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Circuit cavity quantum electrodynamics (QED) is proving to be a powerful platform to implement quantum
feedback control schemes due to the ability to control superconducting qubits and microwaves in a circuit.
Here, we present a simple and promising quantum feedback control scheme for deterministic generation and
stabilization of a three-qubit W state in the superconducting circuit QED system. The control scheme is based
on continuous joint Zeno measurements of multiple qubits in a dispersive regime, which enables us not only
to infer the state of the qubits for further information processing but also to create and stabilize the target
W state through adaptive quantum feedback control. We simulate the dynamics of the proposed quantum feedback
control scheme using the quantum trajectory approach with an effective stochastic maser equation obtained by a
polaron-type transformation method and demonstrate that in the presence of moderate environmental decoherence,
the average state fidelity higher than 0.9 can be achieved and maintained for a considerably long time (much longer
than the single-qubit decoherence time). This control scheme is also shown to be robust against measurement
inefficiency and individual qubit decay rate differences. Finally, the comparison of the polaron-type transformation
method to the commonly used adiabatic elimination method to eliminate the cavity mode is presented.
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I. INTRODUCTION

Entanglement is regarded as one of the key resources
for various applications in quantum information processing.
While entanglement of bipartite systems is well understood
[1], the characterization of multipartite entanglement is still
an interesting research topic. It has been shown [2] that
there are two inequivalent nonbiseparable classes of three-
qubit entanglement states, the Greenberger-Horne-Zeilinger
(GHZ) class and the W class, which cannot be transformed
into each other by stochastic local operations and classical
communications. The W state is central as a resource in
quantum information processing and multiparty quantum com-
munication as its entanglement is persistent and robust even
under particle loss [2–4]. The three-qubit entangled W state has
been experimentally generated and demonstrated in systems
of trapped ions [5], optical photons [6], superconducting phase
qubits [7], and coupled nonlinear oscillator arrays [8].

Circuit QED system [9–26] in which superconducting
qubits based on Josephson junctions are coupled to a high-Q
microwave transmission line resonator acting as a quantum bus
has been demonstrated to be a promising solid-state quantum
computing architecture. Due to the great controllability of
the superconducting qubits and microwaves in the circuit
system, the circuit QED system, a solid-state analogy of
quantum optics cavity QED, also has excellent potential as a
platform for quantum control—especially quantum feedback
control—experiments [27–33]. In this paper, we present a
simple and promising quantum feedback control scheme for
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deterministic generation and stabilization of a three-qubit W

state in the superconducting circuit QED system.
Generation and manipulation of entangled states are im-

portant tasks of quantum information processing. Besides
the scheme based on unitary dynamics to generate entangled
states [7,34,35], there are proposals of entanglement gener-
ation by measurement [36–38]. Although measurements can
generate entangled states that are otherwise difficult to obtain,
the specific or target entangled states created are primarily
probabilistic. Furthermore, the measurement-alone approach
cannot stabilize and protect the generated entangled states from
deterioration.

One possible way to resolve this problem is to employ
the technique of quantum feedback control [39–45]. There
have been proposals of using quantum feedback control to
stabilize and generate two-qubit Bell states in circuit QED
[42,43,46]. Ristè et al. [33] recently presented an experimental
demonstration of a superconducting two-qubit Bell state
produced by feedback based on parity measurements. The case
for three-qubit entangled GHZ in circuit QED has also been
investigated [45], but a somewhat complicated method of an
alternate-flip-interrupted Zeno scheme and quantum feedback
control technique with efficient measurement and rapid single-
qubit rotations are required to produce and maintain the
pre-GHZ state with high fidelity. However, how to generate
and stabilize the other inequivalent class of three-qubit states,
namely the W state, in circuit QED has, to our knowledge, not
been reported.

Here, we present a simple measurement and feedback
control scheme that is feasible with current circuit QED
technology to produce and stabilize the W state of |W−〉 =
(|100〉 + |010〉 + |001〉)/√3. Our scheme does not assume
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fast single-qubit rotations and is robust against measurement
inefficiency and individual qubit decay rate differences. A
successful experimental implementation and realization of
using quantum feedback control to generate and stabilize a
multi-qubit entangled W state as presented here will be an
impressive demonstration in circuit QED experiments. More-
over, previous investigations were performed in a parameter
regime of a strongly damped resonator cavity so one can
adiabatically eliminate the cavity mode by enslaving the cavity
to qubit dynamics [42,43,47–49]. Here we go beyond this so-
called bad-cavity limit by using a polaron-type transformation
[38,50] to trace out the cavity mode in our analysis. This
allows us to work in a parameter regime in which the W

state can be maintained with higher fidelity. The obtained
effective (stochastic) master equation for the qubit degrees
of freedom provides us with more intuitive understanding and
physical insight into the qubit dynamics of the continuous
quantum measurement and quantum feedback control process.
Note that our method can be extended straightforwardly to the
generation and stabilization of an N -qubit W -type state that is
a quantum superposition with equal expansion coefficients of
all possible pure states in which exactly one of the qubits is
in an excited state |1〉, while all other ones are in the ground
state |0〉.

The paper is organized as follows. We describe a three-qubit
circuit QED setup and its corresponding model Hamiltonian
in Sec. II. The procedure of using polaron-type transformation
to eliminate the cavity field to obtain an effective master
equation for the qubit degrees of freedom alone conditioned
on continuous homodyne detection is also presented in this
section. The quantum feedback control strategy to generate and
stabilize the W state of |W−〉 = (|100〉 + |010〉 + |001〉)/√3
is described in Sec. III A. The results of the average fidelity for
the generation and stabilization of the |W−〉 state are presented
in Sec. III B. The dependence of the average fidelity on the
qubits’ decay rates γj , dispersive coupling strength χ , probe
beam amplitude ε, feedback strength f , and measurement
efficiency η are discussed. In Sec. IV, we compare the polaron-
type transformation method with the adiabatic elimination
method to eliminate the cavity mode. A short conclusion is
given in Sec. V.

II. SYSTEM: HAMILTONIAN AND STOCHASTIC
MASTER EQUATION

We consider a circuit QED setup in which three Cooper
pair boxes considered as qubits are coupled to a common field
of a one-dimensional microwave transmission line resonator
(TLR) treated as a cavity (see Fig. 1). The system can be
described well by the Tavis-Cummings model [9,38,43,45,51,
52] and the Hamiltonian driven by a measurement signal is
described by

H = ωra
†a + ε(aeiωd t + a†e−iωd t )

+
∑

j

[
�j

2
σ z

j + gj (σ−
j a† + σ+

j a)

]
. (1)

Here, the operators σ−
j (σ+

j ) and a(a†) are, respectively, the
lowering (raising) operators of the j th qubit and the microwave
inside the cavity, �j is the transition frequency of the j th
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FIG. 1. (Color online) Schematic illustration of three qubits in
circuit QED quantum feedback control setup (MW: microwave drive).

qubit, ωr is the cavity frequency, gj is the strength of the
j th qubit interacting with the cavity field, and ε and ωd

are the amplitude and frequency of the measurement drive.
In the dispersive regime, where |	j | = |�j − ωr | � gj , we
can eliminate the direct qubit-resonator coupling by using the
unitary transformation [9]

U = exp

⎡
⎣∑

j

λj (σ+
j a − σ−

j a†)

⎤
⎦ . (2)

Keeping terms in the Hamiltonian up to second order in the
small parameter λj = gj/	j and moving to a frame rotating
with the measurement signal frequency ωd for the cavity field
and qubits, we obtain the Hamiltonian [38]

Heff =
⎡
⎣δr +

∑
j

χjσ
z
j

⎤
⎦ a†a + ε(a + a†) +

∑
j

ελjσ
x
j

+
∑

j

�̃j

2
σ z

j +
∑
j>i

J
q

ij (σ−
i σ+

j + σ+
i σ−

j ). (3)

Here the detuning frequency between the cavity and the
measurement drive δr = ωr − ωd , the dispersive coupling
strength χj = gjλj = g2

j /	j , the dispersive-shifted qubit fre-
quency �̃j = �j − ωd + χj , and the strength of qubit-qubit
interaction mediated by the cavity field J

q

ij = gigj [(1/	i) +
(1/	j )]/2. One can see that in this dispersive limit, the
qubit-resonator interaction induces a qubit-state-dependent
shift on the resonator frequency. If we set δr = ωr − ωd = 0,
i.e., the driving frequency to be in resonance with the cavity
frequency, the measurement of the resonator frequency shift
can be translated into the measurement of the phase shift
between the incident and transmitted microwave drives. Thus
the information about the qubit state can be inferred from
the homodyne signal coming from the transmitted microwave
through the cavity or TLR. The optimal signal-to-noise ratio
for single-qubit dispersive readout is achieved for 2χ =
κ [50] while it is a little bit involved when multi-qubit
joint measurement is considered [see discussions related to
Eqs. (17) and (21) and to the red dashed curve in Fig. 5(a)].

The evolution equation for the density matrix of the qubit
and cavity system conditioned on the continuous homodyne
detection in the joint rotating frame can be written as [39,40]

ρ̇c = −i [Heff,ρc] +
∑

j

γjD[σ−
j ]ρc

+ κD [a] ρc + √
κηH[ae−iφ]ρcξ (t), (4)
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where the effect of the baths on the system describing the qubit
and cavity decays is denoted by the decoherence superoperator
terms given in the Lindblad form

D[c]ρ = cρc† − 1
2 (c†cρ + ρc†c), (5)

and κ and γi are respectively the cavity and individual qubit
decay rates. The last term in the conditional master equation (4)
is the homodyne measurement unraveling term that describes
the back action and stochastic nature of the quantum mea-
surements, 0 � η � 1 is the measurement efficiency (η = 1
corresponds to a perfect detector or efficient measurement, and
η < 1 represents the fraction of detections which are actually
registered by the detectors), φ is the phase of the local oscillator
that is mixed with the transmitted microwave in the homodyne
measurement, and the measurement superoperator

H [c] ρ = cρ + ρc† − 〈c + c†〉ρ, (6)

where 〈c〉 = tr(ρc) means the quantum average of the operator
c. The stochastic nature of the random measurement outcomes
is characterized by ξ (t), a Gaussian white noise with the
ensemble average properties of E[ξ (t)] = 0, E[ξ (t)ξ (t ′)] =
δ(t − t ′), where E[· · ·] denotes an ensemble average over
different realizations of the noise. The use of a Gaussian
white-noise term here assumes that the local oscillator has
no more noise than a coherent state, a good assumption at
microwave frequencies. The measured homodyne current (in
units of frequency) is proportional to

I (t) = κη〈a e−iφ + a† eiφ〉 +
√

kηξ (t). (7)

Although Eq. (4) can be used to study the conditional
dynamics and measurement backaction, it provides little direct
insight about how the evolution of the qubits depends on the
continuous measurement outcomes. However, if the cavity
field can be traced out and an effective (stochastic) master
equation for the qubit degrees of freedom only can be obtained,
more intuition and understanding to the qubit dynamics of
the continuous quantum measurement process can be gained
and thus help facilitate the successful development and design
of further manipulation and control strategies for the qubit
system, e.g., the quantum feedback control strategy presented
later in this article.

To obtain the effective stochastic master equation for the
qubits’ degrees of freedom only, a common method is the
so-called adiabatic elimination procedure valid in the limit
where the damping of the cavity is much larger than both
the dispersive coupling strengths and the qubits’ decay rates,
i.e., κ � (χi and γi). Here, we go beyond this limit and use
a polaron-type transformation [38,50] to trace out the cavity
field. We will compare these two approaches in Sec. IV. The
polaron-type approach assumes only that the state of the qubits
varies slowly within the measurement time during which the
cavity field evolves to a steady coherent state depending on the
qubit state. This assumption can be justified if the cavity field
decay rate is much faster than the qubit decay rate κ � 2γj .
In this case, the unconditional master equation, i.e., Eq. (4)
averaged over the white-noise process, indicates that a coherent
state remains a coherent state with the amplitude αx of the
cavity coherent state |αx〉 at δr = ωr − ωd = 0, satisfying

α̇x = −iχxαx − iε − κ

2
αx (8)

when the qubits are in a basis state |x〉 = |ijk〉, where i,j,k ∈
{0,1}, |0〉 and |1〉 represent respectively the ground and excited
states of a single qubit, and χx = 〈x| ∑j χjσ

z
j |x〉. Then the

elimination of the cavity (TLR) degrees of freedom is carried
out by going to a frame defined by the transformation [38,50]

P (t) =
∑

x

�xD [αx (t)] (9)

with D[α] the displacement operator of the TLR,

D [α] = exp[αa† − α∗a], (10)

and �x = |x〉〈x| are projection operators onto the respective
basis (logical) states of the three-qubit Hilbert space. In this
transformed reference frame, the cavity field is displaced to
start from a vacuum state with zero photon, i.e., D[αx]|0〉TLR =
|αx〉TLR. For simplicity, we take �1 = �2 = �3 = � and
g1 = g2 = g3 = g. This implies that we assume three identical
qubits with one wavelength separation apart in the TLR cavity
(see Fig. 1). This assumption also helps generate the |W−〉 state
by continuous measurements as the |W−〉 state in this case is a
simultaneous eigenstate of the system Hamiltonian (i.e., when
without consideration of the qubits’ decay) and the homodyne
measurement operator [see Eq. (21) and further discussion
below it]. Then, following the calculations in Refs. [38]
and [50], we obtain an effective master equation for the
qubits’ degrees of freedom alone conditioned on continuous
homodyne detection as [38,44,50]

dρc (t) /dt = Lρc(t) + √
κηH[cφ]ρc(t)ξ (t)

− i
√

κη[cφ−π/2,ρc (t)]ξ (t), (11)

where Lρc is given by

Lρc = −i

⎡
⎣∑

j

χ

2
σ z

j +
∑

j

ελ(σ+
j ei	t + σ−

j e−i	t )

+
∑
j>i

χ (σ−
i σ+

j + σ+
i σ−

j ),ρc

⎤
⎦

+
∑

j

γjD[σ−
j ]ρc + κD

⎡
⎣∑

j

λσ−
j

⎤
⎦ ρc

+
∑
xy

(
�

xy

d − iAxy
c

)
�xρc�y. (12)

In writing Eq. (12), we have transformed to a frame rotating
with the qubits’ transition frequency �. This is also a suitable
frame for applying an additional microwave drive with a
frequency in resonance with the qubits’ transition frequency
in order to coherently control the qubits as discussed in the
context of quantum feedback control in the next section. As
a result, the σx term in Eq. (3) now acquires time-dependent
oscillating factors with frequency � − ωd = 	 (as we have
set ωd = ωr ) in the commutator of the first term in Eq. (12).
The third term in Eq. (12) represents the Purcell effect at
the damping rate κλ2 which can be reduced by operating
the qubits in the dispersive regime [16,18,23], while the
fourth term contains both the measurement-induced dephasing
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(�xy

d ) and the ac Stark shift (Axy
c ) given by

�
xy

d = (χx − χy)Im[αxα
∗
y ], (13)

Axy
c = (χx − χy)Re[αxα

∗
y ]. (14)

The last two terms of Eq. (11) come from the last term of the
conditional master equation (4) in the displaced polaron-type
frame, in which the cavity field is transformed into

a e−iφ →
∑

x

�xαxe
−iφ = cφ − icφ−π/2. (15)

The measured homodyne current from Eq. (7) becomes

Ic(t) = κη〈cφ + c
†
φ〉c (t) + √

κηξ (t) . (16)

Here the joint measurement operator cφ is given by [38,44,50]

cφ = 1

2

1∑
i,j,k=0

√
�ijk(φ)

(
σ z

1

)i(
σ z

2

)j (
σ z

3

)k
, (17)

where

�ijk (φ) = |βijk|2 cos2(φ − θβijk
), (18)

βijk = 1

4

1∑
l,m,n=0

(−1)
a·
b αlmn, (19)

where the vectors are 
a = (i,j,k) and 
b = (1 − l,1 − m,1 −
n), θβ = arg(β), and κη�ijk(φ) is the measurement rate for
the polarization of (σ z

1 )i(σ z
2 )j (σ z

3 )k . Note that the conditional
stochastic master equation (11) after being averaged over all
possible measurement records reduces to the unconditional,
deterministic master equation, i.e., Eq. (11) but without its last
two unraveling noise terms.

The outcomes of the homodyne current (16) depend on the
choice of the local oscillator phase φ. We would like to generate
the entanglement state |W−〉 by quantum measurement. Thus
we choose the phase to be φ = 0 such that the |W−〉 state is one
of the eigenstates of the measurement operator [21,35,37,45],

c0 = 3
√

�0 − √
�1

2
(�111 − �000)

+
√

�0 + √
�1

2
(�011 + �101 + �110

−�100 − �010 − �001), (20)

=
√

�0

2

(
σ z

1 + σ z
2 + σ z

3

) −
√

�1

2
σ z

1 σ z
2 σ z

3 , (21)

where √
�0 =

√
�100 =

√
�010 =

√
�001

= 1
4 (α111 − α000 + α110 − α001) (22)

and √
�1 =

√
�111 = 1

4 (α000 − α111 + 3α001 − 3α110). (23)

In this case, there are four measurement outcomes of 〈c0 + c
†
0〉:

3
√

�0 − √
�1,

√
�0 + √

�1, −√
�0 − √

�1, and −3
√

�0 +√
�1, which correspond respectively to the all-qubit excited

state |111〉, the two-qubit excited states {|110〉,|101〉,|011〉},

the single-qubit excited states {|001〉,|010〉,|100〉}, and the
ground state |000〉. One can see from Eq. (15) and the last two
terms of Eq. (11) that, in addition to the measurement operator
c0 providing the qubit state information, performing the
homodyne measurement at φ = 0 also produces a stochastic
phase represented by the term associated with

c−π/2 = 3
√

�2

2
(�111 + �000)

−
√

�2

2
(�011+�101+�110+�100+�010 + �001)

(24)

=
√

�2

2

(
σ z

1 σ z
2 + σ z

2 σ z
3 + σ z

1 σ z
3

)
, (25)

where √
�2 =

√
�011 =

√
�101 =

√
�110

= i

4
(α111 + α000 − α110 − α001). (26)

Note that c−π/2 generates different relative phase kicks only
between two groups of states, i.e., between the group of
{|111〉,|000〉} and the group of {|110〉,|101〉,|011〉,|001〉,
|010〉,|100〉}. In other words, no relative random phase kick
between the constituent basis states of the |W−〉 state (thus
no additional unwanted dephasing between them) also helps
generate and stabilize the target |W−〉 state.

When the coherent state amplitudes are steady, the rates
κ�0, κ�1, and κ�2 become

√
κ�0 =

√
�m

[
1 + 12 (χ/κ)2

1 + 40 (χ/κ)2 + 144 (χ/κ)4

]
, (27)

√
κ�1 =

√
�m

[
24 (χ/κ)2

1 + 40 (χ/κ)2 + 144 (χ/κ)4

]
, (28)

√
κ�2 =

√
�m

[ −4 (χ/κ)

1 + 40 (χ/κ)2 + 144 (χ/κ)4

]
, (29)

where �m = 64ε2χ2/κ3 is the effective measurement rate
obtained from the adiabatic elimination method [42,43]. In
general, the measurement rate is related to the decoherence
rate as the decrease in the off-diagonal element is associated
with the gradual projection onto one of the corresponding
measurement eigenstates. For example, in the steady state, the
measurement rate �m for efficiency η = 1 is equal to twice of
the decoherence rate, i.e., �m = 2�e, for the case by the adia-
batic elimination method [see Eq. (35)] [43]. Similarly, there is
a relationship between the measurement rates defined through
Eq. (21) and the corresponding decoherence rates in Eq. (13).
We may define for efficiency η = 1 the ratio between them as

Rx,y ≡ κ|αx − αy |2
(χx − χy)Im[αxα∗

y ]
, (30)

where the numerator, κ|αx − αy |2, is the measurement rate
to distinguish between two eigenstates |x〉 and |y〉 of the
measurement operator c0 (also proportional to the separation
between two measurement outcomes corresponding to the
states |x〉 and |y〉), and the denominator is the measurement-
induced dephasing in Eq. (13). When the coherent amplitudes
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have reached steady state, it can be shown that

R000,111 = R100,011 = R010,101 = R001,110 = 2. (31)

In other words, the respective measurement rates to distinguish
between the states |111〉 and |000〉, between |011〉 and |100〉,
between |101〉 and |010〉, and between |110〉 and |001〉 are
twice their corresponding measurement-induced dephasing
rates.

We wish to apply the measurement-guided quantum feed-
back control to generate and stabilize the |W−〉 state, thus
distinct values of measurement current, which reveal quickly
the information of corresponding qubit states are favorable.
The separations between adjacent measurement outcomes are
2
√

�0 ± 2
√

�1 and depend on the value of χ/κ . Generally,
larger separations between measurement outcomes implies
quicker corresponding measurement eigenstate readout. Let
us focus on the smaller separation of 2

√
�0 − 2

√
�1 between

the measurement outcome of the ground state and that of the
|W−〉 state (or the single-qubit excited states). When the ratio
χ/κ is decreased from 0 to −1, the separation between the
outcomes of the ground state and the single-qubit excited state
[see the red dashed curve in Fig. 5(a)] increases initially and
then reaches a local maximum around χ/κ = −0.11. It then
vanishes around χ/κ = −0.29 and later reaches another local
maximum around χ/κ = −0.77. However, a larger χ value
leads to a larger damping rate, κλ2 = κχ2/g2, of the Purcell
effect, which deteriorates the average fidelity to generate and
stabilize the |W−〉 state. As a result, the fidelity at χ = −0.77κ

is expected to be smaller than that at χ = −0.11κ . We
will show later that the average fidelity at χ = −0.77κ is
also smaller than that at, say, χ = −0.5κ even though its
measurement outcome separation is larger [see Fig. 5(a)
and the discussion related to it in Sec. III B]. Thus for the
simulations presented in this article, the dispersive coupling
strength is chosen to be χ = −0.11κ and/or χ = −0.50κ .
These are readily accessible parameter values [13,53–55].

Suppose we start to evolve the conditional master equa-
tion (11) with an initial state of the cavity in a vacuum state
and the qubits in a separable state,

|ψi〉= 1√
2

(|0〉+ |1〉)1 ⊗ 1√
2

(|0〉+ |1〉)2 ⊗ 1√
2

(|0〉+ |1〉)3.

(32)

Ideally, it is expected that the qubits under continuous mea-
surements will collapse gradually onto one of the eigenstates
of the joint-qubit measurement operator c0 stochastically in
each individual realization. Indeed, by ignoring the decay
rates of the qubits, i.e., by setting γj = 0, the initial qubit
state |ψi〉 of Eq. (32) will collapse onto the states |111〉
and |000〉 with probability 0.125 each and onto the states
|W+〉 = (|110〉 + |101〉 + |011〉)/√3 and |W−〉 = (|100〉 +
|010〉 + |001〉)/√3 with probability 0.375 each. This is shown
in Fig. 2, where the averaged measured currents 〈c0 + c

†
0〉c

obtained by categorizing and averaging 1000 realizations that
yield roughly the same steady outcome values [as implied by
Eq. (32)] are presented. One can see that after the time of
about 5/κ , the cavity field has evolved from the initial vacuum
state to correspondingly distinguishable coherent states and
four distinct measurement outcomes (solid lines in Fig. 2) are

FIG. 2. (Color online) Measured homodyne currents 〈c0 + c
†
0〉c

(1000 realizations that yield roughly the same steady outcome values
are grouped and averaged) for an initial cavity state in a vacuum
state and an initial qubits’ state in the separable state |ψi〉 of Eq. (32)
with the qubits’ decay rates γj = 0. The four measurement outcomes
in solid lines are for the case of polaron-type transformation and
they correspond to the qubits collapsing respectively onto states
|111〉, |W+〉, |W−〉, and |000〉 from the top to the bottom, while
the measurement outcomes in dashed lines correspond to the case of
adiabatic elimination. The parameters used are ε = 2κ , χ = −0.11κ ,
g = 10κ , η = 1, and γj = 0.

observed. The measurement outcomes maintaining at certain
values for a considerably long time indicate that the qubits
have collapsed onto and stayed in the corresponding states
of |111〉, |W+〉, |W−〉, and |000〉. However, this scheme of
producing entangled |W−〉 or |W+〉 states by measurement
only is probabilistic, and in the presence of qubit relaxation,
the probabilistically generated entangled state will jump into
other states.

III. ENTANGLEMENT CREATION AND STABILIZATION
BY QUANTUM FEEDBACK CONTROL

A. Quantum feedback control strategy

To generate the |W−〉 state deterministically and stabilize
it against the influence of the environments, we employ
the adaptive quantum feedback control technique based on
quantum state estimation. The conditional stochastic master
equation with this kind of the feedback control scheme
becomes [42,43,56]

ρ̇c(t) = Lρc (t) + √
κH [c0] ρc (t) ξ (t)

− i
√

κ[c−π/2,ρc (t)]ξ (t) − i[Hfb(t),ρc(t)]. (33)

Here Hfb(t) is the feedback control Hamiltonian with con-
trol parameters designed from an estimation of ρc(t). The
advantage of the quantum state estimation scheme is that the
feedback control can be designed from an optimal control
method to ensure the qubit system passing through the
more efficient trajectory by optimizing the targeted objective
or minimizing the cost function. We choose the objective
function to be the fidelity Fc = Tr[ρc(t)ρW−], where ρW− =
|W−〉〈W−|, and choose the feedback control Hamiltonian to be
Hfb = f1σ

x
1 + f2σ

x
2 + f3σ

x
3 , i.e., only single qubit rotations.

The strategy [56] to determine the feedback strengths fj at
each point in time is chosen optimally by maximizing the
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fidelity Fc = Tr[ρc(t)ρW−]. By considering the dynamics of
the feedback Hamiltonian only, ρ̇c(t) = −i[Hfb,ρc(t)], the
time evolution of the fidelity is

dFc(t)

dt
= Tr[ρ̇c(t)ρW−] = 〈−i [ρW− ,Hfb]〉c
= f1

〈 − i
[
ρW− ,σ x

1

]〉
c
+ f2

〈 − i
[
ρW− ,σ x

2

]〉
c

+ f3
〈 − i

[
ρW− ,σ x

3

]〉
c
. (34)

To maximize the fidelity, i.e., to make [dFc(t)/dt] positive
and maximal, the optimal feedback coefficients to kick the
qubit system back to the desired state ρW− = |W−〉〈W−|
are determined by fj = f sgn(〈−i[ρW− ,σ x

j ]〉c), where sgn(y)
denotes the sign function that extracts the sign of a real number
y and f is the maximum feedback strength that can be applied.
This is a bang-bang feedback control scheme, meaning that the
feedback strengths are always at the maximum or minimum
values [56].

B. Entanglement creation and stabilization

Considering qubits’ decay rates γj = γ = κ/250 as in
Ref. [38], we demonstrate in Fig. 3 that the entangled |W−〉
state can be generated and stabilized with high average fidelity
F ≈ 0.98 for various initial qubits’ states by our feedback
control strategy with a moderate feedback strength of f = 2κ .
The average fidelity F is obtained by averaging Fc over 1000
realizations or trajectories. The various initial states are |000〉,
|W−〉, |W+〉, |111〉, eigenstates of the joint measurement
operator c0, and the separable state |ψi〉 of Eq. (21). They
all reach the average fidelity of about 0.98 in a time scale of
about a few 1/κ , in about the same time scale for the cavity
field to evolve into distinguishable coherent states (without
feedback control) in Fig. 2. Other parameters used in Fig. 3
are the coupling strength g = 10κ and the dispersive coupling
strength χ = −0.11κ .

Figure 4(a) shows the time evolutions of the average
fidelity of the |W−〉 state for different qubit decay rates. The
brown dashed line is the ensemble average (unconditional)
result of the qubit system evolving from the |W−〉 state
without feedback control for the qubit decay rates of γj = γ =

FIG. 3. (Color online) Time evolutions of the average fidelity F

of |W−〉 state (over 1000 realizations or trajectories) as a function of
time for different initial states of |000〉, |W−〉, |W+〉, |000〉, and |ψi〉.
The parameters used are f = 2κ , ε = 2κ , χ = −0.11κ , g = 10κ ,
η = 1, and γj = γ = 4 × 10−3κ .

4 × 10−3κ . The fidelity without feedback control deteriorates
about linearly with time. This can be understood from a
typical measured current record in a single realization of the
experiment as shown in Fig. 4(b). The qubits initially in the
|W−〉 state corresponding to the result of 〈c0 + c

†
0〉c = −1.68

for the parameters chosen here have probability γ dt to make
a sudden jump into the ground state |000〉 corresponding to
〈c0 + c

†
0〉c = −3.68 in the time interval [t,t + dt]. If there

is no feedback control, the qubit after the sudden jump will
then stay in the ground state as indicated by the red dashed
curve in Fig. 4(b). In contrast, even when the initial qubit
state is the ground state |000〉, the qubit with feedback control
will be driven to the |W−〉 state and be stabilized for a
sufficiently long time. This is also shown in Fig. 4(a) in
which the ensemble averaged fidelities with application of
feedback control (even when the decay rate of the qubits
is γj = γ = κ/25 = 4 × 10−2κ) are stabilized with values
above that of the brown dashed line (with γj = γ = κ/25)
when time κt > 50.

We discuss in the following the dependence of the average
fidelity on the dispersive coupling strength χ , the probe beam
amplitude ε, the feedback strength f , and the measurement
efficiency η. The black-circle solid line in Fig. 5(a) is the
average fidelity F versus the dispersive coupling strength χ for
the probe field ε = 2κ , the feedback strength f = 2κ , and the
decay rate of the qubits γj = γ = 4 × 10−3κ . The dependence
of the fidelity on χ is similar to the red dashed curve, which
represents the separation between the measurement output
signal 〈c0 + c

†
0〉c that corresponds to the qubits’ state being in

|W−〉 and the output signal that corresponds to the qubits’ state
of |000〉. This is because larger separation means better state
distinguishibility and thus helps the conditional qubits’ state
estimation in the quantum feedback control scheme. One can
observe that |W−〉 and |000〉 become indistinguishable from
the measurement current around the point χ ≈ −0.29κ , and
thus the fidelity drops sharply around there as well. One can
also notice from Fig. 5(a) that the separation reaches maximum
values at χ = −0.11κ and χ = −0.77κ , but the fidelity is
higher at χ = −0.11κ . This is because the collective damping
rate κλ2 = κχ2/g2 of the Purcell effect of the third term in
Eq. (12) increases with the values of χ . For example, for
g = 10κ , the Purcell collective damping rate of 5.93 × 10−3κ

at χ = −0.77κ is larger than the individual qubit decay rate, set
to be γj = γ = 4 × 10−3κ here, while the Purcell collective
damping rate of 1.21 × 10−4κ at χ = −0.11κ is much smaller
than γ and thus does not play an important role. As a result, the
average fidelity is lower for the case of a higher χ value when
the corresponding separation of the measurement outcomes is
the same. Another observation from Fig. 5(a) is that the average
fidelity does not change with the dispersive coupling strength
χ as sharply as the separation of the measurement outcomes
does. When the separation of the measurement outcomes above
a certain value (about 1.6 for the parameters chosen here),
the average fidelity does not vary much [see the behaviors of
the separation of the measurement outcomes and the average
fidelity around χ = −0.11κ , where the Purcell effect is not
significant as compared to the individual qubits’ decay]. This
may also explain why the average fidelity at χ = −0.5κ

is larger than that at χ = −0.77κ . The Purcell collective
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FIG. 4. (Color online) (a) Time evolutions of the average fidelity F of the |W−〉 state (over 1000 trajectories) generated from the ground
state |000〉 for different qubits’ decay rates of γj = γ being 4 × 10−3κ , 1 × 10−2κ , 2 × 10−2κ , and 4 × 10−2κ (solid lines from top to bottom).
The brown dashed line is the ensemble average fidelity without the application of feedback control for an initial qubits’ state being in |W−〉.
(b) A typical single trajectory of the estimated current 〈c0 + c

†
0〉c for the qubits’ decay rates of γj = γ = 4 × 10−3κ . The qubits’ system is

stabilized in the |W−〉 state with 〈c0 + c
†
0〉c = −1.68 during the continuous feedback control process (in solid line), while it makes a sudden

jump to the ground state |000〉 with 〈c0 + c
†
0〉c = −3.68 without the application of feedback control (dashed line). Other parameters used are

the same as those in Fig. 3.

damping rate of 2.50 × 10−3κ at χ = −0.5κ , which is smaller
than the individual qubit decay rate γj = γ = 4 × 10−3κ , is
smaller than that of 5.93 × 10−3κ at χ = −0.77κ . Although
the separation of the measurement outcomes at χ = −0.5κ

is also smaller there, its value is larger than 1.6. As a

result, the average fidelity at χ = −0.5κ is larger than that
at χ = −0.77κ . We perform most of our simulations choosing
χ = −0.11κ and/or χ = −0.5κ .

The dependence of average fidelity on the measurement
drive amplitude ε is shown in Fig. 5(b). Since the information

FIG. 5. (Color online) Dependence of the average fidelity F of the |W−〉 state at κt = 350 on (a) the dispersive coupling strength χ ,
(b) the driving amplitude ε, (c) the feedback strength f , and (d) the measurement efficiency η. The decay rate of the qubits is fixed at
γj = γ = 4 × 10−3κ and the initial qubit state is the ground state |000〉. The red dashed curve in (a) is the separation between the measurement
outcomes of the ground state and the |W−〉 state (or the single-qubit excited state) with its vertical axis label shown on the right.
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gain rates [cf. Eqs. (27) and (28)] is proportional to
√

�m ∝ ε,
the bigger the value ε is, the larger the separation between
measurement outcomes is and the quicker the conditional state
collapse to one of the joint measurement operator eigenstates
is. It is thus expected the average fidelity will also become
better as ε increases, as shown in Fig. 5(b). One may be
tempted to think that the arbitrarily quick readout or arbitrarily
high fidelity can be achieved by simply increasing ε. But
it was pointed out [9,13] that the lowest-order dispersive
approximation of Hamiltonian Eq. (3) becomes accurate when
the average photon number in the cavity is much smaller than
the critical photon number of ncrit = 	2/4g2. The number
of photon is proportional to ε2. This puts a limit on how
large the external drive ε could be for Eq. (3) to hold
valid. In addition, note that the time-dependent second term∑

j ελ(σ+
j ei	t + σ−

j e−i	t ) in the first commutator of Eq. (4)
also increases with ε. This term in the Hamiltonian, in addition
to the qubit decay channel, will cause the qubits to flip or
change their state during the process when the continuous
measurement tries to localize the qubits to one of the joint
measurement operator eigenstates. However, the value of λ =
χ/g = 0.11/10 = 0.011 we choose is small and for typical
value of ε, the coefficient ελ of this term is much smaller than
the frequency 	 = � − ωd (as we have set ωd = ωr ) of the
oscillating factors. Thus the effect of this term to mix different
measurement eigenstates is small. We choose ε = 2κ for most
of the simulations presented in this paper although increasing
ε further will improve the fidelity a little bit.

Figure 5(c) shows that increasing the feedback control
strength improves the average fidelity in general. Suppose a
measurement outcome indicating deviation from the desired
|W−〉 state happens; the applied feedback control has to
overcome the effect of the localization due to the continuous
measurement in order to move the qubits back to the target
|W−〉 state. When the feedback control strength is smaller,
the procedure to produce and stabilize the |W−〉 state takes
a longer time with a lower fidelity. The qubits’ decay rates
in Fig. 5(c) are chosen to be γj = γ = 4 × 10−3κ . When the
feedback control strength is f = 2κ , the fidelity reaches the
value of 0.98. Further increase of the feedback control strength,
i.e., f > 2κ , does not improve appreciably the fidelity. This
indicates that if deviation occurs, the correction of the feedback
control at f = 2κ is fast enough to kick the qubits back to the
|W−〉 state. We thus choose f = 2κ for most of our numerical
simulations.

In practice, there exists inefficiency in the measurements
which arises when the detectors sometimes miss detection or
the measurement microwave photons does not go to the detec-
tors due to lost. However, high measurement efficiency is not
very essential for our feedback control scheme. Although the
fidelity decreases as the value of the measurement efficiency
η decreases, as shown in Fig. 5(d), the fidelity is still above
0.9 for η as low as 0.2 for the case of χ = −0.11κ and qubits’
decay rates γj = γ = 4 × 10−3κ . The value of η < 1 implies
appearance of an additional nonunraveling dephasing term
in the quantum trajectory (stochastic master) equation [44].
However, this term causes dephasing only among |111〉, |W+〉,
|W−〉, and |000〉 for the initial qubits’ states chosen in our
simulations. As a result, it affects only the detailed dynamics
of the qubits but does not destroy or prevent the controlled

FIG. 6. (Color online) Time evolutions of the average fidelity F of
the |W−〉 state with (f = 2κ) and without (f = 0) quantum feedback
control for three sets of different individual qubits’ decay rates. The
initial state for the case with feedback control (f = 2κ) is the ground
state |000〉 while it is the |W−〉 state for the case without feedback
control (f = 0). Other parameters used are ε = 2κ , χ = −0.11κ ,
g = 10κ , η = 1, and γ = 10−2κ .

evolution toward the target entangled state |W−〉. Therefore,
our feedback control scheme to generate and stabilize the
|W−〉 state does not require high measurement efficiency and
thus can be implemented experimentally with high fidelity
with measurement efficiency available in current circuit QED
experiments that use parametric amplification before the
homodyne detection with an IQ mixer [28,29,57,58]. For
example, Refs. [29,58] have achieved an effective quantum
efficiency of η = 0.4.

Our feedback control scheme is robust even when the decay
rates of the qubits differ. This is shown in Fig. 6 where the
time evolutions of the average fidelity of the |W−〉 state with
and without feedback control for three sets of qubits’ decay
rates are shown. The average fidelity is determined roughly
by the average decay rate in each set as the behavior of the
fidelity in each set is similar to that when the decay rates of the
three qubits were equal to the average decay rate. The average
fidelities of the |W−〉 state generated initially from the ground
state |000〉 with feedback control strength f = 2κ outperform
those evolving from an initial |W−〉 state without feedback
control (f = 0) after time κt ≈ 15.

IV. COMPARISON WITH ADIABATIC
ELIMINATION METHOD

Another commonly used procedure to eliminate the cavity
field is the adiabatic elimination method. Both the adiabatic
method and the polaron-type transformation method assume
that κ � γi , but the adiabatic method employs an additional
condition, i.e., to assume that the damping of the cavity
is much larger than the dispersive coupling strength, i.e.,
κ � χi . In the limit of κ � χ , the term χx in Eq. (8) is
ignored and the TLR cavity field reaches its steady coherent
state rapidly with an amplitude equal to α = −2iε/κ . As a
consequence, the coherent state amplitude is assumed to be
the same for all the qubits’ basis states. This is in contrast
to the case in the polaron-type transformation method where
the time-dependent coherent state amplitudes αx shown in
Eq. (8) depend on χx and thus on the qubits basis states
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|x〉. The steady-state information gain rates in the limit of
κ � χ from Eqs. (27) and (28) become

√
κ�0 → √

�m and
�1 → 0 (note also that �2 → 0). As a result, the measurement
operator from Eq. (21) becomes

√
�e/κ

∑
j σ z

j . The effective
conditional (stochastic) master equation (11) in the case of
adiabatic elimination also reduces to

dρe
c (t)

dt
= −i

[ ∑
j

[(χ/2) + χ |α|2]σ z
j

+
∑

j

ελ(σ+
j ei	t + σ−

j e−i	t )

+
∑
j>i

χ (σ−
i σ+

j + σ+
i σ−

j ),ρe
c (t)

]

+
∑

j

γjD[σ−
j ]ρe

c (t) + κD
[∑

j

λσ−
j

]
ρe

c (t)

+�e

2
D

[ ∑
j

σ z
j

]
ρe

c (t)

+
√

η�m

2
H

[∑
j

σ z
j

]
ρe

c (t)ξ (t). (35)

Here, the second term in the first commutator term and the
fourth term of Eq. (35) are reduced respectively from Eqs. (14)
and (13) of Eq. (12). Note again that the measurement rate here
is twice of the decoherencee rate, �m = 2�e = 64ε2χ2/κ3.
One can clearly see that the adiabatic elimination procedure
is a special case of polaron-type transformation in the limit of
κ � χ .

The measurement outcomes of the average homodyne cur-
rents obtained by categorizing and averaging 1000 realizations
that yield roughly the same steady outcome values for the
case of adiabatic elimination are plotted in Fig. 2 to compare
with the case of polaron-type transformation with the same
parameters. The qubits are initially in the separable state |ψi〉
of Eq. (32) with the qubits’ decay rates set to zero, i.e., γj = 0,
and the cavity state evolves from an initial vacuum state. One
can see that the measurement outcomes in dashed lines for
the adiabatic elimination case approach to their corresponding
steady values more quickly. Moreover, the four measurement
outcomes in the adiabatic elimination limit become 3

√
�m/κ ,√

�m/κ , −√
�m/κ , and −3

√
�m/κ; as a result, the steady

value corresponding to |111〉(|000〉) is overestimated, i.e.,
becomes larger (smaller). Thus neglecting the contribution of
�1 → 0 in the case of adiabatic elimination for the parameter
of (χ/κ) = −0.11 used in Fig. 2 is not really valid.

For the adoptive feedback control by state estimation
method, it is important to use the correct conditional stochastic
master equation to estimate the system state conditioned
on the measured current. Otherwise, wrong state estimation
information will give rise to bad feedback control result. We
have tested numerically that when |χ/κ| � 0.01 both the
adiabatic elimination method and the polaron-type transfor-
mation method give the same result for the typical parameters
chosen in our simulation in the absent of feedback control.
However, when |χ/κ| > 0.02, a discrepancy in conditional
qubits’ trajectories starts to emerge. However, Fig. 5(a)

indicates that in the presence of feedback control the average
fidelity is below 0.8 for γj = γ = κ/250 with this value of
|χ/κ| < 0.02. For the value of (χ/κ) = −0.11, the fidelity to
stabilize the |W−〉 can be maintained at 0.98 using the feedback
control master equation (33) obtained by the polaron-type
transformation method. In other words, in the parameter
regime where the adiabatic elimination does not apply, the
conditional stochastic master equation (35) cannot be used;
otherwise the wrong information about the system state will
lead to low-fidelity feedback control results. If one would
use the conditional master equation (35) obtained by use of
the adiabatic elimination method to perform the feedback
control scheme calculation by adding a feedback Hamiltonian
commutator term for the case of (χ/κ) = 0.11, high average
fidelity of 0.95 could be achieved. But this is not correct as
the conditional master equation (35) is not really valid when
(χ/κ) = −0.11. In fact, if we nevertheless use the conditional
master equation (35) obtained by the adiabatic elimination
method for the state estimation to determine the sign of the
feedback strength and then use the polaron-type feedback
control master equation (33) (mimicking the real experimental
situation) to evolve and calculate the fidelity, the average
fidelity is found to be below 0.5. This is because the signs of
the feedback control strength estimated by Eq. (35) obtained
by use of the adiabatic elimination method for the value of
(χ/κ) = −0.11 are often wrong.

V. CONCLUSION

In conclusion, we have presented a simple and promising
quantum feedback control scheme for deterministic generation
and stabilization of a three-qubit |W−〉 state in a supercon-
ducting circuit QED setup, taking into account the realistic
conditions of decoherence and decay. Our scheme is based
on continuous joint Zeno measurements of multiple qubits
in a dispersive regime and the application of multiqubit
adaptive feedback control. The dispersive measurement not
only enables qubit state estimation for further information
processing but also allows, together with the feedback control,
for the generation and stabilization of the target entangled
|W−〉 state starting from separable input states or from the
ground states of the qubits. The feedback control Hamiltonian
can be realized by applying, besides the measurement drive,
an additional control microwave drive with a frequency in
resonance with the qubits’ transition frequency. We have
employed the polaron-type transformation method to eliminate
the cavity field to obtain an effective stochastic master equation
for the qubits’ degrees of freedom alone and simulated the
dynamics of the proposed quantum feedback control scheme
using the quantum trajectory approach. It is demonstrated
that in the presence of moderate environmental decoherence,
an average entangled state fidelity higher than 0.9 can be
achieved and maintained for a considerably long time (much
longer than the qubits’ decoherence time) with our scheme.
In our discussion, we have assumed to have identical qubits
with transition frequencies �1 = �2 = �3 = � and couplings
g1 = g2 = g3 = g. Although the couplings gj of the qubits to
the cavity field may, in a realistic experiment, not be the same,
one is able to tune, due to their great tunability, the qubit
transition frequencies to be pretty much the same by external
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voltages or magnetic fields. In other words, experimentally
the detuning 	 = � − ωr for all the qubits can be tuned to
be equal while the dispersive coupling strengths χj = g2

j /	

are left slightly different. We have tested numerically that a
mismatch smaller than 10−3g = 10−2κ (we set g = 10κ) in
the coupling strengths gj changes insignificantly the fidelity
to achieve the desired |W−〉 state. However, a mismatch
of 5 × 10−2κ (10−1κ) in gj results in a fidelity change,
say, for the γ = 4 × 10−3κ case, from 0.98 to 0.93 (0.84).
Taking the values of κ to be about 5 MHz yields a tolerant
mismatch in gj , which will not affect the desired fidelity,
to be about 10−2κ = 0.05 MHz. The required values for the
physical parameters are achievable in current experiments. Our
method can also be extended straightforwardly to generate
and stabilize an N -qubit (with N > 3) W -type state with one
excitation shared across N qubits in superposition.

We have also compared the polaron-type transformation
method with the adiabatic elimination method to eliminate
the cavity field. It is shown that the adiabatic elimination
procedure is a special case of polaron-type transformation in
the limit of κ � χ . Our feedback control scheme is also shown
to be robust against measurement inefficiency and individual
qubit decay rate differences. Recently, quantum feedback
experiments stabilizing Fock states of light in a cavity by using
sensitive atoms, crossing the field one at a time as quantum
nondemolition probes of its photon number have been reported

[59]. An experiment of stabilizing Rabi oscillation of a super-
conducting qubit in a cavity using quantum feedback control
via homodyne measurements has also been demonstrated [29].
Although the measurement efficiency was estimated to be
about 0.4 in the quantum feedback control experiment of a
superconducting qubit, the Rabi oscillations were shown to
persist indefinitely. Our feedback control scheme to generate
and stabilize entangled state can still achieve high fidelity even
when measurement efficiency is as low as 0.4. Furthermore,
processing data in real time using fast field-programmable
gate array (FPGA) electronics in circuit QED setup has been
demonstrated [60], and this will facilitate the performance of
quantum state estimation in real time in our scheme. Thus our
quantum feedback scheme has great potential to be realized
experimentally in the near future.
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