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Competing computationally with experimental groups for the construction of scaling quantum computers, we
simulate a complete quantum-gate by quantum-gate implementation of Shor’s algorithm on a classical 128-core
cluster computer. The resulting virtual quantum computer serves as a convenient quantum laboratory for the
investigation of the effect of defects in the quantum circuitry. The class of defects studied here is the removal
of all rotation gates with rotation angles θ < π/2b. Factoring semiprimes N = 21,33,35,39,55,57, we find that
the quantum computer still operates with acceptable performance (success probability of factoring) down to
b = 2. This is surprising since the deletion of rotation gates results in large errors in the arithmetic circuitry of
the quantum computer. Extrapolating on the basis of these results we conclude that for quantum computers of
practical interest more than 99% of rotation gates may be discarded with acceptable consequences in quantum
computer performance. This result may be of interest to experimental physicists and quantum engineers currently
embarked on designing efficient circuitry for scaling quantum computers.
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I. INTRODUCTION

Although the power of modern supercomputers seems
limitless, there are many unsolved problems of theoretical
and practical interest that are squarely beyond the capabilities
of any classical computer. One of these problems is the
factorization of a large semiprime N = pq, where p and
q, the prime factors of N , are about the same size. Several
powerful methods have been developed, such as the quadratic
number sieve [1] or the general number field sieve [2], to attack
the factorization problem. However, even if we constructed a
classical supercomputer the size of the universe, factoring a
5000 digit semiprime would still be impossible [3]. In fact, the
security of many public-key cryptosystems [4], among them
the Rivet-Shamir-Adleman (RSA) cryptosystem [5], depend
precisely on this observation.

When it comes to quantum computing, however, the story is
quite different. A quantum computer running Shor’s algorithm
[6] is capable of factoring current RSA semiprimes in a
reasonable amount of time and therefore poses a threat to
RSA-encrypted documents. Quantum algorithms, such as
Shor’s algorithm, make full use of quantum features, such
as superposition and entanglement, that allow for types of
information processing that are not available to classical
computers.

The enormous potential of quantum computers notwith-
standing, only a few “useful” quantum algorithms are known
to date. One of them, and arguably the most important one, is
Shor’s algorithm, which consequently has been under intense
investigation both theoretically [3,7–23] and experimentally
[24–28]. In 2001, e.g., Vandersypen et al. [24] successfully
implemented Shor’s algorithm, factoring N = 15 on a liquid
nuclear magnetic resonance (NMR) quantum computer. Sub-
sequently, Lu et al. [25] and Lanyon et al. [26], again factoring
N = 15, successfully demonstrated a quantum computer using
a photonic system. This was followed by another successful
demonstration by Politi et al. [27]. Recently, in 2012, Martı́n-
López et al. [28] used a qubit recycling technique to factor
N = 21, setting a new record for the largest semiprime
factored on actual quantum computer hardware.

Despite the pioneering accomplishments of the authors of
Refs. [24–28], all experiments to date use various compiled
versions of Shor’s algorithm, i.e., tailor-made algorithms that
take advantage of the preknowledge of the two prime factors
of the semiprimes used in the experiments (N = 15 = 3 × 5
and N = 21 = 3 × 7). These algorithms will not work for any
other N than the one they are designed for, making the resulting
quantum computers special purpose quantum computers.
Defining a scaling quantum computer as one that accepts
different values of N , the current implementations of Shor’s
algorithm are said to be nonscaling. However, considering that
even for the small N currently used in the experiments (N =
15 and N = 21), thousands of quantum-gate operations are
needed to run a complete, scaling, experimental implementa-
tion of Shor’s algorithm, the use of compiled, highly optimized
versions of Shor’s algorithm is currently unavoidable and
complete, scaling experimental implementations of Shor’s
algorithm remain elusive. Therefore, given the experimental
situation, and for the time being, the behavior of the complete
(scaling) version of Shor’s algorithm can only be studied via
numerical simulations on classical computers [3,9–11,29–34].

The current experimental limitations provide the motivation
for our numerical work. Running a complete implementation
of Shor’s algorithm on a classical cluster computer, we report
here the results on factoring semiprimes up to N = 57. In
addition, with the help of a shortcut, i.e., executing the modular
exponentiation part of Shor’s algorithm classically, we are able
to factor semiprimes up to N = 1,034,273.

Being able to factor substantially larger N than are possible
experimentally is not the only advantage of our numerical
implementation. On a computer we have access to each
individual quantum gate, which lets us enable or disable
any individual quantum gate at will, something which is
extremely difficult to accomplish experimentally. Making use
of our free access to quantum gates, our main result is
that an enormous number of quantum gates may be pruned
from Shor’s algorithm without significantly compromising the
performance of the resulting streamlined quantum computer.

We readily admit that our lead with respect to experiment
will only be temporary. The (classical) computer resources
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needed for our simulations grow exponentially in the number
of qubits, which is unsustainable beyond even modest values
of N . Therefore, sooner or later, the experiment will catch up
to the simulations and then easily surpass them as far as N is
concerned. But for now, even if only temporarily, numerical
simulation has the edge.

Our paper is organized in the following way. A detailed
description of the gate-by-gate decomposition of Shor’s
algorithm is presented in Sec. II. The banded Shor algorithm
is presented in Sec. III. Our virtual quantum computer may be
operated in two modes, A and B. In mode A, we perform the
modular exponentiation part of Shor’s algorithm classically,
which results in a significant speedup and memory savings
that allow us to study factorization of semiprimes up to
N ∼ 106. In Sec. IV we present the theory and simulation
results of our mode-A calculations. A new 40-qubit result
that took about three months to compute is also presented.
The theory and simulation results of mode B, a complete
quantum-gate by quantum-gate implementation of Shor’s
algorithm, is presented in Sec. V. Both our mode-A and mode-
B calculations show that a substantial number of quantum gates
may be saved in future experimental implementations of Shor’s
algorithm following a pruning strategy, which we call banding
(see Sec. III). In Sec. VI we discuss our results and in Sec. VII
we summarize and conclude our paper.

II. SHOR’S ALGORITHM

Shor’s algorithm may be divided into two parts: (1) modular
exponentiation (ME) and (2) period finding (PF). Given a
semiprime N = pq to be factored, the ME part of Shor’s
algorithm, supplied with an integer seed x between 1 and
N that is coprime to N , computes xr mod N for an integer
exponent r . Defining the mapping

f (r) = xr mod N, (1)

the PF part of Shor’s algorithm, then, determines the period ω

of f , i.e., the smallest integer ω > 0 for which f (ω) = 1, via a
quantum Fourier transform (QFT). For a successful factoring,
ω needs to meet the following two conditions: (i) ω needs to
be even and (ii) (xω/2 − 1) mod N �= 0. If any one of these
two conditions are not met, we try a different seed x. When
both conditions are satisfied, the two factors p and q of N are
then obtained via

p = gcd(xω/2 − 1,N ), q = gcd(xω/2 + 1,N ), (2)

where gcd denotes the greatest common divisor.
To date, there have been multiple proposed methods of

implementing Shor’s algorithm on a quantum computer; a list
of several different architectures is available in Table IV of
Ref. [35]. Notable ones include, but are not limited to, those
proposed by Vedral et al. [12], Beckman et al. [13], Zalka et al.
[14], Beauregard [15], Van Meter et al. [16,17], Takahashi et al.
[18], and Kutin [19]. In this paper, from the numerous methods
available, we focus on Beauregard’s representation of Shor’s
algorithm, which is based on QFT operations. The reason
behind this choice is due to the possibility of approximating
part of the circuit using a particular method of circuit pruning
(banding), which will be introduced in detail in Sec. III.
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FIG. 1. Logic circuit of a five-qubit QFT. H denotes the Hadamard
gate and θj denotes the coherently controlled two-qubit conditional
rotation gates with rotation angles θj = π/2j .

A. Period finding

The first step of the PF part of Shor’s algorithm is a QFT
defined as

|s ′〉 = Û (QFT)|s〉 = 1√
2n

2n−1∑
l=0

e
2πisl

2n |l〉, (3)

where n is the number of qubits, |s〉 and |s ′〉 indicate input
and output states, respectively, and |l〉 are the basis states of
the 2n-dimensional Hilbert space H2n

spanned by the n qubits.
Since our quantum computer is based on qubits, it is natural to
decompose H2n

into the tensor product of n two-dimensional
Hilbert spaces according to

H2n = H2
{n−1} ⊗ H2

{1} ⊗ H2
{0}, (4)

where H2
{m} denotes the mth Hilbert space. In this notation, for

instance, with l[m] the mth binary digit of an integer l,

|l〉 = |l[n−1]〉{n−1} · · · |l[1]〉{1}|l[0]〉{0}. (5)

This decomposition with its associated {. . .} notation has
additional advantages since in our quantum circuits qubits
and states do not always correspond. For example, the state
|a〉 of the j th qubit may actually correspond to the mth Hilbert
space H2

{m}, in which case we write |a〉{m}. This notation is of
particular convenience in connection with QFT circuits where
the output has to be read in reverse order (see Ref. [36] and
Fig. 1).

In the decomposed Hilbert space notation, with |0〉{m} and
|1〉{m} as basis states of the mth Hilbert space, (3) may be
written as

|s ′〉 = 1√
2n

n−1∏
m=0

1∑
j=0

e2πi(.s[m]s[m−1]···s[0])j |j 〉{n−m−1}, (6)

where s[ν] denotes the νth binary digit of s, and

.s[m]s[m−1] · · · s[0] =
m∑

ν=0

s[ν]2
−(m−ν+1). (7)

Expanding the product in (6), we obtain explicitly [36]

|s ′〉 = 1√
2n

(|0〉+ e2πi(.s[0])|1〉){n−1}(|0〉+ e2πi(.s[1]s[0])|1〉){n−2}

· · · (|0〉 + e2πi(.s[n−1]s[n−2]···s[0])|1〉){0}, (8)

which demonstrates that the QFT may be realized with a series
of Hadamard gates and phase rotation gates. A fully quantum
mechanical realization of the QFT in (8) is shown in Fig. 1.
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FIG. 2. Logic circuit of a five-qubit semiclassical QFT. The
meaning of H and θj is the same as in Fig. 1. M denotes the
measurement gate.

We emphasize that in the case of the PF part of Shor’s
algorithm since the QFT is directly followed by measurements,
we are allowed to interchange the orders of the controlled phase
rotation gates with the measurements. This way, by replacing
the coherently controlled two-qubit phase rotation gates in
Fig. 1 with single-qubit phase rotation gates that are classically
controlled by the results of measurements, we obtain the
semiclassical QFT circuit shown in Fig. 2 [20]. We note that
due to the presence of measurements, the semiclassical QFT
cannot be used to construct the quantum ME, which, as shown
in Sec. II B, requires the coherent QFT.

B. Quantum modular exponentiation

In this section we show that ME may be broken down into
modular multiplications (MM), which then may be expressed
as a sequence of modular additions (MA). This shows that
MA is the basic building block of ME. Then, we separate
the modulo part from the addition part in MA and show that
the addition part may be realized with phase rotations when
performed in Fourier space.

From elementary algebra we know that any integer r may
be written in binary form as

r = 20r[0] + 21r[1] + · · · + 2n−1r[n−1], (9)

where n is an integer that satisfies r < 2n and r[k] denotes the
kth binary digit of r . Inserting (9) in (1), we obtain

f (r) = x20r[0]+21r[1]+···+2n−1r[n−1] mod N, (10)

which may be written as consecutive MMs according to

f (r) = gn−1( . . . (g1(g0(1))) . . . ), (11)

where

gk(b) = (
b × x2kr[k]

)
mod N. (12)

Using

x2kr[k] = 20
(
x2kr[k]

)
[0] + 21

(
x2kr[k]

)
[1]

+ · · · + 2n′−1
(
x2kr[k]

)
[n′−1] (13)

in (12), where n′ is yet another arbitrary integer that satisfies
x2kr[k] < 2n′

, we obtain

gk(b) = hk,n′−1(b, . . . ,hk,1(b,hk,0(b,0)) . . .), (14)

where

hk,j (b,a) = [
a + b × 2j

(
x2kr[k]

)
[j ]

]
mod N, (15)

which is equivalent to MA. This completes the decomposition
of ME into MAs.

The coherent decomposition of MA into addition and
modulo parts is straightforward. First, defining an n′ + 1
(qu)bit adder û, we write the functional expression of addition
of two integers a,b < 2n′

in the form

ûa|b〉 = |b + a〉. (16)

The inverse operation is defined as

û−1
a |b〉 =

{|b − a〉, if b � a,

|2n′+1 − (a − b)〉, if b < a,
(17)

which is equivalent to subtraction. Noticing that (a + b) mod
N (MA of a and b with respect to N ) is (i) a + b − N if
a + b � N or (ii) a + b if a + b < N for integers a,b < N <

2n′
, adding a to b then subtracting N results in

û−1
N ûa|b〉 =

{|a + b − N〉, if a + b � N,

|2n′+1 − [N − (a + b)]〉, if a + b < N,

(18)

which correctly yields case (i). Since a + b − N < 2n′
and

2n′+1 − [N − (a + b)] > 2n′
, case (ii) may be captured cor-

rectly with the help of (a) an overflow and (b) an aux-
iliary (qu)bit in the following way. Defining v̂(|t〉; |c〉) as
a controlled-NOT operation, linear in its two arguments,
according to

v̂(|t〉; |c〉) =
{|t〉, if c = 0,

|(t + 1) mod 2〉, if c = 1,
(19)

for |t〉 a target state and |c〉 a control state, both of which may
be |0〉 or |1〉, an initialized auxiliary state of |0〉 as a target,
controlled by an overflow state, differentiates the two different
cases in (18), namely,

v̂
(|0〉; [û−1

N ûa|b〉]{n′}
) =

{|0〉, if a + b � N,

|1〉, if a + b < N,
(20)

where [û−1
N ûa|b〉]{n′} is the state of the n′th qubit, or the

overflow state, of û−1
N ûa|b〉. Since for case (ii) we would like

a + b as our MA result that needs an addition of N to the
current state in (18), whereas for case (i) we should not alter
its current state, as we already have the correct MA output, we
make use of a controlled addition defined as, for |c〉 a binary
state

ûa(|b〉; |c〉) =
{|b〉, if c = 0,

|a + b〉, if c = 1,
(21)

with the target state of (18) and the controlling state of (20)
for the controlled addition of N to obtain

ûN

(
û−1

N ûa|b〉; v̂(|0〉; [û−1
N ûa|b〉]{n′}

))
=

{|a + b − N〉, if a + b � N,

|a + b〉, if a + b < N,
(22)

which is the desired result of MA.
In practice, the auxiliary state needs to be restored to its

initial state |0〉 for recycling. This may also be achieved
coherently with the help of an overflow and an auxiliary
state. Since the auxiliary state after the MA operation in (22)
is (20), we simply need to design a sequence of functions that
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differentiate the two cases (i) and (ii), which can be used for
the restoration process. One way is to subtract a from (22),
namely,

û−1
a ûN

(
û−1

N ûa|b〉; v̂(|0〉; [û−1
N ûa|b〉]{n′}

))
=

{|2n′+1 − (N − b)〉, if a + b � N,

|b〉, if a + b < N,
(23)

which yields 2n′+1 − (N − b) > 2n′
and b < 2n′

. Defining yet
another operation ŵ on a binary state |c〉 as

ŵ|c〉 = |(c + 1) mod 2〉, (24)

we notice that

v̂
(
v̂
(|0〉; [û−1

N ûa|b〉]{n′}
)
; ŵ

([
û−1

a ûN

(
û−1

N ûa|b〉; v̂(|0〉; [û−1
N ûa|b〉]{n′}

))]
{n′}

)) = 0, (25)

which restores the auxiliary state to |0〉 for both cases (i) and
(ii). Adding a to (23) after the restoration in (25), we once
more obtain

ûaû
−1
a ûN

(
û−1

N ûa|b〉; v̂(|0〉; [û−1
N ûa|b〉]{n′}

))
=

{|a + b − N〉, if a + b � N,

|a + b〉, if a + b < N,
(26)

which completes a coherent and reusable MA architecture that
has separate addition and modulo parts.

So far we have coherently broken ME down into adders.
Hence, the last step required to complete the decomposition
process, i.e., breaking ME into elementary coherent gates,
is now to construct a coherent adder circuit. Executing the
addition transform (16) in Fourier space, we would like to
obtain

ûa|b〉 = Û (QFT)−1
û(F)

a Û (QFT)|b〉, (27)

where Û (QFT)−1
denotes the unitary inverse of Û (QFT) and û(F)

a

denotes the addition operation in Fourier space. Since we have
Û (QFT)−1

û(F)
a Û (QFT)|b〉 = |a + b〉, multiplying Û (QFT) on both

sides results in

û(F)
a Û (QFT)|b〉 = Û (QFT)|a + b〉. (28)

Using (6) in (28) and comparing phase factors, we have

û(F)
a (e2πi(.b[m]b[m−1]···b[0])j |j 〉{n−m−1})

= e2πi[.(a+b)[m](a+b)[m−1]···(a+b)[0]]j |j 〉{n−m−1}. (29)

Since any integer multiple of 2πi in the
exponents of (29) leaves the expression
unchanged, replacing (.b[m]b[m−1] · · · b[0]) with
(b[n−1]b[n−2] · · · b[m+1].b[m]b[m−1] · · · b[1]b[0]), we obtain

e2πi(.b[m]b[m−1]···b[0])j = e
2πi b

2m+1 j
, (30)

where we used

b[n−1]b[n−2] · · · b[m+1].b[m]b[m−1] · · · b[1]b[0] = b

2m+1
.

(31)

Similarly, for the right-hand side of (29), we obtain

e2πi[.(a+b)[m](a+b)[m−1]···(a+b)[0]]j = e
2πi a+b

2m+1 j
. (32)

Inserting (30) and (32) into (29) and solving for û(F)
a , we have

û(F)
a |j 〉{n−m−1} = |j (a)〉{n−m−1} (33)

with

|j (a)〉{n−m−1} = e
2πi a

2m+1 j |j 〉{n−m−1}. (34)

The circuit diagram for û(F)
a in (33), i.e., the quantum Fourier

adder (QFA), is shown in Fig. 3.

III. BANDWIDTH

To break currently employed RSA codes, we would need
to factor semiprimes N whose bit lengths are of the order
of several thousands. Constructing a quantum computer with
thousands of qubits and running Shor’s algorithm with the
exact QFT circuits as shown in Figs. 1 and 2, however,
is strictly impossible since this would require a realization
of phase rotation gates with angles � 2π

21000 . Given the finite
precision and accuracy laboratory tools can provide, realizing
even a relatively modest 2π

2100 phase rotation gate is still
unrealistic. Therefore, in this section, we present one way
of relaxing such a stringent requirement, namely, banding
[3,9–11,21].

Defining an integer b, which we call the bandwidth, we
band a quantum circuit by removing all the phase rotation
gates with an angle smaller than π

2b . In the case of Shor’s
algorithm, constructed with the method shown in Sec. II,
we can band the following two main circuits: (i) QFT and
(ii) QFA. It is, in fact, the possibility of banding these two
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FIG. 3. Logic circuit of a five-qubit QFA. The number to be
added is a, which, if known, may be classically implemented,
i.e., by replacing the coherently controlled two-qubit rotation gates
with classically controlled single-qubit rotation gates. θj denotes the
rotation angle π/2j .
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FIG. 4. Logic circuit of a five-qubit BQFT for bandwidth b = 1.
In general, a BQFT of bandwidth b retains all rotation gates θj with
j � b and discards all rotation gates θj with j > b.

circuits that are centrally used in both the ME and PF parts
of Shor’s algorithm that provides us with the advantage of
using the particular architecture in Ref. [15]. In this section,
therefore, we will introduce the banded QFT (BQFT) and the
banded QFA (BQFA).

We start by removing phase rotations that are smaller than
π
2b in (6), i.e.,

|s ′
b〉 = [Û (QFT)]b|s〉

= 1√
2n

n−1∏
m=0

1∑
j=0

e2πi(.s[m]s[m−1]···s[m−b])j |j 〉{n−m−1}, (35)

where [Û (QFT)]b denotes the unitary operator for the BQFT
with bandwidth b. Writing out the products in (35) in the basis
of binary states of Hilbert space, we obtain

|s ′
b〉 = (|0〉 + e2πi(.s[0])|1〉){n−1}(|0〉 + e2πi(.s[1]s[0])|1〉){n−2}

. . . (|0〉 + e2πi(.s[n−1]s[n−2]···s[n−b−1])|1〉){0}, (36)

which shows that the BQFT may be realized with Hadamard
gates and phase rotation gates. A fully quantum mechanical
circuit diagram of the BQFT is shown in Fig. 4.

From Sec. II A we recall that the QFT circuit may be
constructed semiclassically if it is used for the PF part of Shor’s
algorithm. In fact, the semiclassical QFT may also be banded to
result in the banded semiclassical QFT as shown in Fig. 5. The
only difference in the banding mechanism here from that of
the fully quantum version in Fig. 4 is that the deleted gates are
classically controlled single-qubit phase rotation gates instead
of coherently controlled two-qubit phase rotation gates.

The BQFT as an approximation of the exact QFT has
already been described and investigated in the literature
[3,9,10,21]. Although the idea may be traced back to Ref. [22],
banding other quantum circuits such as QFA has not yet been
studied in detail. Therefore, studying the BQFA is a main
focus of this paper. In analogy to the BQFT, we turn the QFA
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FIG. 5. Logic circuit of a five-qubit banded semiclassical QFT
for bandwidth b = 1.
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FIG. 6. Logic circuit of a five-qubit BQFA. Shown is the case
with bandwidth b = 1, i.e., only rotation gates θj with j � 1 are
kept.

operator in (33) into the BQFA operator according to[
û(F)

a

]
b
|j 〉{n−m−1} = e2πi(.a[m]a[m−1]···a[m−b])j |j 〉{n−m−1}, (37)

where a is the number to be added and b is the bandwidth
we imposed. As an illustration of (37) we show in Fig. 6 the
circuit diagram of a five-qubit BQFA with b = 1.

IV. MODE A: HYBRID IMPLEMENTATION
OF SHOR’S ALGORITHM

So far in this paper we have demonstrated how Shor’s
algorithm may be constructed with a series of coherent
quantum circuits (see Sec. II) of which two, i.e., QFT and QFA,
can be banded as an approximation method (see Sec. III). In
this section we present one way of simulating Shor’s algorithm
on a classical computer, a hybrid mode, called mode A, in
which we simulate the PF part of Shor’s algorithm, using
the semiclassical BQFT supplied with the classical result
of the ME part of Shor’s algorithm. The goal here is to compute
the scaling laws of success probabilities of factoring as a
function of n that allow us to extrapolate the number of gates
needed for large n ∼ 1000.

Our virtual quantum computer running Shor’s algorithm has
two registers: a control register (register I), which is used for
the PF part of Shor’s algorithm and a computational register
(register II) on which the ME part is executed. In mode A,
since the ME part is performed classically, the periodicity
ω is implemented in register I directly and we need not
simulate register II. Therefore, with n the number of qubits
in register I, we define the success probability of factoring,
or the absolute performance of the quantum computer, as the
sum of probabilities of obtaining any one of the integers closest
to integer multiples of 2n/ω in register I (the expected peak
locations in Fourier space given input with periodicity ω), i.e.,

P̃ (n,ω) =
ω−1∑
j=0

P̃j (n,ω), (38)

where P̃j (n,ω) denotes the probability of obtaining an integer
lj in register I, where

lj =
(

2n

ω

)
j + βj , (39)
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and βj , a rational number, ranging from −1/2 to 1/2, ensures
that lj is an integer. Introducing the bandwidth bPF in the
PF part of Shor’s algorithm and defining P̃j (n,bPF,ω) as the
probability of obtaining |lj 〉 as a readout of register I when
BQFT instead of the exact QFT is used, we define, with (38),
the scaled performance as

P (n,bPF,ω) = P̃ (n,bPF,ω)

P̃ (n,bPF = n − 1,ω)
, (40)

where

P̃ (n,bPF,ω) =
ω−1∑
j=0

P̃j (n,bPF,ω). (41)

The scaled and the absolute success probabilities (40) and (41),
respectively, serve as the basis for our performance measure.
We note that the choice of a single state around |lj 〉 as a proxy
for the performance is well justified since all states under a
Fourier peak respond in unison to a varying bandwidth bPF

(see Ref. [3]).
Supplied with the exact ME part of Shor’s algorithm, the

initial input state in register I of the PF part reads

|ψi〉I = 1√
K(s0)

K(s0)−1∑
k=0

|s0 + kω〉I, (42)

where K(s0) is the number of elements in the equivalence class

[s0] = {s0 + kω, 0 � k � K(s0) − 1}, (43)

where the representative s0 ranges between 0 and ω − 1,
inclusively. Since the number space in register I ranges from 0
to 2n − 1, where n is the number of qubits in register I, which,
for a semiprime N = pq, is defined as

n = �2 log2(N ) + 1	, (44)

where �· · ·	 is the floor function [37], we note that on average
K(s0) is 2n/ω.

Now applying the BQFT with bandwidth bPF defined in (35)
on (42), we obtain the final output state

|ψf (bPF)〉I = 1√
2nK(s0)

K(s0)−1∑
k=0

n−1∏
m=0

×
1∑

j=0

e2πi[.s(k)[m]s(k)[m−1]···s(k)[m−bPF]]j |j 〉{n−m−1},

(45)

where

s(k) = s0 + kω. (46)

Thus, with (40) and (41), the normalized success probability
is

P (n,bPF,ω) =
∑ω−1

j=0 |〈lj |ψf (bPF)〉I|2∑ω−1
j=0 |〈lj |ψf (bPF = n − 1)〉I|2

. (47)

Since we are interested in the effect of bandwidth bPF on
the performance of a quantum computer, specifically how it
scales in n, we need to average out the remaining argument

ω in P (n,bPF,ω) above. Defining the order-averaged scaled
performance as

PN (n,bPF) =
∑a(N)

k=1 ν(ωk)P (n,bPF,ωk)∑a(N)
k=1 ν(ωk)

, (48)

where a(N ) is the number of useful orders for a given
semiprime N and ν(ω) is the multiplicity of a given order
ω, i.e., the number of seeds x of the order ω, we present the
order-averaged scaled performance (48) for n ranging from 9
to 40 in Fig. 7. Testing our earlier results in Refs. [3,10,11]
which imply that quantum computers follow the scaling law

PbPF (n) = 2−1.1×2−2bPF (n−8), (49)

we report here that the new results confirm the scaling law
up to n = 40. This is at the limit of what can be achieved on
our current computer facility, a 128-core cluster computer. To
generate the additional n = 40 data point in Fig. 7, we chose
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FIG. 7. Mode A scaled performance measure P represented
by the properly averaged success probability (48) for successful
factorization of sample semiprimes N . With bit length of N ∼ n/2,
the normalized probability is shown as a function of n for eight
different PF-bandwidths. (a) bPF = 1 (triangles), bPF = 2 (asterisks),
bPF = 3 (diamonds), and bPF = 4 (squares). (b) bPF = 5 (triangles),
bPF = 6 (asterisks), bPF = 7 (diamonds), and bPF = 8 (squares). Solid
lines through the data points are the fit functions (49).
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N = 1,034,273 = 1013 × 1021 since its two prime factors
are relatively close to each other, a case known to be hard to
factor [38]. Concerning the data displayed in Fig. 7, we note
that there are up to 72 different orders for a chosen N , and
only after averaging over all these different orders does the
data corresponding to a given N appear as a single point in
Fig. 7.

Absolute performance data may be obtained analytically
from the scaled performance data in Fig. 7. First, noticing that
the absolute performance of our virtual quantum computer
running in mode A with bandwidth bPF is

P̃ (n,bPF,ω) = P (n,bPF,ω)
ω−1∑
j=0

|〈lj |ψf (bPF = n − 1)〉I|2,

(50)

where we used (40) and (47), we immediately see that the
analytical expression of the sum in (50), which is the same as
P̃ (n,ω) in (38), will yield the desired absolute performance
conversion right away. Applying a full bandwidth QFT to (42)
and suppressing the argument s0 of K , we obtain

|ψf 〉I = 1√
2nK

2n−1∑
l=0

K−1∑
k=0

e2πi
(s0+kω)

2n l|l〉, (51)

where |ψf 〉I indicates the final output state of register I.
Evaluating the sum in (50) together with (39) and (51), we
obtain the analytical absolute performance measure of the
quantum computer as

P̃ (n,ω) =
ω−1∑
j=0

|〈lj |ψf (bPF = n − 1)〉I|2

=
ω−1∑
j=0

1

2nK

∣∣∣∣∣
K−1∑
k=0

e2πikωlj /2n

∣∣∣∣∣
2

=
ω−1∑
j=0

sin2(Kπωlj/2n)

2nK sin2(πωlj /2n)
. (52)

Inserting (52) in (50), we obtain the desired conversion

P̃ (n,bPF,ω) = P (n,bPF,ω)
ω−1∑
j=0

sin2(Kπωlj/2n)

2nK sin2(πωlj/2n)
. (53)

Applying the order averaging in analogy to (48), we obtain

P̃N (n,bPF) =
∑a(N)

k=1 ν(ωk)P̃ (n,bPF,ωk)∑a(N)
k=1 ν(ωk)

(54)

as the order-averaged absolute performance measure of the
quantum computer running Shor’s algorithm factoring N in
mode A. Numerical results according to (54) are shown in
Fig. 8, where the solid lines are

P̃bPF (n) = 0.774 × 2−1.1×2−2bPF (n−8). (55)

We note that compared to the solid lines in Fig. 7
[see (49)], (55) is a factor 0.774 smaller, but is otherwise
identical with (49).

The factor 0.774 arises due to the following reason.
Previously, in Ref. [3], it has been demonstrated that the
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FIG. 8. Mode A absolute performance measure P̃ represented
by the properly averaged success probability (54) for successful
factorization of sample semiprimes N . With bit-length of N ∼ n/2,
the absolute probability is shown as a function of n for 8 different
PF-bandwidths. (a) bPF = 1 (triangles), bPF = 2 (asterisks), bPF = 3
(diamonds), and bPF = 4 (squares). (b) bPF = 5 (triangles), bPF = 6
(asterisks), bPF = 7 (diamonds), and bPF = 8 (squares). Solid lines
through the data points are the fit functions (55).

average order for a given odd, non-complete-square semiprime
N scales like

〈〈ω〉〉 ≈ N/5, (56)

where the inner average indicates order averaging, i.e.,

〈ω〉 =
∑a(N)

k=1 ν(ωk)ωk∑a(N)
k=1 ν(ωk)

, (57)

and the outer average denotes our binning process [3], i.e.,

〈〈ω〉〉(N (i)) = 1

χ (N (i) + 250) − χ (N (i) − 250)

×
χ(N (i)+250)∑

λ=χ(N (i)−250)+1

〈ω〉λ,

N (i) = 500

(
i − 1

2

)
, i = 1, . . . ,20, (58)

where χ (N ) is the odd, non-complete-square semiprime
counting function and 〈ω〉λ is the average ω in (57) for the
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FIG. 9. Doubly-averaged 〈〈r〉〉 defined according to (58) as a
function of N . The solid line through the data points is the fit
function (63).

λth semiprime. Using (39) in (52), we obtain
ω−1∑
j=0

sin2(Kπωlj/2n)

2nK sin2(πωlj/2n)
=

ω−1∑
j=0

sin2(Kπωβj/2n)

2nK sin2(πωβj/2n)
, (59)

where we used the π periodicity of the square of the sine
function. Motivated by an increasing 〈〈ω〉〉 in N , we would
like to transform the sum in (59) into an integral as an
approximation whose accuracy increases for increasing ω. A
closer inspection of (39), however, shows that lj has a periodic
structure with periodicity r given by

ω = 2αr, (60)

where r is the odd part of ω. This allows us to simplify (59)
once more to

ω−1∑
j=0

sin2(Kπωβj/2n)

2nK sin2(πωβj/2n)
= 2α

r−1∑
j=0

sin2(Kπωβj/2n)

2nK sin2(πωβj/2n)
,

(61)

where βj now is in the form

βj = ζ (j )

r
(62)

with |ζ (j )| < r/2 an integer that is uniformly distributed
between −r/2 and r/2. This inspires us to investigate how r

scales in n since an r increasing in n will allow us to employ the
integral approximation we would like to use in (61). Numerical
results for 〈〈r〉〉 with the same double average as used in (56)
are shown in Fig. 9. The fit line has an N dependence of

〈〈r〉〉 = 7

100
N, (63)

which implies that we may indeed use the integral transform to
approximate the sum in (61). Using (i) K ≈ 2n/ω and (ii) ω <

N � 2n in (61) and turning the sum into an integral ranging
from −1/2 to 1/2 with β now a continuous variable, we obtain

2α

r−1∑
j=0

sin2(Kπωβj/2n)

2nK sin2(πωβj/2n)
≈ 1

r

r−1∑
j=0

sin2(πβj )

(πβj )2

≈
∫ 1/2

−1/2

sin2(πβ)

(πβ)2
dβ, (64)

where ∫ 1/2

−1/2

sin2(πβ)

(πβ)2
dβ ≈ 0.774. (65)

This completes the explanation of the origin of the factor 0.774
in (55).

As an aside we note a typo in Eqs. (65) and (120) in Ref. [3]:
ϕE(N ) in these two equations needs to be replaced by the
proper normalization

∑a(N)
k=1 ν(ωk), where the sum is over all

useful orders ωk , as in Eqs. (48) and (57) in this paper. However,
since the computations in Ref. [3] had been done with the
correct normalization, the results and conclusions in Ref. [3]
remain unchanged.

In Fig. 8 we observe that the performance scaling in the
low n region is not as well represented by the fit line (55) as in
the higher n region, especially for the larger bandwidth cases.
This is no surprise since the integral approximation holds well
for the large n region only. We also expect this deviation for
the following reason. In case ω is a power of 2, i.e.,

ω = 2α, (66)

we note that

K = 2n

ω
= 2n−α (67)

for any s0, and in (39)
βj = 0 (68)

since lj = jK . Inserting (67) and (68) into (52), we obtain

P̃ (n,ω = 2α) = 1. (69)

Combined with the result proved in Sec. IV of Ref. [3], i.e., that
for ω = 2α the scaled performance of the quantum computer
is 100% for any bandwidth bPF, we have

P̃ (n,bPF,ω = 2α) = P̃ (n,bPF = n − 1,ω = 2α). (70)

We conclude that, together with (69),

P̃ (n,bPF,ω = 2α) = 1. (71)

This means that we can decompose the fit line (55) into two
parts: (i) power 2 orders that result in perfect performance and
(ii) nonpower 2 orders that result in an imperfect performance.
Defining the weight μN for a given semiprime N in terms of
the multiplicity of power 2 orders according to

μN =
∑a(N)

k=1 ν(ωk)θ (ωk)∑a(N)
k=1 ν(ωk)

, (72)

where θ (ω) is a binary function defined as

θ (ω = 2αr) =
{

0, if r �= 1,

1, if r = 1,
(73)

we observe that μN shows a power-law behavior in N . To
extract the power, we bin μN in (72) logarithmically, i.e.,

μ(Ni) = 1

χ
(
10log10 Ni+ 1

4
) − χ

(
10log10 Ni− 1

4
)

×
χ(10log10 Ni+ 1

4 )∑
λ=χ(10log10 Ni− 1

4 )+1

μλ,

Ni = 10
2i+3

4 , i = 1, . . . ,6, (74)
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FIG. 10. Power 2 order multiplicity μ as a function of N , binned
according to (74). The solid line is the fit function (75).

where μλ is the μ in (72) for the λth semiprime. Figure 10
shows μ as a function of N as a log-log-plot with N ranging
up to 104. We find numerically

μ ≈ 8

N0.83
, (75)

which is the solid line shown in Fig. 10. Together with

N ∼ 2n/2, (76)

implied by our choice of n in (44), we obtain

μ ≈ 2−0.415n+3. (77)

Decomposing the P̃bPF (n) fit line (55) into the two parts (i) and
(ii), we obtain with (77)

P̃bPF (n) = μ + (1 − μ) × 0.774 × 2−1.1×2−2bPF (n−8). (78)

As shown in Fig. 11, we find that the new fit line (78) with
the power 2 order correction is in better agreement with the
absolute performance data than the original fit line (55). We
note that even the new line does not fit the data perfectly,
however, since the scaling in the low n region, especially
for large bPF, is not exponential to start with (see Ref. [3]).
In addition, the poor quality of the integral approximation
[see (64)] in this regime results in the scattering and the
deviation of data points from the fit line (78), which becomes
more prominent as N becomes smaller since the smaller N , the
fewer the number of orders of N that are present. To see this
better, we plot our data with extended range in P̃ in Fig. 12.
We observe that in the low n regime the new line (78), as it
should, fits the data much better than the old line (55) with
some remaining, but noticeable, scattering of the plot symbols
around the improved fit line.

V. MODE B: COMPLETE IMPLEMENTATION
OF SHOR’S ALGORITHM

In Sec. IV we investigated a hybrid implementation of
Shor’s algorithm, providing the quantum computer with the
classically computed ME result. In this section we study
a complete implementation of Shor’s algorithm where both
ME and PF are performed quantum mechanically. We show
that a quantum computer running Shor’s algorithm, when
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FIG. 11. Mode A absolute performance measure P̃ for sample
semiprimes N (as a function of n as in Fig. 8) with improved fit
functions (78) (solid lines). The PF bandwidth bPF ranges from bPF =
1 to bPF = 8. (a) bPF = 1 (triangles), bPF = 2 (asterisks), bPF = 3
(diamonds), and bPF = 4 (squares). (b) bPF = 5 (triangles), bPF = 6
(asterisks), bPF = 7 (diamonds), and bPF = 8 (squares).

constructed according to Beauregard’s method [15] (see
Sec. II), is robust against QFT and QFA banding defined in
Sec. III. Specifically, we report here the scaling law of its
performance and compare it to numerical results.

Our mode-B implementation is based on the circuits
presented in Ref. [15]; we build ME from MMs that can
be decomposed into consecutive MAs, which we construct
by combining adders that are executed in Fourier space and
modular parts that are executed using qubit recycling (see
Sec. II B for the explicit construction). Assessing the number
of qubits needed for running our simulation in mode B, we note
that the number of qubits used in the simulation is, for L the
bit length of the semiprime N to be factored, (i) 2L + 2 for the
ME part and (ii) 2L for the PF part, making the total number of
qubits in the simulated quantum computer 4L + 2. This is so
because QFA, for instance, requires L + 1 qubits for adding
two L-bit integers, where the additional qubit arises from the
need to have an overflow qubit. Since the modulo part demands
an auxiliary qubit to be used, the computational register, which
is capable of executing the quantum MA, then, consists of
L + 2 qubits. Since MM now is constructed via consecutive
applications of MA, requiring L + 2 qubits, and since the MM

062310-9
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FIG. 12. Extended presentation of mode A absolute performance
P̃ for sample semiprimes N as a function of n for bandwidth bPF =
5 (triangles), bPF = 6 (asterisks), bPF = 7 (diamonds), and bPF = 8
(squares). Solid lines are the fit functions in (78).

operation needs a quantum register that stores the intermediate
L-bit computational results from the previous MM operation,
we need a total of 2L + 2 qubits to realize the MM gate defined
in (12). Since no extra qubits are required to obtain ME from
MM as shown in (11), we conclude that 2L + 2 qubits are
required to realize ME. Counting 2L qubits used for the PF
part of Shor’s algorithm [6], we obtain 4L + 2 as the total
number of physical qubits. We remark that, in principle, a bus
qubit is necessary for running a quantum computer. Hence,
the effective total number of qubits that are simulated on our
virtual quantum computer is 4L + 3.

Implementing the quantum circuit presented in Ref. [15],
this time, we build the ME part of Shor’s algorithm equipped
with BQFT and BQFA as it would be used on an actual
quantum computer. We choose, as mentioned previously, the
number of qubits in register I that is to be used for the PF part

of Shor’s algorithm to be

n = 2L (79)

and the number of qubits that contain the result of ME to be

n′ = L. (80)

Unlike in mode A (see Sec. IV), this time, the PF part of
Shor’s algorithm is not fed with input states that are periodic
in ω [see (43)]. Rather it is provided with the result of the
banded ME. In general, with bME the bandwidth imposed on
the BQFT and the BQFA in the ME part, the initial state reads

|ψi〉 = 1√
2n

2n−1∑
r=0

(
|r〉I

2n′−1∑
y=0

|y〉II A

{
2n′+1−1∑
y ′=0

|y ′〉II B

×
[

1∑
c=0

|c〉
(

1∑
β=0


(bME)
r,y,y ′,c,β |β〉

)]})
, (81)

where |r〉I represents register I states, |y〉II A contains the ME
results, |y ′〉II B indicates the states of the quantum register
employed in MA, including the overflow qubit, |c〉 is the
auxiliary qubit used in MA, and |β〉 is the bus qubit state of
the quantum computer with the associated amplitudes (bME),
whose normalization is

2n′−1∑
y=0

2n′+1−1∑
y ′=0

1∑
c=0

1∑
β=0

∣∣(bME)
r,y,y ′,c,β

∣∣2 = 1. (82)

We note that since each elementary quantum gate is executed
exactly, introducing bandwidth to our circuit does not alter the
bus state. Hence, we write

|ψi〉 = 1√
2n

2n−1∑
r=0

{
|r〉I

2n′−1∑
y=0

|y〉II A

×
[

2n′+1−1∑
y ′=0

|y ′〉II B

(
1∑

c=0

|c〉(bME)
r,y,y ′,c

)]}
, (83)

where we suppressed the bus state |β〉 = |0〉 here and in the
following, and used


(bME)
r,y,y ′,c,β = δβ,0

(bME)
r,y,y ′,c, (84)

where δm,m′ is 1 if m = m′ and is 0 if m �= m′.
Applying the BQFT with bandwidth bPF in the PF part of

Shor’s algorithm, and recalling that the performance of the
quantum computer is defined as the probability of obtaining
any one of lj in (39), we obtain the absolute performance of
the quantum computer running Shor’s algorithm in mode B
with seed x and its associated order ωx as

P̃ (n,bME,bPF,ωx ; x) =
ωx−1∑
j=0

2n′−1∑
y=0

2n′+1−1∑
y ′=0

1∑
c=0

×
∣∣∣∣∣ 1√

2n

2n−1∑
r=0

n−1∏
m=0


(bME)
r,y,y ′,c

× e2πi(.r[m]r[m−1]···r[m−bPF])(lj )[n−m−1]

∣∣∣∣∣
2

.

(85)
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FIG. 13. Mode B absolute performance measure P̃ represented by the properly averaged success probabilities (86) for successful
factorization of semiprimes N = 21,33,35,39,55, and 57 as a function of PF bandwidth bPF for several ME bandwidths. bME = 2 (asterisks),
bME = 4 (squares), and bME = 6 (crosses).

Since a semiprime N has multiple seeds that can be used to
factor, we employ a seed averaging scheme to measure the
average performance of the quantum computer

P̃N (n,bME,bPF) =
∑ϒ(N)

υ=1 P̃ (n,bME,bPF,ωx(υ); x(υ))
ϒ(N )

, (86)

where x(υ) is the υth seed of N that is useful for factoring
(see Sec. II) and ϒ(N ) is the useful seed counting function. In
Fig. 13, we show the results of computing (86) for semiprimes
N = 21,33,35,39,55, and 57. We note that each semiprime
has up to 30 useful seeds that need to be computed individually
for different bME for the ME part of Shor’s algorithm, then for
different bPF for the PF part of Shor’s algorithm. The data for
N = 51 are not shown due to the fact that all of its orders are
powers of 2, leading to a nonscaling behavior in bPF.

Normalizing the absolute performance given a seed x

in (86) for each different bandwidth in the ME part of Shor’s

algorithm with that of the full bandwidth in the PF part of
Shor’s algorithm, we plot 1 − P in Fig. 14, where P is the
scaled performance as defined in (40) together with seed
averaging in (86), namely,
PN,bME (bPF)

=
ϒ(N)∑
υ=1

1

ϒ(N )

P̃ (n,bME,bPF,ωx(υ); x(υ))

P̃N (n,bME,bPF = n − 1,ωx(υ); x(υ))
. (87)

We find quantitatively that

1 − PN,bME (bPF) ≈ 2−2bPF (88)

(see solid lines in Fig. 14). While for our current simulations
(L = 6) the number of gates is relatively modest (of the order
of 30 000), the number of quantum states that need to be
processed by these gates is exponentially large. Therefore, the
accuracy of our virtual quantum computer is currently ≈10−5.
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FIG. 14. Mode B PF bandwidth bPF scaling of 1 − P [see Eq. (87)] for semiprimes N = 21,33,35,39,55, and 57 with a proper seed average
over {x(υ)}. The ME bandwidth ranges from bME = 1 to bME = 6; bME = 1 (triangles), bME = 2 (asterisks), bME = 3 (diamonds), bME = 4
(squares), bME = 5 (circles), and bME = 6 (pentagons). Solid lines are the fit functions (88).

Some of the data for bPF � 8 are, therefore, omitted as they
are at the limit of our accuracy.

VI. DISCUSSION

When it comes to factoring a large semiprime, currently
available analytical and numerical techniques fail. However
powerful the breakthroughs made in the past century, such
as the quadratic number sieve [1] that routinely factors a
100-decimal-digit semiprime, or the more advanced general
number field sieve (GNFS) [2] that was used to factor the RSA
challenge number RSA-768 [39], they cannot factor even a
moderate-sized semiprime of, say, 5000 decimal digits [3].

Quantum computation, a new paradigm of computing,
changes the story entirely. Taking advantage of classically
impossible logic operations (such as, e.g., the “square root of
NOT”), a quantum computer, running Shor’s algorithm, allows
us to factor a large semiprime with exponential speedup when
compared to its classical counterpart. Of course, even with

today’s quantum control techniques, we are far from realizing
an actual quantum computer that can factor any meaningful
semiprime that might lead to a security breach. This point
is driven home by the fact that to date the record largest
semiprime factored experimentally using a quantum computer
is N = 21 [28]. In addition, no experimental demonstration
of quantum semiprime factoring has implemented a complete,
scaling Shor algorithm. Instead, compiled, highly optimized
versions of Shor’s algorithm are used. Hence, any streamlining
of quantum algorithms will help realize a scaling quantum
computer. Precisely such a simplification of Shor’s algorithm
is suggested in our paper: The replacement of the full QFT
and QFA with their banded versions. That such a replacement
of the quantum circuitry works at all is not obvious. This is
illustrated by the following example. Let us look at the result
of a banded adder with the bandwidth b = 2 that performs
the addition 19 + 37 modulo 64. The expected result is 56.
However, as shown in Fig. 15, the adder performs far from
ideally, producing the correct result, 56, in only 62% of the
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FIG. 15. Probability distribution of the results of the banded adder
with the bandwidth b = 2 performing 19 + 37 modulo 64.

cases. The adder also produces the manifestly wrong results
24, 40, and 48 with each more than 10% probability, in addition
to the wrong results 0, 8, and 32 with ∼1% probability.
That such an erroneous adder, which, for factoring N = 57,
is applied more than 700 times, still allows us to factor
semiprimes with acceptable probability is nothing short of
astonishing. This points to a general principle of robustness
of quantum computers with respect to static defects. Thus,
without sacrificing performance, large numbers of quantum
gates may be pruned, resulting in a streamlined architecture
that is much more conducive to experimental implementation.
In addition, we show how the banded Shor algorithm scales.

Simulations of Shor’s algorithm themselves have been
performed before, most of which have focused on parallel
implementation on a multiprocessor classical computer. No-
table ones include the following. (i) Obenland et al. [29]
simulated Shor’s algorithm with the adder shown in Ref. [13]
and focused on the scaling of the speedup and the execution
time in the number of classical processors. (ii) Niwa et al.
[30] simulated Shor’s algorithm with the adder in Ref. [23],
which is very close to the one presented in Ref. [12]. They
investigated the effects of decoherence and operational errors,
using the classical ME results (akin to our mode A) for
semiprimes N > 15. (iii) De Raedt et al. [31] illustrated
the use of a portable software package simulating quantum
computers on massively parallel classical supercomputers,
implementing Shor’s algorithm as a test case. The ME part
of Shor’s algorithm was simulated without the auxiliary qubit
array. (iv) Tabakin et al. [32] created a convenient parallel
computing environment. Other works more closely related to
our work include (v) Fowler and Hollenberg [9], addressing
the effect of bandwidth introduction to the PF part of Shor’s
algorithm and (vi) Garcı́a-Mata et al. [33,34] focusing on
the influence of noise on the performance of the quantum
computer running Shor’s algorithm using the classical ME
results. The pioneering investigations described in (i) to (vi)
all differ from our implementation in various ways, from
different adder architectures to the presence or the absence of
the auxiliary qubit array, with the ME or the PF parts of Shor’s
algorithm simulated fully coherently or not. Most importantly,
however, our implementation focuses on the influence of

simultaneous banding of the PF part and the QFT-based ME
part of Shor’s algorithm running on a virtual, scalable, fully
coherent quantum computer including auxiliary qubits that are
executed at an elementary quantum gate level.

We note that even though we use 128 classical computing
cores simultaneously in our simulations, we are at the limit
of our computing resources: Running our virtual quantum
computer in its hybrid mode, it took us three months of
CPU time to compute the data, as each semiprime needs
to be factored with different orders individually, each with
up to 72 different orders. This means that not only do we
suggest banding for the purpose of practical implementation
of quantum computers but also as a way to simulate larger
virtual quantum computers with more qubits. Running our
virtual quantum computer in its complete mode due to its
memory requirement scaling exponentially in the number of
qubits 4L + 3, where L is the bit length of the semiprime to be
factored, we are currently limited to L � 6. Nonetheless, this
is enough to break the current experimental record of N = 21.
Increasing L to 7, however, is within our reach and will be
explored in future work.

For now it is interesting to explore how many rotation gate
operations may be saved by banding the quantum computer.
We start by counting the total number of rotation gates nt of
the ideal, nonbanded quantum computer of n = 4L + 3 qubits.
We obtain

nt = 18L4 + 42L3 + 26L2 − L. (89)

Introducing banding with bandwidth bPF in the period finding
part of Shor’s algorithm, we save

ns,PF = (2L − bPF)(2L − bPF − 1)

2
(90)

rotation gates. Introducing banding with bandwidth bME in the
modular exponentiation part of Shor’s algorithm, we save

ns,ME = (L − bME)(L − bME + 1)(18L2 + 4L) (91)

rotation gates. Adding ns,PF and ns,ME, we obtain the total
number of saved rotation gates

ns = (2L − bPF)(2L − bPF − 1)

2
+ (L − bME)(L − bME + 1)(18L2 + 4L). (92)

Although we factored semiprimes up to N = 57 and
found that bPF = 4 and bME = 5 is sufficient to factor these
semiprimes with a 70% success rate, it is too early to
extrapolate these results to the n ∼ 1000 regime. This requires
more statistics to be accumulated by running our virtual
quantum computer for larger n. However, if the mode-A
results are any indication, it is perhaps possible to factor
large semiprimes on n ∼ 1000 qubit quantum computers with
bPF = bME = 8. In this case, for L = 2048, according to (92),
314 378 411 210 788 rotation gates, or 99.167% of the total
number of rotation gates, may be discarded, resulting in a
substantial simplification of the required quantum circuitry.

Gate pruning, as suggested in this paper, does not reduce
circuit depth. As a consequence, gate pruning will not affect
the run time of Shor’s algorithm as implemented in this paper.
In the same vein, gate pruning does not affect the total number
of qubits required in our implementation of Shor’s algorithm.
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The reduction of run time and number of qubits is a challenge
for quantum algorithm development, a topic beyond the scope
of our present paper. In the present paper, we take an existing
quantum algorithm, i.e., Shor’s algorithm, and investigate how
it can be “trimmed” in a scalable way to actually have a
chance to be implemented in practice. However, while not
shortening execution time, or reducing the total number of
required qubits, the possibility of gate pruning has profound
advantages in terms of the actual realization of a scaling
quantum computer. Since quantum gates are prone to error,
any reduction in the number of quantum gates is an advantage
when it comes to actually building a working quantum
computer. Since according to our estimates, for a computer
of contemporary interest, more than 99% of rotation gates
may be trimmed from the quantum circuit with acceptable
consequences for the performance, only 1% of rotation gates
actually need to be realized. In our opinion, this is an important
step forward toward the actual realization of scaling quantum
computers.

VII. SUMMARY AND CONCLUSION

Using banding as a special way of optimizing Shor’s
algorithm, we investigated the performance of a quantum
computer running Shor’s algorithm in two different modes, a
hybrid mode, called mode A, with classical ME and quantum
mechanically executed PF, and a complete mode, called mode
B, with quantum mechanically executed ME and PF. Mode
A allows us to study the effects of BQFT, while mode B
allows us to study the effects of BQFT and BQFA com-
bined. Our contributions can be summarized in the following
advances.

(1) Constructing a virtual 128-core quantum computer
running Shor’s algorithm based on the QFT as suggested in
Ref. [15], fully decomposed into elementary quantum gates.

(2) Confirming an earlier result of exponential scaling of
the normalized performance P in hybrid implementation (clas-
sical ME; quantum PF) up to and including N = 1,034,273,

using n = 40 qubits, the largest virtual quantum computer
simulated so far.

(3) An improved scaling law for the absolute performance
P̃ in the hybrid mode of a virtual quantum computer using the
doubly averaged 〈〈r〉〉 and the weight of the power 2 orders μ.

(4) Absolute performance results of the complete imple-
mentation of Shor’s algorithm when the QFA and the QFT in
the ME part of Shor’s algorithm are pruned via banding.

(5) Confirmation of the previously found [11] 2−2b scaling
of 1 − P of a virtual quantum computer running in its complete
mode for additional semiprimes other than N = 21 such as
N = 33,35,39,55, and 57. The data shown in this paper are
seed-averaged (with up to 30 different seeds per semiprime)
according to (86), whereas in Ref. [11] N = 21 was factored
with the single seed x = 2. In addition the case N = 21 was
run with n = 12 in this paper, whereas it was run with the lower
n = 10 in Ref. [11]. This demonstrates the scalable nature of
the quantum computer.

We believe that based on the numerical and the ana-
lytical work presented in this paper, in conjunction with
Refs. [3,10,11], the PF part of Shor’s algorithm, equipped
with a BQFT, is well understood. This includes the absolute
performance, an absolute lower bound on the factoring success
of the banded Shor’s algorithm running in hybrid mode.
We have also simulated a more demanding part of Shor’s
algorithm, the ME part, fully coherently, keeping the exact
quantum entanglement during the entire simulation, including
the auxiliary qubits, factoring up to and including N = 57.
Numerically confirming the scalability of our virtual quantum
computer, we see a surprising robustness of the quantum
computer when pruned with banding, resulting in substantial
savings in required quantum circuitry.
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