ground states of
Hamiltonians of the blocks. Moreover, because each block of
a system changes its role as system time passes, it is desirable
that the Hamiltonian of each block changes depending on each
calculation step.

In this paper, we show how to efficiently implement
standard QECC in solid-state qubit systems with natural
two-body interactions, focusing on the stabilizer formalism.
Stabilizer operators {Gi |1 � i � l} are mutually commuting
operators given by products of multiple Pauli matrices [3,4].
Logical qubit states are encoded into a mutual eigenspace
HS of dimension 2l of these operators through measurements.
For l different stabilizers and n physical qubits, a maximum
number of k = n − l logical qubits can be encoded into
HS , whereas k < n − l in the case of subsystem encoding
[10–12]. Although preparation of some “quantum memory”
blocks to where logical qubit states can be transferred or
teleported is one solution to preserve logical qubit states, we
consider that it is better to change a system Hamiltonian into
a stabilizer Hamiltonian defined by Hstab ≡ −∑

i Gi , because
transformation or teleportation of encoded states requires
more complexity. We would also like to show how to generate
encoded states without measurements. The encoded states are
generated by using operators that are modified from stabilizer
operators. Therefore, in this paper, we mainly describe the
generation process of Hstab.

In previous papers [19,20], we showed that we can construct
Gi one by one based on the two-body Hamiltonian by using
the appropriate pulse sequence. However, it is much more
efficient to directly produce Hstab. In this paper, we show how to
directly create Hstab starting from the two-body Hamiltonian.
Hstab has a complicated form of multiplied Pauli matrices. We
show that appropriate pulse sequences to generate Hstab can be
found by inversely tracing a transformation from Hstab into a
single-qubit Hamiltonian that can be obtained when the qubits
are decoupled by an initial pulse sequence by suppressing
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FIG. 1. (Color online) Two-dimensional qubit array aiming at
Shor’s nine-qubit code. Boxes show qubits and bars between the
boxes show interactions between qubits. Horizontal qubits constitute
logical qubits.

the interaction terms. We show that the direct creation of
Hstab greatly reduces the number of operations compared
with our previous method in Refs. [19,20]. This reduction
is remarkable in the case of qubits with XY interaction. For
example, the number of single-qubit rotations Nrot and that of
qubit-qubit XY interaction Nint are reduced from Nrot = 44 to
Nrot = 20, and from Nint = 288 to Nint = 132, respectively, for
the Steane code. Similar results are obtained for the nine-qubit
code and the five-qubit code. Accordingly, operation time can
also be reduced. If we use a typical experimental parameter
of superconducting qubits, we can reduce the time required
to generate Hstab by 48.4% (194 ns), 59.1% (127.5 ns), and
54.4% (257 ns) for the nine-qubit code, the five-qubit code,
and the Steane code, respectively. The present method has the
advantage that, as pulse control technology progresses, pulse
error rate and speed are improved. Pulse errors can be corrected
by using NMR techniques such as the composite-pulse method
[21–25], and the speed is increased by improving a control
system operated by a digital computer.

We also investigate a possible architecture of standard codes
for solid-state qubits on lattice sites. In general, interactions
between solid-state qubits are restricted to their nearest-
neighbor or next-nearest-neighbor sites [26–32]. In order to
prevent unexpected external noise, it is preferable for physical
qubits in a logical qubit to be placed compactly in a small
region. Moreover, for logical qubits to interact effectively
with one another, it is desirable to place logical qubits side
by side. Therefore, it is natural to construct logical qubit by
one-dimensional (1D) qubit arrays and place them parallel as
shown in Fig. 1. In addition, frequent measurements in QECC
require other qubit arrays for measurements. We will discuss
possible setups of a qubit system.

This paper is organized as follows: In Sec. II we establish
the general procedure of generating the stabilizer Hamiltonian.
In Sec. III, we show examples of generating the stabilizer
Hamiltonian in the standard code, and in Sec. IV we show
how to generate the code state. Finally, in Sec. V, we consider
possible qubit architecture realized by solid-state qubits. We
close with a summary and conclusions in Sec. VII.

II. STABILIZER HAMILTONIAN GENERATION METHOD

A. Stabilizer coding and stabilizer Hamiltonian

In the stabilizer code [3,4], encoding, decoding, and error
correction are carried out based on the stabilizers, which

are mutually commutable and can be expressed by the Pauli
matrices:

Gl = ⊗n
i=1(Xi)

xi (Gl )(Zi)
zi (Gl ) (1)

[xi(Gl), zi(Gl) ∈ {0,1}], where Pauli matrices are given by

X =
(

0 1

1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0

0 −1

)
. (2)

The code word |�m〉 obeys the eigenvalue equation

Gl|�m〉 = |�m〉. (3)

Conventionally, in order to construct encoding states, start-
ing from an initial state �k

i=1|0〉i , measurements over stabilizer
operators of the selected code are repeated. Depending on
the measurement outcome, the common eigenstate is fixed to
be the desirable encoded state. The correction procedure for
the stabilizer code is carried out by measuring all relevant
stabilizer operators.

The stabilizer Hamiltonian Hstab is defined by

Hstab = −
l∑

i=1

Gi, (4)

where the summation is taken over the constituent stabilizers
of each code. Owing to the commutability of the stabilizers
Gi , the ground state of Eq. (4) is a common eigenstate of the
stabilizers, which is the encoded logical state. For the sake of
simplicity, we consider the standard codes without considering
the subsystem code (k = n − l).

B. System Hamiltonian

The solid-state Hamiltonian controlled by pulse signals can
be written as [33–35]

H (t) =
∑

i

[
�0iZi + 2�i cos

(
ωrf

i t + δi

)
Xi

]

+
∑
i<j

JijXiXj , (5)

where �i and ωrf
i are an amplitude and a frequency of a

controlled signal applied to a qubit i. If we move to a
frame rotating with the radio frequency ωrf

i about the z axis,
Hr = R−1H (t)R, with R = exp[−i

∑
i(ω

rf
i t/2)Zi], then the

transferred static Hamiltonian H ′ = Hr − ∑
i(ω

rf
i t/2)Zi is

approximately given by

H ′ =
∑

i

[(
�0i − ωrf

i

2

)
Zi + �i(cos δiXi − sin δiYi)

]

+
∑
i<j

Jij

2
[XiXj + YiYj ] (6)

(high-frequency components 2ωrf
i can be neglected). If

Eq. (5) includes an interaction of
∑

i<j JijZiZj instead of∑
i<j JijXiXj , the final Hamiltonian, Eq. (6), includes the

Ising interaction. The x pulse and y pulse for qubit i are
realized when δ = 0 and δ = −π/2 signals are respectively
applied to the qubit with ωrf

i = 2�0i . We assume that each
pulse is sufficiently strong for interactions between qubits to
be neglected during the pulse sequences (�i,�0i > Jij ).
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Then the qubit Hamiltonian in the rotating frame of ωrf
i =

2�0i is expressed by

Hq = H0 + Hint, (7)

where a single-qubit part H0 is given by

H0 =
∑

i

H0i =
∑

i

�iXi. (8)

The interacting part Hint = ∑
ij H

ij
int is expressed by

HXY =
∑
i<j

H
ij

XY =
∑
i<j

Jij [XiXj + YiYj ], (9)

for XY interaction, and

HIsing =
∑
i<j

H
ij

Ising =
∑
i<j

JijZiZj , (10)

for Ising interaction.

C. Dynamic generation of stabilizer Hamiltonian

The generation of Hstab from a qubit Hamiltonian Hq

consists of two steps. The first step is to extract a single-
qubit part or a pure two-body interaction part from Hq . The
second step is to construct Hstab dynamically with pulse
sequences by using a selected single-qubit part Hini and
qubit-qubit interactions H

ij
int. Because the second step is the

core framework of this paper, we first describe the second step
of dynamical transformation to Hstab. The extraction method
is described in Sec. II D.

The transformation from the two-body Hamiltonian Hq to
the many-body Hamiltonian Hstab is carried out dynamically by
using a time evolution of a system starting from a simple initial
Hamiltonian Hini ∝ Xi , Yi , or Zi [19,20]. The time evolution of
the generation process is illustrated with the schematic notation

ρ(0)
tH−→ ρ(t), where ρ(t) = exp(−iH t)ρ(0) exp(iH t) is the

density matrix for a time-independent Hamiltonian H , or
for an effective H in the sense of the average Hamiltonian
theory [21]. After the application of mutually inverse, unitary
operations according to

ρ(0)
τopHop−→ τiniHini−→ −τopHop−→ ρ(τini + 2τop), (11)

the system evolves as if propagated by the effective Hamilto-
nian exp(−iτopHop)Hini exp(iτopHop) for a time τini [19]. Here,
Hop is an operator by which an initial Hamiltonian is changed
into the target effective Hamiltonian.

To build Hstab from Hini, we need two elementary trans-
formations for Hop in Eq. (11): one that rotates arbitrary
single-qubit terms through an angle of π/2 and another that
increases the order of Pauli-matrix terms by one. Higher-order
products of Pauli matrices can be generated using the following
transformations [19]:

e−iθ[XY ]12X1e
iθ[XY ]12 = cos(2θ )X1 − sin(2θ )Z1Y2, (12)

e−iθ[XY ]12Y1e
iθ[XY ]12 = cos(2θ )Y1 + sin(2θ )Z1X2, (13)

e−iθ[XY ]12Z1e
iθ[XY ]12 = cos2(2θ )Z1 + sin2(2θ )Z2

+ 1
2 sin(4θ )[X1Y2 − Y1X2] , (14)

for XY interaction. When θ = π/4 we can change the number
of Pauli matrices given by

X1 → −Z1Y2, (15)

Y1 → Z1X2, (16)

Z1 → Z2. (17)

For Ising interaction, we use the relations given by

e−iθZ1Z2X1e
iθZ1Z2 = cos(2θ )X1 + sin(2θ )Y1Z2, (18)

e−iθZ1Z2Y1e
iθZ1Z2 = cos(2θ )Y1 − sin(2θ )X1Z2. (19)

Then, for θ = π/4, we can change the number of Pauli
matrices given by

X1 → Y1Z2, (20)

Y1 → −X1Z2, (21)

Z1 → Z1. (22)

By combining these equations with single-qubit rotations, we
can change Hq to Hstab.

D. Extracting Hini and H i j
int from a qubit Hamiltonian

In order to use the above-mentioned dynamic method,
the important step is to extract a single-qubit part or a pure
two-body interaction part from a qubit Hamiltonian Hq . This
process is carried out using the Baker-Campbell-Hausdorff
(BCH) formula [21]. Here, we assume that qubits interact
with their nearest-neighbor qubits. Then, in order to define a
logical qubit, we have to determine the locations of physical
qubits in a logical qubit. In this section, after we explain the
BCH formula, we would like to define a logical qubit arranged
on lattice sites. Then, finally we will show how to extract a
single-qubit part Hini and a pure two-body interaction Hop from
the Hamiltonian of a qubit lattice.

1. Manipulation by using the BCH formula

A desirable part of the original Hamiltonian Hq is
extracted by using appropriate pulse sequences [19]. The
basic idea can be illustrated by using the standard NMR
Hamiltonian HNMR = ∑

i εiZi + ∑
i<j JZiZj . In this case,

because of the property [H0,Hint] = 0, H0 and Hint can
be separately obtained by using a simple pulse se-
quence. The interaction part HIsing can be extracted by
using two sandwiched π pulses such as exp(iτHIsing) =
e−i(π/2)

∑
j Yj ei(τ/2)HNMRei(π/2)

∑
j Yj ei(τ/2)HNMR . For the general

Hamiltonian [Eqs. (8)–(10)], because [H0,Hint] 	= 0, we ap-
proximately obtain a desirable part by repeatedly applying
the BCH formula. For A = ha + hb (original Hamiltonian)
and B = ha − hb (transferred by applying a π pulse) with
ha = iτHa and hb = iτHb, we can extract ha = iτHa by
using the relation given by

(eAeB)n ≈ exp
[
i2t0Ha + (

t2
0 /n

)
[Ha,Hb]

]
(23)
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(t0 ≡ nτ ). Thus, as long as (t0/n)||Hb|| � 1 where ||A|| =
[Tr(A†A)/d]1/2 is the standard operator norm in a Hilbert space
of dimension d, we can neglect the second term. As the number
n of repetitions increases, this approximation improves.

In the following sections, we use an extended form of
Eq. (23) described by

(eAeBeB ′
eA′

)n ≈ [exp(2ha + [hb,ha]) exp(2h′
a − [h′

b,h
′
a])]n

≈ exp [2n(ha + h′
a) + n[hb,ha]

− n[h′
b,h

′
a] + 4n[ha,h

′
a]], (24)

where A′ = h′
a + h′

b and B ′ = h′
a − h′

b. 2(ha + h′
a) is the

target Hamiltonian. In the following two sections, we show
how to extract a desirable interaction term H

ij
int and a single-

qubit part H0 from Hq by using Eq. (24).

2. Qubit lattice and logical qubit

We consider a qubit lattice in which physical qubits are
arrayed on a lattice site interacting with their neighboring
qubits. The simplest arrangement is a 1D array as shown in
Fig. 1. Then we can interact logical qubits with their nearest-
neighbor logical qubits by using interactions between physical
qubits. The number of qubits in each 1D array depends on how
many physical qubits are required to construct a single logical
qubit. In Fig. 1, nine qubits constitute a logical qubit.

3. Selection of a single-qubit Hamiltonian

Here we show how to extract H0 from Hq for two-
dimensional (2D) qubit lattice, assuming always-on interac-
tions between qubits. As an example, we consider logical
qubits consisting of five qubits. In a 1D qubit array, H0 is ob-
tained by choosing B = −h1 + h2 − h3 + h4 − h5 − ∑

i hij

and B ′ = h1 − h2 + h3 − h4 + h5 − ∑
i hij , while A and A′

are Hq in Eq. (24) [hi = τH0i and hij = τH
ij
int]. This procedure

can be extended to the 2D lattice case by taking into account
interactions between different logical qubits.

In this section, we treat Hamiltonians that include two types
of Pauli matrices or fewer, such as Eq. (5) or Eq. (6), with
ωrf

i = 2�0i . For Eq. (5), “π pulse” corresponds to a π pulse
around the y axis. For Eq. (6) with ωrf

i = 2�0i , “π pulse”
corresponds to a π pulse around the z axis, which can also
be produced by a π pulse around the y axis after that around
the x axis. Extraction of H0 and two-body interaction from
the Hamiltonian, Eq. (6), with ωrf

i 	= 2�0i is described in
Appendix A.

The 2D lattice Hamiltonian is given by

H 2D =
∑

k

H (k)
q , (25)

where

H (k)
q = H

(k)
0 + H

(k)
int + H

(k,k+1)
int . (26)

H
(k,k+1)
int shows an interaction term between kth logical qubits

and (k + 1)th qubits. In order to separate different logical
qubits, H

(k,k+1)
int should be erased. We apply π pulses to

(i) qubits 1,3,5 of . . . ,(k − 1)th,(k + 1)th, . . . arrays for A;
(ii) qubits 1,3,5 of . . . ,kth,(k + 2)th, . . . arrays for B; (iii)
qubits 2,4 of . . . ,(k − 1)th,(k + 1)th, . . . arrays for B ′; and

(iv) qubits 2,4 of qubits of . . . ,kth,(k + 2)th, . . . arrays
for A′:

A = · · · − h
(k−1)
1 + h

(k−1)
2 − h

(k−1)
3 + h

(k−1)
4 − h

(k−1)
5 − h

(k−1)
int

−h
(k−1,k)
11 + h

(k−1,k)
22 − h

(k−1,k)
33 + h

(k−1,k)
44 − h

(k−1,k)
55

+h(k)
q − h

(k,k+1)
11 + h

(k,k+1)
22 − h

(k,k+1)
33 + h

(k,k+1)
44

−h
(k,k+1)
55 − h

(k+1)
1 + h

(k+1)
2 − h

(k+1)
3 + h

(k+1)
4 − h

(k+1)
5

−h
(k+1)
int · · · , (27)

B = · · · + h(k−1)
q − h

(k−1,k)
11 + h

(k−1,k)
22 − h

(k−1,k)
33 + h

(k−1,k)
44

−h
(k−1,k)
55 − h

(k)
1 + h

(k)
2 − h

(k)
3 + h

(k)
4 − h

(k)
5 − h

(k)
int

−h
(k,k+1)
11 + h

(k,k+1)
22 − h

(k,k+1)
33 + h

(k,k+1)
44 − h

(k,k+1)
55

+h(k+1)
q · · · , (28)

B ′ = · · · + h
(k−1)
1 − h

(k−1)
2 + h

(k−1)
3 − h

(k−1)
4 + h

(k−1)
5 − h

(k−1)
int

+h
(k−1,k)
11 − h

(k−1,k)
22 + h

(k−1,k)
33 − h

(k−1,k)
44 + h

(k−1,k)
55

+h(k)
q + h

(k,k+1)
11 − h

(k,k+1)
22 + h

(k,k+1)
33 − h

(k,k+1)
44

+h
(k,k+1)
55 + h

(k+1)
1 − h

(k+1)
2 + h

(k+1)
3 − h

(k+1)
4 + h

(k+1)
5

−h
(k+1)
int · · · , (29)

A′ = · · · + h(k−1)
q + h

(k−1,k)
11 − h

(k−1,k)
22 + h

(k−1,k)
33 − h

(k−1,k)
44

+h
(k−1,k)
55 + h

(k)
1 − h

(k)
2 + h

(k)
3 − h

(k)
4 + h

(k)
5 − h

(k)
int

+h
(k,k+1)
11 − h

(k,k+1)
22 + h

(k,k+1)
33 − h

(k,k+1)
44 + h

(k,k+1)
55

+h(k−1)
q · · · , (30)

where h(k)
q = τ (H (k)

0 + H
(k)
int ). By using Eq. (24), we obtain

Heff = 2
∑

k H
(k)
0 .

4. Selection of two-body interaction

Next, we show how to extract the interaction term H
ij
int

between two qubits in order to use Eqs. (12)–(14) or Eqs. (18)
and (19) for the 2D lattice qubits. As an example, we consider
a case of extracting h23 = iτH 23

int in a five-qubit array. The
required transformation is given by extending the results of
Ref. [20]. A in Eq. (24) is the original Hamiltonian such as
A = τ (H0 + Hint). B in Eq. (24) is given by applying a π pulse
to qubits 2,3,5 of (k + 2n)th logical qubits and qubits 1,4 of
(k + 2n − 1)th logical qubits (n is an integer):

B = · · · − h
(k−1)
1 + h

(k−1)
2 + h

(k−1)
3 − h

(k−1)
4 + h

(k−1)
5

−h
(k−1)
12 + h

(k−1)
23 − h

(k−1)
34 − h

(k−1)
45 − h

(k−1,k)
int

+h
(k)
1 − h

(k)
2 − h

(k)
3 + h

(k)
4 − h

(k)
5 − h

(k)
12 + h

(k)
23

−h
(k)
34 − h

(k)
45 − h

(k,k+1)
int − h

(k+1)
1 + h

(k+1)
2

+h
(k+1)
3 − h

(k+1)
4 + h

(k+1)
5 − h

(k+1)
12 + h

(k+1)
23

−h
(k+1)
34 − h

(k+1)
45 − h

(k+1,k+2)
int · · · , (31)
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where h
(k)
i ≡ iτH

(k)
0 and h

(k)
ij = iτH

(k)
int . B ′ is given by applying

a π pulse to qubits 2,3,5 of (k + 2n − 1)th logical qubits and
qubits 1,4 of (k + 2n)th logical qubits (n is an integer):

B ′ = · · · + h
(k−1)
1 − h

(k−1)
2 − h

(k−1)
3 + h

(k−1)
4 − h

(k−1)
5

−h
(k−1)
12 + h

(k−1)
23 − h

(k−1)
34 − h

(k−1)
45 − h

(k−1,k)
int

−h
(k)
1 + h

(k)
2 + h

(k)
3 − h

(k)
4 + h

(k)
5

−h
(k)
12 + h

(k)
23 − h

(k)
34 − h

(k)
45 − h

(k,k+1)
int + h

(k+1)
1 − h

(k+1)
2

−h
(k+1)
3 + h

(k+1)
4 − h

(k+1)
5 − h

(k+1)
12 + h

(k+1)
23

−h
(k+1)
34 − h

(k+1)
45 − h

(k+1,k+2)
int · · · . (32)

The A′ is obtained by applying a π pulse to all qubits given by

A′ = τ (−H0 + Hint). (33)

By using Eq. (24), we can obtain
∑

k 4h
(k)
23 .

The perturbation terms in Eq. (24) are described in
Appendix B. For the selection of

∑
k 4h

(k)
23 , the perturbation is

estimated as ||Hpert|| ≈ 10τNqubitJ�, and for the case of H0,
we have ||Hpert|| ≈ 20τNqubitJ�, where Nqubit is the number
of connected qubits. As long as Nqubit is not large, these
perturbation terms can be neglected by repeating Eq. (24) with
Jij t0/n � 1. Hereafter, we consider the case of n = 1 for
simplicity. Note that the procedure described in this section
can be easily extended to three-dimensionally (3D) arrayed
qubits.

E. Estimation of elapsed time

In order to estimate an operation time of pulse manipula-
tions, we express the time for single-qubit rotation as τrot. For
preparing a single Hamiltonian H0, it takes an extra time of
5τrot, because, in Eq. (24), four Hamiltonians A, B, B ′, and A′
are transformed from Hq by being sandwiched by π pulses. It
also takes extra times of 4τrot and 5τrot to obtain exp(iτopHop)
and exp(−iτopHop), respectively, in Eq. (11). In the latter
case, τrot is required to reverse the sign of Hop. Thus, for Nop

qubit-qubit operations, it takes a time of Nop[2τop + 9τrot].
In the following, we would like to address the feasibility

of our scheme in a typical superconducting qubit system.
Note that our qubit lattice model can be applied not only to
solid-state coupling qubits [36–39], but also to circuit-QED
qubits [40–43]. For two superconducting qubits in a circuit-
QED setup the effective interqubit interaction can be treated
as XY type [44,45]. For instance, for g/� = 0.1, g/(2π ) =
200 MHz, �/(2π ) = 2 GHz, where g is the Jaynes-Cummings
coupling constant and � is the detuning between the resonator
frequency and the qubit splitting, we have J/(2π ) = 20 MHz.

Thus, τop ≈ 6.25 ns. We also take τrot ≈ 1 ns [20]. The
criterion is whether all pulse sequences can be done during
the dephasing time T2. We will show that all generation times
are less than 300 ns. Thus, if we assume T2 ∼ 10–20 μs with
well-controlled pulses, which was realized by Paik et al. [43],
we will be able to use the standard QECC process and correct
qubit errors, as long as the number of errors is small.

III. GENERATION OF STABILIZER CODE FROM
CONVENTIONAL HAMILTONIAN

Here, we show concrete pulse sequences to produce the
target stabilizer Hamiltonians of the three major codes: the
nine-qubit code, the five-qubit code, and the Steane code.
In general, it is difficult to find a pulse sequence of the
transformation from the conventional two-body solid-state
Hamiltonian to the target stabilizer Hamiltonian, because
the target Hamiltonians have Pauli matrices whose form is
complicated. The best way to look for an appropriate pulse
sequence is to change the target stabilizer Hamiltonian into
a single-qubit Hamiltonian, because it is easier to reduce
the number of multiplications of the Pauli matrices to a
single-qubit Hamiltonian. In the following, we show the
transformation process of Hstab of the three major codes to the
initial single-qubit Hamiltonian. We also count the number of
pulses and estimate the generation time of the codes. We show
that the direct generation of Hstab is more effective than the
previous method [20] in which Gi is generated one by one. The
comparison of the present results with those of the previous
results is summarized in Tables I and II.

A. Nine-qubit code

We would like to start from Shor’s nine-qubit code, which was
the first advanced QECC to be invented [1]. This code can
correct single-qubit error (n = 9, k = 1), and the number of
stabilizers is l = 8. The stabilizers are given by G1 = Z1Z2,
G2 = Z2Z3, G3 = Z4Z5, G4 = Z5Z6, G5 = Z7Z8, G6 =
Z8Z9, G7 = X1X2X3X4X5X6, and G8 = X4X5X6X7X8X9

[3,4]. Then, the target stabilizer Hamiltonian is given by
H 9code = ∑8

i=1 Gi in which �i are omitted, and we treat
H 9code = ∑8

i=1 Gi instead of H 9code = −∑8
i=1 Gi for clarity.

We will treat the stabilizer Hamiltonians of the five-qubit code
and the Steane code similarly. We consider how this target
Hamiltonian is transformed to a single-qubit Hamiltonian by
using Eqs. (15)–(17) for the XY interaction or Eqs. (20)–(22)
for the Ising interaction. Let us first consider a case of the XY

TABLE I. The generation time of the stabilizer Hamiltonian of the XY interaction. “New generation time” is a generation time of the
stabilizer Hamiltonian by using the proposed method. “Previous generation time” is a time, estimated by using the previous method [20].
τop = π/(4J ). τrot represents a time of a single qubit rotation. We take τop = 6.25 ns and τrot = 1 ns (Sec. II E). “Improvement” is a ratio of
reduction of time of the new generation, calculated from the third and fifth columns.

XY Previous generation time New generation time Improvement

Nine-qubit code 24τop + 228τrot 378 ns 16τop + 92τrot 194 ns 48.7%
Five-qubit code 24τop + 162τrot 312 ns 10τop + 65τrot 127.5 ns 59.1%
Steane code 44τop + 288τrot 563 ns 20τop + 132τrot 257 ns 54.4%
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TABLE II. The generation time of the stabilizer Hamiltonian from the Ising model. Parameters are the same as those in Table I.

Ising Previous generation time New generation time Improvement

Nine-qubit code 8τop + 80τrot 130 ns 10τop + 61τrot 125.5 ns 3.5%
Five-qubit code 14τop + 97τrot 184.5 ns 12τop + 76τrot 151 ns 18.2%
Steane code 36τop + 220τrot 445 ns 20τop + 124τrot 249 ns 44%

interaction. H 9code is changed as follows:

H 9code = Z1Z2 + Z2Z3 + Z4Z5 + Z5Z6 + Z7Z8 + Z8Z9 + X1X2X3X4X5X6 + X4X5X6X7X8X9, : (x ↔ z : 2,4,6,8),

→ Z1X2 + X2Z3 + X4Z5 + Z5X6 + Z7X8 + X8Z9 − X1Z2X3Z4X5Z6 − Z4X5Z6X7Z8X9,

: H 12
XY + H 34

XY + H 56
XY + H 78

XY ,

→ −Y1 − Y1Z2Z4 − Y3Z4Z6 − Y5 − Y7 − Y7Z8Z9 + Y2Y4Y6 − Z3Y6Y8X9, : (y ↔ z : 1,5,7)(x ↔ z : 9)

→ −Z1 − Z1Z2Z4 + Y3Z4Z6 − Z5 − Z7 − Z7Z8X9 + Y2Y4Y6 + Z3Y6Y8Z9, : H 34
XY + H 56

XY + H 89
XY

→ −Z1 − Z1Z2Z3 + X4Z5 − Z6 − Z7 + Z7Y8 + Y2X3Z4X5Z6 + Z4X5Z6X9, : (x ↔ z : 3,4,5,9)

→ −Z1 − Z1Z2X3 − Z4X5 − Z6 − Z7 + Z7Y8 + Y2Z3X4Z5Z6 + X4Z5Z6Z9, : H 23
XY + H 45

XY + H 78
XY

→ −Z1 + Z1Y2 + Y4 − Z6 − Z8 + X7 − X3Y5Z6 − Y5Z6Z9, : (y ↔ z : 4)(x ↔ z : 7), H 12
XY + H 56

XY + H 89
XY

→ −Z2 + X1 + Z4 − Z5 − Z9 − Z7 − X3X6 − X6Z8, : (x ↔ z : 1,3)

→ −Z2 − Z1 + Z4 − Z5 − Z9 − Z7 + Z3X6 − X6Z8, : H 34
XY + H 78

XY

→ −Z2 − Z1 + Z3 − Z5 − Z9 − Z8 + Z4X6 − X6Z7, : H 45
XY + H 67

XY

→ −Z2 − Z1 + Z3 − Z4 − Z9 − Z8 − Z5Z6Y7 + Y7, : (x ↔ z : 5)(y ↔ z : 7)

→ −Z2 − Z1 + Z3 − Z4 − Z9 − Z8 − X5Z6Z7 + Z7, : H 56
XY

→ −Z2 − Z1 + Z3 − Z4 − Z9 − Z8 + Y6Z7 + Z7, : H 67
XY

→ −Z2 − Z1 + Z3 − Z4 − Z9 − Z8 + X7 + Z6. (34)

Applied pulses are shown after the colon in each line. The notation H
ij

XY = Jij [XiXj + YiYj ] [Eq. (9)] on the right-hand side of
each line after the colon shows that we apply Eq. (11) with Hop = H

ij

XY to the Hamiltonian before the colon. For example, the
second line of the above equation means that

ei(π/4)[H 12
XY +H 34

XY +H 56
XY +H 78

XY ]H 9codee−i(π/4)[H 12
XY +H 34

XY +H 56
XY +H 78

XY ]. (35)

The notation such as (y ↔ z : 1,5,7,9) shows that single-qubit π rotation is applied to qubits 1, 5, 7, and 9 around the x axis.
Thus when we start an initial Hamiltonian given by

H 9code
ini = �1X1 + �2X2 + �3X3 + �4X4 + �6X6 + �7X7 + �8X8 + �9X9, (36)

we can produce the stabilizer Hamiltonian H 9code by using the pulse sequence described by the reverse operations of Eq. (34).
The initial Hamiltonian, Eq. (36), is obtained by e−itH0eiπX5/2e−itH0e−iπX5/2 in which the e−itH0 term is obtained from Hq as
shown in the previous section. For the Ising interaction, we obtain

H 9code → X1Z2 + Z2Z3 + X4Z5 + Z5X6 + Z7Z8 + Z8X9 − Z1X2X3Z4X5Z6 − Z4X5Z6X7X8Z9,

: H 12
Ising + H 56

Ising + H 89
Ising

→ Y1 + Z2Z3 + X4Z5 + Y6 + Z7Z8 + Y9 − Y2X3Z4Y5 − Z4Y5X7Y8, : (y ↔ z : 2,8)

→ Y1 − Y2Z3 + X4Z5 + Y6 − Z7Y8 + Y9 − Z2X3Z4Y5 − Z4Y5X7Z8, : H 23
Ising + H 45

Ising + H 78
Ising

→ Y1 + X2 + Y4 + Y6 + X8 + Y9 + Y3X5 + X5Y7, : H 34
Ising + H 67

Ising

→ Y1 + X2 − Z3X4 − X6Z7 + X8 + Y9 − X3Z4X5 − X5Z6X7, : (x ↔ z : 3,4,5,6,7)

→ Y1 + X2 + X3Z4 + Z6X7 + X8 + Y9 − Z3X4Z5 − Z5X6Z7, : H 45
Ising + H 67

Ising

→ Y1 + X2 + X3Z4 + Y7 + X8 + Y9 − Z3Y4 − Z5Y6, : H 34
Ising + H 56

Ising

→ Y1 + X2 + Y3 + Y7 + X8 + Y9 + X4 + X6, (37)
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where the notation H
ij

Ising = JijZiZj [Eq. (10)] on the right-
hand side of each line after the colon shows that we apply
Eq. (11) with Hop = H

ij

Ising to the Hamiltonian before the colon.
After single-qubit rotations, we obtain an initial Hamiltonian:

H 9code
ini = �1X1 + �2X2 + �3X3 + �4X4

+�6X6 + �7X7 + �8X8 + �9X9. (38)

This Hamiltonian is obtained by eliminating the X5 term in H0

as in the case of the XY interaction.
Let us count the number of pulses necessary to obtain the

nine-qubit code. Because the present method mainly relies on
the control of many pulses, as the number of pulses increases,
pulse errors become the principal origin of decoherence. Thus,
the number of pulses is an indicator of decoherence in which
it is desirable to have fewer pulses. Equation (36) shows that
eight qubit-qubit interaction processes and five single-qubit
rotation processes are needed. Because a time τop of applying
Eq. (11) to H

ij
int is longer than a single-qubit rotation time τrot

such as τop(≈ 6.25 ns) > τrot(≈ 1 ns) (see Sec. II E), the sixth
operations of Eq. (34) can be represented by τrot. From the
result of Sec. II D, it takes a time of Nop[2τop + 9τrot] for Nop

times uses of H
ij

XY , and the initial state Eq. (36) is obtained
by twice using the generating process of H0 taking a time of
10τrot. Thus, we need a time of

τ
9code(new)
XY = 8[2τop + 9τrot] + 12τrot + 10τrot

= 16τop + 94τrot. (39)

In order to compare the present method with that of Ref. [20],
let us consider constructing Hstab of the XY interaction by
summing up Gi as in Ref. [20]. For G1 ∼ G6, it takes a
time of [2τop + 9τrot] + (4 + 10)τrot = 2τop + 23τrot, because
Gi → ZiXi+1 → Yi → Xi . For G7, we have

G7 = X1X2X3X4X5X6, : (x ↔ z : 2,5)

→ X1Z2X3X4Z5X6, : H 12
XY + H 56

XY

→ Y2X3X4Y5, : (x ↔ z : 3,4)

→ Y2Z3Z4Y5, : H 23
XY + H 45

XY

→ X3X4, : (x ↔ z : 3)

→ −Z3X4, : H 34
XY

→ Y3, : (y ↔ x : 3)

→ X3. (40)

Thus, it takes a time of 3[2τop + 9τrot] + 8τrot + 10τrot =
6τop + 45τrot to obtain G7 and G8. Thus, total generation
time for the nine-qubit code by the method of Ref. [20] is
given by τ

9code(old)
XY = 24τop + 228τrot. Thus, the number of

the qubit-qubit interaction of the present method is reduced
to two-thirds of that of the previous method and the number
of the single-qubit rotations is reduced to 41.2% of that of
the previous method. When we use the experimental values
in Sec. II E, τ

9code(new)
XY = 194 ns and τ

9code(old)
XY = 376 ns, thus

48.7% reduction of the operation time is achieved. For the Ising
interaction, from Eq. (37), we obtain a time of the operation
given by

τ
9code(new)
Ising = 10τop + 63τrot = 125.5 ns. (41)

Here, we used the experimental value of τop ≈ 6.25 ns and
τrot ≈ 1 ns (see Sec. II E). G1 ∼ G6 have the form of the two-
body interaction, thus they are directly extracted from Hq as
shown in Sec. II D. Thus it takes a time of 4τrot for each process.
G7 and G8 are reduced to Z3Z4 and Z6Z7 with a time of
4τop + 28τrot, respectively. Therefore, we obtain τ

9code(old)
Ising =

8τop + 80τrot = 130 ns. For this case, a 3.5% reduction of time
is achieved.

B. Five-qubit code

Next, we consider Hstab of the five-qubit code (n = 5 and k =
1). The stabilizers Gi (i = 1, . . . ,4) of this code are given by
G1 = X1Z2Z3X4, G2 = X2Z3Z4X5, G3 = X3Z4Z5X1, and
G4 = X4Z5Z1X2 [3,4]. The process of constructing H 5code ≡∑4

i=1 Gi is obtained by changing the H 5code reversely into a
single-qubit Hamiltonian. For the XY model, this process is
obtained by

H 5code = X1Z2Z3X4 + X2Z3Z4X5 + X3Z4Z5X1 + X4Z5Z1X2, : H 12
XY + H 34

XY

→ Y2Y3 − Y1Z2Z3Z4X5 + Y4Z5Z1Y2 + Y3Z4Z5Y1, : (y ↔ z : 2)

→ Z2Y3 + Y1Y2Z3Z4X5 + Y4Z5Z1Z2 + Y3Z4Z5Y1, : H 23
XY + H 45

XY

→ X2 − Y1X3Y4 + Z1Z3X5 + Y1X2Z3Z4Z5, : (x ↔ z : 2,3)

→ −Z2 + Y1Z3Y4 + Z1X3X5 − Y1Z2X3Z4Z5, : H 12
XY + H 34

XY

→ −Z1 + Z1X2X3 − Z2Z3Y4X5 + X2Y4Z5, : (x ↔ z : 2)(y ↔ z : 4,5)

→ −Z1 − Z1Z2X3 − X2Z3Z4X5 + Z2Z4Y5, : H 23
XY + H 45

XY

→ −Z1 + Z1Y2 − Y3Y4 + Z3X4, : (y ↔ z : 4)

→ −Z1 + Z1Y2 − Y3Z4 + Z3X4, : H 12
XY + H 34

XY

→ −Z2 + X1 − X4 − Y3. (42)

The notations are the same as those in Eq. (34) such that the applied pulses are shown after the colon in each line. The two-body
XY interaction H

ij

XY = Jij [XiXj + YiYj ] on the right-hand side of each line after the colon shows that we apply Eq. (11) to the
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Hamiltonian before the colon by using Eqs. (15)–(17). Then, the initial Hamiltonian is given by

H 5code
ini = �1X1 + �2X2 + �3X3 + �4X4. (43)

The time of constructing this code is given by

τ
5code(new)
XY = 5[2τop + 9τrot] + 10τrot + 10τrot = 10τop + 65τrot = 127.5 ns. (44)

If we use the previous method in Ref. [20], we have τ
5code(old)
XY = 24τop + 162τrot = 312 ns. This result is a little different from

that in Ref. [20] in that here we start from 2D Hamiltonian. Thus, a 59.1% reduction of time is expected with the present method.
For the Ising interaction, we have

H 5code → Z1X2X3Z4 + Z2X3X4Z5 + Z1Z3X4X5 + X1Z2Z4X5, : H 23
Ising

→ Z1X2X3Z4 + Y3X4Z5 + Z1Z3X4X5 + X1Z2Z4X5, : (x ↔ z : 1,2)(y ↔ z : 3)

→ −X1Z2X3Z4 + Z3X4Z5 − X1Y3X4X5 − Z1X2Z4X5, : H 12
Ising + H 34

Ising

→ −Y1Y3 + Y4Z5 − Y1Z2Y3X4X5 − Y2Z4X5, : (y ↔ z : 1,2,4)(x ↔ z : 5)

→ −Z1Y3 + Z4X5 − Z1Y2Y3X4Z5 − Z2Y4Z5, : H 12
Ising + H 45

Ising

→ −Z1Y3 + Y5 + X2Y3Y4 + Z2X4, : (x ↔ z : 2)

→ −Z1Y3 + Y5 − Z2Y3Y4 + X2X4, : H 23
Ising

→ Z1Z2X3 + Y5 + X3Y4 + Y2Z3X4, : (y ↔ z : 2)(x ↔ z : 3,4)

→ Z1Y2Z3 + Y5 − Z3Y4 − Z2X3Z4, : H 23
Ising

→ −Z1X2 + Y5 − Z3Y4 − Y3Z4, : H 12
Ising + H 34

Ising

→ −Y2 + Y5 + X4 + X3, (45)

where the Ising interaction H
ij

Ising = JijZiZj on the right-hand
side of each line shows that we apply Eqs. (20)–(22) based on
Eq. (11) with Hop = H

ij

Ising. Thus, the initial Hamiltonian from
which Hstab is derived is given by

H 5code
ini = �2X2 + �3X3 + �4X4 + �5X5. (46)

The time for the generation of this code is 6[2τop + 9τrot] +
12τrot + 10τrot = 151 ns. Because G1 = X1Z2Z3X4 →
Z1X2X3Z4 → Y2Y3 → Z2Z3, it takes a time of [2τop +
9τrot] + 4τrot + 4τrot = 2τop + 17τrot to obtain G1 and G2. G3

is estimated from

G3 = X1X3Z4Z5, : (x ↔ z : 1,4)

→ −Z1X3X4Z5, : H 23
XY + H 45

XY

→ −Z1Z2Y3Y4, : (y ↔ z : 2,4)

→ Z1Y2Y3Z4, : H 12
XY + H 34

XY

→ X2X3, : (x ↔ z : 2,3)

→ Z2Z3. (47)

Thus it takes 4τop + 28τrot. Similarly, it takes 6τop + 35τrot for
G4. Therefore, in total, it takes 14τop + 97τrot = 184.5 ns for
summing up G1 ∼ G4 in the Ising interaction. In this case the
present method reduces the generation time by 18.2%.

C. Steane code

The stabilizers of the Steane code are described by G1 =
X1X2X3X4, G2 = X1X2X5X6, G3 = X1X3X5X7, G4 =
Z1Z2Z3Z4, G5 = Z1Z2Z5Z6, and G6 = Z1Z3Z5Z7 [3,4].
Because G4, G5, and G7 are obtained from G1, G2, and G3

by applying π pulses, we first consider the generation process
of H Steane

X ≡ G1 + G2 + G3. The process of the construction
of H Steane

X is obtained by resolving it to a single-qubit
Hamiltonian. For the case of the XY Hamiltonian, this process
is given by

H Steane
X = X1X2X3X4 + X1X2X5X6 + X1X3X5X7, : (x ↔ z : 2,3,5)

→ X1Z2Z3X4 + X1Z2Z5X6 + X1Z3Z5X7, : H 12
XY + H 34

XY + H 56
XY

→ Y2Y3 + Y2Y5 − Z1Y2Z4Z6X7, : (y ↔ z : 2,5)

→ Z2Y3 + Z2Z5 − Z1Z2Z4Z6X7, : H 23
XY + H 45

XY + H 67
XY

→ X2 + Z3Z4 + Z1Z3Z5Y6, : (x ↔ z : 2,4)

→ −Z2 + Z3X4 + Z1Z3Z5Y6, : H 12
XY + H 34

XY + H 56
XY

→ −Z1 − Y3 + Z2Z4X5, : (y ↔ z : 3)

→ −Z1 − Z3 + Z2Z4X5, : H 23
XY + H 45

XY
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→ −Z1 − Z2 − Z3Y4, : H 34
XY

→ −Z1 − Z2 − X3, (48)

where the notations are the same as those in Eqs. (34) and (42). Thus, we obtain the initial Hamiltonian:

H Steane
X:ini = �1X1 + �2X2 + �3X3. (49)

The time of generation of H Steane
X is the same as Eq. (44). For the previous method, the time for obtaining H Steane

X is given by
22τop + 143τrot. As mentioned above, because H Steane

Z ≡ G4 + G5 + G6 is obtained by

H Steane
Z = e−iπ(Y1+Y2+Y3)/4H Steane

X eiπ(Y1+Y2+Y3)/4, (50)

the generation time of H Steane
Z is increased by 2τrot compared with that of H Steane

X . Then, the time of obtaining the Steane code by
the present method is given by

τ
Steane(new)
XY = 20τop + 132τrot = 257 ns. (51)

When we use the previous method in Ref. [20], the time for the code generation is given by τ
Steane(old)
XY = 44τop + 288τrot =

563 ns. Thus, a 54.4% reduction of time is expected.
For the Ising Hamiltonian, we have

H Steane
X = X1X2X3X4 + X1X2X5X6 + X1X3X5X7, : (z ↔ x : 1,4,6)

→ Z1X2X3Z4 + Z1X2X5Z6 − Z1X3X5X7, : H 12
Ising + H 34

Ising + H 56
Ising

→ Y2Y3 + Y2Y5 − Z1Y3Z4Y5Z6X7, : (y ↔ z : 3)(x ↔ z : 6,7)

→ Y2Z3 + Y2Y5 + Z1Z3Z4Y5X6Z7, : H 23
Ising + H 45

Ising + H 67
Ising

→ −X2 + X2Z3Z4X5 − Z1Z3X5Y6, : (x ↔ z : 2,3,4,5)

→ Z2 + Z2X3X4Z5 + Z1X3Z5Y6, : H 23
Ising + H 45

Ising

→ Z2 + Y3Y4 + Z1Z2Y3Z5Y6, : (y ↔ z : 2,4,5,6)

→ −Y2 + Y3Z4 + Z1Y2Y3Y5Z6, : H 12
Ising + H 34

Ising + H 56
Ising

→ Z1X2 − X3 − X2X3Z4X5, : (x ↔ z : 2,4,5)

→ −Z1Z2 − X3 − Z2X3X4Z5, : H 23
Ising + H 45

Ising

→ −Z1Z2 − Z2Y3 − Y3Y4, (52)

where the notations are the same as those in Eqs. (37) and (45).
Thus, the initial Hamiltonian is given by

H Steane
X:ini = J12Z1Z2 + J23Z2Z3 + J34Z3Z4. (53)

This Hamiltonian is obtained by erasing H 45
Ising from HIsing

where HIsing is obtained by applying π pulses to all qubits in
B of Eq. (23). Then, Eq. (53) is obtained by applying a π

pulse only to qubit 5 in B of Eq. (23) for HIsing, and the time of
the preparation of Eq. (53) is estimated by 4τrot. Therefore,
the total time of the generation of Eq. (52) is given by
5[2τop + 9τrot] + 12τrot + 4τrot = 123.5 ns, and τ

Steane(new)
Ising =

20τop + 124τrot = 249 ns. On the other hand, in the previous
method, times for generating G1, G2, and G3 are given by
4τop + 26τrot, 6τop + 35τrot, and 8τop + 48τrot, respectively.
Therefore, τ Steane(old)

Ising = 36τop + 220τrot = 445 ns. This means
that the present method realizes a 44% reduction of time.

All the results of the above-mentioned three codes are
summarized in Tables I and II for the XY interaction and
Ising interaction, respectively. From Tables I and II, we can
see the large reduction of the generation time is achieved in
the XY interaction.

IV. CREATION OF THE STANDARD CODES

As briefly reviewed in Sec. II A, encoded states are
generated by repeating measurements of the stabilizers Gi (i =
1, . . . ,l) for an initial state �k

i=1|0〉n [3,4]. Considering that
measurements induce extra decoherence, the effectiveness of
this conventional method is limited. In Ref. [20], we presented
the more effective method of directly generating logical states:
For any given code, only those Gj with 1 � j � m and
m � n − k that contain X or Y operators are needed for the
preparation:

|c̄1, . . . ,c̄k〉 = (1 + G1) · · · (1 + Gm)X̄c1
1 · · · X̄ck

k |0, . . . ,0〉

=
k∏

i=1

X̄
ci

i

m∏
j=1

exp

(
− i

π

4
G̃

aj

j

)
|0, . . . ,0〉 , (54)

where ci = 0,1 and operators X̄i act in the logical state space
{|0̄〉i , |1̄〉i}. Here, G̃

aj

j denotes a modified stabilizer operator
obtained from Gj by replacing the X operator acting on qubit
aj by a Y operator, or vice versa. This is done in order to
match the effect of an individual factor exp[i(π/4)G̃

aj

j ] with
the action of the projector (1 + Gj ) when qubit aj is in state
|0〉. To fulfill Eq. (54) for all 1 � j � m simultaneously, all
the aj have to be different and the modified stabilizers have to
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be generated in an order such that prior to G̃
aj

j none of the G̃
ak

k

with k < j have acted on qubit aj with an X or Y . The time
for generating the encoded state is given by τstab + (

∑
i ci)τrot.

Here, we extend this idea further and consider whether we
can replace this equation by

|0̄〉 = exp

(
− i

π

4
H̃stab

)
|0〉, (55)

H̃stab ≡
∑

i

G̃i . (56)

For the five-qubit code, we need G̃1 = Y1Z2Z3X4,
G̃2 = X2Z3Z4Y5, G̃3 = X1Y3Z4Z5, and G̃4 = Z1Y2X4Z5,
and the multiplication is carried out in the follow-
ing order: exp[i(π/4)G̃2], exp[i(π/4)G̃4], exp[i(π/4)G̃3],
exp[i(π/4)G̃1]. However, only G̃3 and G̃4 commute, thus we
cannot replace Eq. (54) by Eq. (56).

For the Steane code, we need three generators:

G̃1 = X1X2X3Y4, (57)

G̃2 = X1X2X5Y6, (58)

G̃3 = X1X3X5Y7, (59)

because these three generators mutually commute, such as
[G̃i,G̃j ] = 0. Therefore we can apply Eq. (56) and reduce the
generation time of the encoded state. Thus, it is observed that
sparse distribution of the Pauli operators in a logical qubit is
preferable for the code generation, because it results in simpler
generation of encoded states.

Next, we consider an encoding of unknown state a|0〉 +
b|1〉 to a|0̄〉 + b|1̄〉 (a and b are arbitrary complex num-
bers). Because, in Eq. (54), G̃

aj

j was introduced to hold

exp[−i(π/4)G̃
aj

j ]|0〉 = (1 + Gj )|0〉, we need different opera-
tions for obtaining |1̄〉. For simplicity, we consider |1̄〉 = X̄|0̄〉.
Then, we can solve this problem if we can prepare a modified
initial state for |1〉 defined by

|1̄〉′ = M̄−1X̄M̄|0, . . . ,0〉, (60)

with M̄ ≡ ∏m
j=1 exp[−i(π/4)G̃

aj

j ]. This is because we can use
the following relation:

M̄(a|0, . . . ,0〉 + b|1̄〉′) = a|0̄〉 + b|1̄〉. (61)

For the five-qubit code, X̄ is given by X̄ = X1X2X3X4X5

[3], and the modified initial state |1̄〉′ is expressed by |1̄〉′ =
−G̃3G̃2X̄|00000〉 = −|00010〉. This means that we can obtain
an encoded unknown state a|0̄〉 + b|1̄〉 when we encode
an initial unknown state a|0〉 + b|1〉 into the fourth qubit
described by |0〉1|0〉2|0〉3(a|0〉4 − b|1〉4)|0〉5 (the phase of |1〉4

is changed). For the Steane code, X̄ is given by X̄ = X5X6X7

[3], and the modified initial state |1̄〉′ is expressed by |1̄〉′ =
X2X3X5|00000〉 = |0110100〉. Hence, we have to prepare
a|0000000〉 + b|0110100〉 to which M̄ is applied. This state
is transformed from |0〉1(a|0〉2 + b|1〉2)|00000〉 by applying
CNOT gates in which qubits 3 and 5 are target qubits, while
qubit 2 is the control qubit.

The nine-qubit codes can be generated in a different way,
because the nine-qubit code is expressed by the product of
three parts given by [1]

|0̄〉 ≡ (|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉), (62)

|1̄〉 ≡ (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉). (63)

Each three-qubit block is a Greenberger-Horne-
Zeilinger (GHZ) state. From |000〉 ± |111〉 =
exp[∓i(π/4)X1Y2X3]|000〉, we have

|0̄〉 = exp

(
− i

π

4
H 9code

0

)
|0, . . . ,0〉, (64)

|1̄〉 = exp

(
i
π

4
H 9code

0

)
|0, . . . ,0〉, (65)

where the Hamiltonian H 9code
0 ≡ X1Y2X3 + X4Y5X6 +

X7Y8X9 is obtained starting from X1 + X4 + X7 by applying
operations discussed in the previous sections. The concrete
pulse sequence is given by (1) H 12

XY + H 45
XY + H 67

XY , (2)
H 34

XY + H 56
XY + H 78

XY , and (3) single-qubit rotations. Unknown
state a|0〉 + b|1〉 is encoded by applying exp(−i π

4 H 9code
0 ) to a

changed state a|0, . . . ,0〉 + b|1, . . . ,1〉 which can be obtained
by CNOT gate to (a|0〉 + b|1〉)|0, . . . ,0〉.

V. QUBIT ARCHITECTURE

Let us consider possible encoded qubit architectures for
solid-state qubits controlled by local gate electrodes. In
general, solid-state qubits are fabricated on some substrate
and, unlike optical qubits and ion trap qubits [46], they cannot
be moved, being subject to the restriction that the interactions
between qubits are limited to the nearest qubits. Thus, as
discussed in Sec. II D 2, it is natural to set a logical qubit as a
1D array. In order to construct various stabilizer codes, every
qubit should be accessed by an appropriate gate electrode.
This means that a gate electrode layer should be placed along
logical qubits. Because logical qubits interact with each other
in a 2D plane, the gate electrode layer will be constructed on
or under the logical qubit layer.

Next, let us consider a structure of measurements. For the
fault-tolerant computation, additional measurement circuits
are required as described in Refs. [4,5]. Figure 2 shows the
measurement circuit for a single-qubit measurement and the
multiqubit measurement. The multiqubit measurement is used
for stabilizer formalism [Fig. 2(b)]. In Fig. 2(b), the number
of qubits in the cat state |0, . . . ,0〉 + |1, . . . ,1〉, depends on
the number of Pauli matrices of the stabilizer [Fig. 2(b) is the
case of a three-qubit stabilizer]. This means that the number of
ancilla qubits for the whole measurement circuit is of the same
order as that of qubits in a logical qubit layer. Therefore, so
as to avoid direct measurements and achieve the fault-tolerant
computation, it is appropriate to set an independent qubit layer
for measurements. Because we already have a logical qubit
layer, it is natural that the additional measurement layer should
be stacked as shown in Fig. 3. Note that physical qubits and
electrodes in Fig. 3 are described in an abstract form. Real
qubits and electrodes are more complicated than a box. Thus,
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H H

σσσσαααα

0 Meas.

Logical qubit layer

Measurement qubit layer
2

111000 ++++
Meas.

Logical qubit layer

Measurement qubit layer

Meas.
Meas.

H

σσσσαααα

σσσσαααα

σσσσαααα

(a) (b)

FIG. 2. Measurement circuit for fault-tolerant quantum com-
putation [4]. In order to apply any kind of QECC, measurement
qubit is required for every physical qubit in the logical qubit layer.
(a) Single-qubit measurement. (b) Multiqubit measurement. H shows
a Hadamard gate.

a stacked 3D qubit system will be straightforward architecture
for an effective QECC system, as long as we assume that
the interaction between physical qubits is restricted to their
neighboring qubits. For generating the cat state of qubits in
the measurement layer, our method shown in the previous
section regarding the nine-qubit code generation is useful.

The stacked 3D qubit system can be applied to spin qubits
and charge qubits. However, not all qubits can be stacked in the
3D system. Consider an example of standard superconducting
flux qubits. If we stack flux qubits, the same flux penetrates
stacked two qubits, resulting in confusion of signal between
the stacked flux qubits. In such case, we will be able to
implement a single logical qubit into a square form as shown
in Fig. 4. The 2D arrangement consists of four logical qubits
placed at the peripheral and ancilla qubits surrounded by the
logical qubits. The four logical qubits share their quantum
information through SWAP operation in the ancilla qubits and
connect to the four directions of the nearest logical qubits.
The ancilla qubits at the central region work for fault-tolerant
measurements.

VI. ROBUSTNESS AGAINST PULSE ERRORS

Since the code word states are encoded in the twofold-
degenerate ground-state manifold |0̄〉 and |1̄〉 of Hstab, the
robustness of this method is limited by the rate of leakage
out of this manifold. Thus, energy nonconserving single-qubit

Measurement qubit layer

Logical qubit layer

Gate electrodes

Gate electrodes

FIG. 3. (Color online) Layered 3D QECC system. There are two
qubit layers; a logical qubit layer and a measurement qubit layer. Each
qubit layer is connected to a gate electrode layer by which physical
qubits are controlled. Boxes show qubits and electrodes. Dot lines
show qubit-qubit interaction. In the stabilizer coded, measurement is
an indispensable process for encoding and decoding. Thus, the logical
qubit layer is set close to the measurement qubit layer.

Logical qubits

Ancilla qubits

(a) (b)

FIG. 4. (Color online) 2D qubit layout. Small box shows physical
qubits. (a) Single logical qubit unit, which is composed of four pe-
ripheral logical qubits and central ancilla qubits. The four peripheral
qubits are processed to be equivalent. They interact with logical qubits
of other logical qubit units. (b) 3 × 4 logical qubit array where each
square corresponds to the logical qubit of (a).

errors—often a prevalent kind of error created by a thermal
bath—are exponentially suppressed for temperatures that are
low compared to the Zeeman splitting �. Hence, besides local
imperfections and noise sources, unavoidable pulse errors
are likely to be the predominant cause of leakage, at low
temperatures.

In the present method, each logical qubit is constructed
by starting from a single-qubit Hamiltonian

∑
i �iZi , and

multiplying operators like X1 → X1X2 → X1 · · ·XN . Hence,
it is possible that this process makes operation errors transmit
through each logical qubit. If we model the pulse errors by
randomly distributed, unbiased, and uncorrelated deviations δθ

with σθ =
√

〈δθ2〉 from the ideal angle of π/2. The leakage
from the twofold-degenerate ground-state manifold |0̄〉 and
|1̄〉 can then be estimated by looking at the average of the
ground-state fidelity 〈F (t)〉 ≈ 1 − NPσ

2
θ t/(8T ), where NP is

the number of pulses in the sequence to generate Hstab, and T
its duration [20]. Thus, the reduction of the number of pulses
NP for generating stabilizer codes (Tables I and II) is very
important.

For the QECC scheme to succeed, the error rate of each
qubit operation should be less than 10−7–10−5 [4,5]. Thus the
accuracy of operation pulses is crucial. In this regard, we can
also use one of many NMR techniques. If we construct each
single pulse by composite pulses, the accuracy of the pulse
increases dramatically [21]. The composite-pulse method
generalizes the concept of spin echo, and has already been
applied in the field of quantum computation to greatly improve
both single-qubit rotations and CNOT operations [22–25].
As the number of pulses NP decreases and the dephasing
time T2 increases, more accurate composite pulses can be
implemented, resulting in the success of the QECC scheme.

VII. SUMMARY AND CONCLUSIONS

In summary, we showed how to produce stabilizer Hamil-
tonians starting from natural two-body Hamiltonians by using
appropriate pulse sequences. We demonstrated our method by
using typical codes: the nine-qubit code, the five-qubit code,
and the Steane code. The key method of finding the pulse
sequence is to inversely trace the derivation process from
the stabilizer Hamiltonian to the single-qubit Hamiltonian.
We also showed how to generate encoded states without
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using measurements. Stabilizer Hamiltonians are important
for preserving encoded states as ground states of the system.
Effective preparation of stabilizers is considered to be critical
to the success of the QECC.

Many important experiments have been performed to
enlarge coherence time in solid-state qubits [47]. The criteria
for the realization of quantum computing is whether a sufficient
number of quantum operations can be carried out during
a given coherence time. Thus, manipulation speed of each
quantum operation is one of the most important factors for
practical quantum computing. Considering the fact that a
quantum computer exceeds a digital computer only in several
fields such as search algorithm, it will be natural to embed
a quantum computer as a part of a digital computer system.
Moreover, as in the present experiments, a quantum circuit
will be operated by a digital computer. Although the speed
of a single processing unit of a commercial digital computer
seems to become saturated, performance of digital computers
will continue to increase by parallel processing. Accordingly,
it is expected that the manipulation speed of a pulse sequence
will also increase. Therefore, the approach presented in
this paper enables faster quantum operations by using the
cutting-edge technology of computer science. How to achieve
an appropriate and smooth connection between a quantum
computer and a digital computer will be a future problem.
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APPENDIX A: EXTRACTION PARTS OF OTHER TYPES
OF HAMILTONIANS

Here, we show how to extract H0 or interaction parts from
a Hamiltonian that includes three Pauli matrices X, Y , and Z.
This situation appears for Eq. (6) with ωrf

i 	= 2�0i or Ref. [48]
in which the Hamiltonian is given by

H =
∑

i

[ωiZi + εiXi] +
∑
i<j

Jij

2
[XiXj + YiYj ]. (A1)

For this Hamiltonian, one more step is required to obtain
both H0 and an interaction part. When the method of
Sec. II D 3 is applied, we obtain Heff = ∑

k,i[4ωiZ
(k)
i +

2εiX
(k)
i ] after using Eq. (24). When the method of

Sec. II D 4 is applied, we obtain H ′
eff = ∑

k[
∑

i 4Z
(k)
i +∑

i H
23(k)
XY ]. In both cases, an extra

∑
i Zi term re-

mains. Therefore, we need one more step to delete the∑
i Zi term such as e−iτHeff e−iπ

∑
i Xi/2e−iτHeff eiπ

∑
i Xi/2 and

e−iτH ′
eff e−iπ

∑
i Xi/2e−iτH ′

eff eiπ
∑

i Xi/2.

APPENDIX B: PERTURBATION TERMS IN BCH
FORMULA

Here, we show the first-order perturbation terms that appear
during the process of extracting H 23

XY and a single-qubit
Hamiltonian H0 from the original Hamiltonian Hq discussed
in Sec. II D.

The first-order perturbation terms from the ideal Hamilto-
nian H 23

XY in five qubits are given by

Hpert ≈ −
∑

k

2τ {P (k) + Q(k) + R(k)}, (B1)

where

P (k) = J
(k−1)
12 �

(k−1)
1 Y

(k−1)
2 Z

(k−1)
1 + J

(k−1)
34 �

(k−1)
4 Y

(k−1)
3 Z

(k−1)
4

+ J
(k−1)
45 �

(k−1)
4 Y

(k−1)
5 Z

(k−1)
4

+ S
(k)
β,1 + S

(k)
β,4 + S

(k)
α,2 + S

(k)
α,3 + S

(k)
α,5, (B2)

Q(k) = J
(k)
23 [�(k)

2 Y
(k)
3 Z

(k)
2 + �

(k)
3 Y

(k)
2 Z

(k)
3 ], (B3)

R(k) = J
(k)
12 �

(k)
2 Y

(k)
1 Z

(k)
2 + J

(k)
34 �

(k)
3 Y

(k)
4 Z

(k)
3 + J

(k)
45 �

(k)
5 Y

(k)
4 Z

(k)
5

+ S
(k+1)
α,1 + S

(k+1)
α,4 + S

(k+1)
β,2 + S

(k+1)
β,3 + S

(k+1)
β,5 , (B4)

where

S
(k)
α,i = J

(k,k−1)
ii �

(k)
i Y

(k−1)
i Z

(k)
i , (B5)

S
(k)
β,i = J

(k,k−1)
ii �

(k−1)
i Y

(k)
i Z

(k−1)
i . (B6)

Thus, the perturbation terms can be described by

||Hpert|| ≈ 10τNqubitJ�, (B7)

where Nqubit is the total number of qubits in a circuit. Nqubit is
expressed by Nqubit = NlogicNphys with the number of logical
qubits Nlogic and that of physical qubits in a logical qubit Nphys.

The first-order perturbation term to obtain the single-qubit
Hamiltonian is given by

F (k)
a = J

(k)
12 �

(k)
1 Y

(k)
2 Z

(k)
1 + [J (k)

23 Y
(k)
2 + J

(k)
34 Y

(k)
4 ]�(k)

3 Z
(k)
3

+ J
(k)
45 Y

(k)
4 �

(k)
5 Z

(k)
5 ,

F
(k)
b = [J (k)

12 Y
(k)
1 + J

(k)
23 Y

(k)
3 ]�(k)

2 Z
(k)
2

+ [J (k)
34 Y

(k)
3 + J

(k)
45 Y

(k)
5 ]�(k)

4 Z
(k)
4 ,

W (k)
a = S

(k)
α,1 + S

(k)
α,3 + S

(k)
α,5 + S

(k+1)
β,1 + S

(k+1)
β,3 + S

(k+1)
β,5 ,

W
(k)
b = S

(k)
α,2 + S

(k)
α,4 + S

(k+1)
β,2 + S

(k+1)
β,4 ,

Hpert = 2τ

{∑
k

(−)k+1
(
F (k)

a + F
(k)
b

)}

+ τ [8 + (−)k2]
( − W (k)

a + W
(k)
b

)
. (B8)

Thus the perturbation terms can be estimated by

||Hpert|| ≈ 20τNqubitJ�. (B9)

Equations (B7) and (B9) show that the number of connected
qubits should be small so that the perturbation terms do not
affect the main terms, even when we reduce the perturbation
terms by using Eq. (24). Therefore, instead of connecting all
qubits by an always-on Hamiltonian, it is better to divide qubits
into several blocks such that the blocks are connected by some
kind of switching mechanism [36–39].
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[25] B. T. Torosov, S. Guérin, and N. V. Vitanov, Phys. Rev. Lett.

106, 233001 (2011).
[26] D. Becker, T. Tanamoto, A. Hutter, F. L. Pedrocchi, and D. Loss,

Phys. Rev. A 87, 042340 (2013).

[27] T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and
J. S. Tsai, Nature (London) 425, 941 (2003).

[28] J. Q. You and F. Nori, Phys. Today 58(11), 42 (2005).
[29] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120

(1998).
[30] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,

M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 (2005).

[31] B. E. Kane, Nature (London) 393, 133 (1998).
[32] T. Tanamoto, Y. X. Liu, X. Hu, and F. Nori, Phys. Rev. Lett. 102,

100501 (2009).
[33] J. Q. You, J. S. Tsai, and F. Nori, Phys. Rev. Lett. 89, 197902

(2002).
[34] C. Rigetti, A. Blais, and M. Devoret, Phys. Rev. Lett. 94, 240502

(2005).
[35] T. Tanamoto, Phys. Rev. A 64, 062306 (2001).
[36] S. H. W. van der Ploeg, A. Izmalkov, A. M. van den Brink,
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