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Quantum state transfer in the presence of nonhomogeneous external potentials
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Heisenberg-type spin models in the limit of a low number of excitations are useful tools to study basic
mechanisms in strongly correlated and magnetic systems. Many of these mechanisms can be experimentally
tested using ultracold atoms. Here, we discuss the implementation of a quantum state transfer protocol in a
tight-binding chain in the presence of an inhomogeneous external potential. We show that it can be used to
extend the parameter range in which high-fidelity state transfer can be achieved beyond the well established
weak-coupling regime. Among the class of mirror-reflecting potentials that allow for high fidelity quantum state
transfer, the harmonic case is especially relevant because it allows us to formulate a proposal for the experimental
implementation of the protocol in the context of optical lattices.
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I. INTRODUCTION

Single-qubit and two-qubit quantum gates are the basic
ingredients for universal quantum computation [1]. If the
registers are spatially separated, the required entangling
operations can be carried out by either using flying qubits [2]
or by quantum state transfer (QST) along a quantum channel,
usually modeled as a quantum spin chain in a one-dimensional
lattice [3].

Spin chains, however, are a rather mathematical concept,
which does not always have a direct realization in a labora-
tory. Nevertheless, efficient experimental quantum simulation
methods to study their properties can be constructed and a
common approach uses the internal and external degrees of
freedom of trapped particles [4–6]. Another possibility is the
use of cold atoms in optical lattices [7,8], where, in particular,
the achievement of single-site addressing paves the way to
precise initialization and system control [9–12].

The use of long, unmodulated chains has the drawback
that almost all the chain modes are involved in the dynamical
process. As a consequence, an initially localized wave packet
will disperse along the full chain, which strongly affects
the efficiency of the QST process. In order to avoid such a
dispersive behavior, various proposals have been made. The
use of engineered hopping amplitudes between adjacent spins
would allow perfect QST independent of the length of the
chain [13], but such an implementation would require a high
control of the internal structure of the system, while, from
the experimental point of view, it is desirable to deal with
uniform couplings [14]. The dispersion can also be reduced
by encoding the initial state in more than one site [15] or
introducing a topological field [16].

An alternative method consists of weakly coupling the two
extreme states, the sender and the receiver, to the bulk chain.
This allows one to distinguish two different regimes: for very
weak coupling, the bulk chain is used as an information bus
which is never appreciably populated, and the probability
amplitude of finding the excitation at the sender or receiver
undergoes an effective Rabi oscillation [17–21]; on the other
hand, for nonperturbative end-point couplings, the relevant
modes taking part in the quantum state dynamics reside mainly

in the linear zone of the spectrum, thus minimizing the effect of
dispersion and allowing QST to occur in the so-called ballistic
regime [22–24]. Fast entangling gates can also be built by re-
quiring switchable couplings between qubits and the bus [25].
A review of different QST strategies can be found in Ref. [26].

All the proposals mentioned above share a common feature:
the local potential (which, in the language of magnetic systems,
corresponds to an external magnetic field) is kept constant
along the chain. While this is mathematically convenient, it
is by no means always experimentally given. In this work we
will show that the presence of a position-dependent potential
can indeed help to transfer the quantum state along a chain
without making use of any of the techniques listed above.
That is, all the spin-spin coupling amplitudes can be kept
constant, and we assume no need of any external control.
While the requirement of locally modulated spin-spin coupling
is something that experimentalists prefer to avoid, spatially
modulated potentials naturally arise, for example, in optical
lattices due to the Gaussian profile of the laser beams or
overlaying magnetic traps [27,28]. The model we study below
is therefore suitable for experimental implementation in such
a physical context and a schematic is shown in Fig. 1.

The paper is organized as follows. In Sec. II we introduce
the spin Hamiltonian model and its basic features; in Sec. III
the results are analyzed and we discuss the optimal regimes
for high-fidelity QST; in Sec. IV a possible experimental
implementation in optical lattices is proposed and, finally, we
conclude in Sec. V.

II. MODEL

The Hamiltonian describing a chain of N coupled spins
(XX chain) in the presence of a nonhomogeneous external
field is given by

H =
N−1∑

n=1

Jn

(
σx

n σ x
n+1 + σy

n σ
y

n+1

) +
N∑

n=1

Bnσ
z
n . (1)

A relevant property of this Hamiltonian is its symmetry with
respect to the operator S = ∑

l σ
z
l ([H,S] = 0), which implies

that the total number of spins up (or down), that is, the total
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FIG. 1. (Color online) Schematic diagram of the physical imple-
mentation of the proposed QST protocol. The spins are arranged in
a nonhomogeneous potential obtained by applying a site-dependent
external field. The goal of the protocol is to transfer the “up” spin
(blue) from the first site to the last one.

magnetization, is conserved. Because of the site dependence
of the parameters Jn and Bn, it is generally not possible to
diagonalize H , and an analytical solution for the problem
cannot be found. On the other hand, as in the following we
shall work in the single-particle subspace, the size of the
Hilbert space is equal to the number of sites of the chain,
and the problem can be easily handled numerically. Let us
therefore first consider as an initial state |ψ〉 = |1,0, . . . ,0〉 ≡
|1〉, which represents one excitation (spin up) on the site 1,
while all other spins are down. Because of the conservation
of the total magnetization described above and due to the
finite intersite coupling amplitudes, the excitation will start
hopping between adjacent sites and the state will evolve into
|ψ(t)〉 = ∑

k ck(t)|k〉, with c1(0) = 1 and ck(0) = 0 ∀ k �= 1.
The goal of a QST protocol is to let an initial state of

the form |φin〉 = (α|0〉 + β|1〉)|0〉⊗N−1 dynamically evolve
into |φout〉 = |0〉⊗N−1(α|0〉 + β|1〉) for a fixed transfer time.
Since |0〉⊗N is an eigenstate of H , it will be sufficient for
our purpose to study the conditions under which |1〉|0〉⊗N−1

evolves into |0〉⊗N−1|1〉, or, in the language of excitations
introduced before, we want to know if there exists a time t∗
such that cN (t∗) � 1 and ck(t∗) � 0 ∀ k �= N . In order to get
the overall QST fidelity for the system, in principle, one has to
average over all the possible initial states (that is, over all the
possible combinations of α and β such that |α|2 + |β|2 = 1),
but the only relevant parameter is in fact 〈N |1(t∗)〉.

Let us briefly review the strategy to achieve high-fidelity
quantum state transfer based on the weak coupling of the
sender and receiver to the bulk chain [J1 = JN−1 
 Jn ≡
J (n = 2,3, . . . ,N − 2)] in order to shed light on the underly-
ing physics of the transfer. Considering for the sake of simplic-
ity and without any loss of generality N even, the basic idea
of the weak-coupling approach is that the bulk chain behaves
just like a bus which is (almost) never excited. This allows
the source and the destination to undergo an effective Rabi
oscillation (the length of the chain manifests itself in the Rabi
frequency), since the two extreme sites behave like a dimer. As
discussed in Ref. [19], efficient QST can be reached either by
exploiting the resonance of sender and receiver with an isolated
level of the channel or by putting them out of resonance. In the
first case, an effective three-body oscillation is observed and
one of the eigenmodes approximates |ψ+〉 = (|1〉 + |N〉)/√2
or |ψ−〉 = (|1〉 − |N〉)/√2, with the sign being determined by
the symmetry of the Hamiltonian. In the latter case, there are
two eigenmodes close to |ψ±〉 = (|1〉 ± |N〉)/√2. While both

scenarios guarantee high QST fidelity, the QST time turns out
to be dramatically reduced in the presence of a resonance.
As we will see later in the paper, the external potential can
represent a useful tool to move from one regime to the other.

Since dealing with a homogeneous spin-spin coupling
amplitude is experimentally very desirable, in the following,
we will also look for possible strategies compatible with Jn ≡
J, ∀n and use the possibility of having a position-dependent
external field as a free parameter. We aim to establish the
conditions under which the Rabi-like behavior can be ob-
served independently without resorting to the weak-coupling
assumption. Since it is well known that only mirror-symmetric
Hamiltonians are suitable for QST [29], we pick an external
potential which fulfills this symmetry condition as well as
ensuring that Bn = BN−n+1. A simple class of external fields
which satisfies this criterion is given by

BN = a|n − (N/2)|p, (2)

and two special cases are represented by p = 0 and p = 2. The
first case describes the common, flat potential, while the second
one represents the experimentally relevant case of an external
harmonic potential [28]. The dynamical evolution of single-
particle states in optical lattices with less than 20 sites, under
nearest-neighbor spin-spin hopping and in the presence of a
harmonic potential, has recently been experimentally observed
by Weitenberg et al. [11].

The efficiency of a QST transfer protocol is usually
estimated by measuring the distance of the real transferred
state from the state transferred under optimal conditions using
fidelity [30]. As we are interested in studying QST for a
broad class of models, calculating the ordinary fidelity would
therefore require a huge amount of numerical calculation.
Instead, we suggest following a slightly different approach
where, instead of focusing on any initial state, we estimate
the transferring ability of the Hamiltonian by introducing a
(sufficient) criterion.

To do this let us consider the set of eigenvectors |εi〉 of
the Hamiltonian H . In the case of ideal transfer, two of them
will coincide with |ψ+〉 and |ψ−〉 and therefore any deviation
from the ideal regime can be used as a measure of how much
information is lost during the process. To quantify this we
defineF = maxi[〈1|εi〉] − 1/

√
2, which we call the QST drop.

Considering the mirror symmetry of the Hamiltonian, F = 0
implies that |ψ+〉 and |ψ−〉 are in fact eigenstates. For small
values of F the spectral weight is almost completely absorbed
by |1〉 and |N〉, while from highly positive or negative values
of F one can deduce the absence of Rabi oscillations due to
the dispersive behavior in the chain.

III. RESULTS

The indicatorF introduced before to quantify the QST drop
is plotted in Fig. 2 as a function of J1/J and p, assuming
a = 1/2 and a chain of N = 8 sites with J1 = JN−1 and
Jn ≡ J (n = 2,3, . . . ,N − 2). In any of the figures described
in the following, J ≡ 1 (together with h̄ = 1) is used as energy
and inverse time scale. Whilst the details of Fig. 2 will change
for different values of N , what is clearly captured here is the
transition from the weak-coupling regime to uniform coupling.
One can see that for weak external potentials (small p),
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FIG. 2. (Color online)F as a function of p and the ratio J1/J . The
potential depth is a = 1/2. Away from the weak-coupling regime, the
presence of the inhomogeneous potential greatly enhances the QST
quality.

good fidelities (F close to 0) can only be achieved using the
weak-coupling approach reviewed above and the efficiency
drops approximately linear with increasing J1/J . For p

sufficiently strong, however, F is almost constant and opti-
mal, allowing for the weak-coupling assumption to become
unnecessary.

This result can be understood by considering that both
weak coupling and strong potential offsets lead to an effective
decoupling of the extreme sites from the rest of the chain
[31]. The condition for the decoupling to be effective can be
obtained, within a perturbation-theory approach, by assuming
that the two eigenvalues close to B1 = BN are only slightly
modified by the presence of the channel. In the weak-coupling
limit, the bulk chain (sites from 2 to N − 1) forms an energy
band, that is, the site index is not a good quantum number and
eigenstates correspond to nonlocal modes.

On the other hand, in the case of very strong potentials
(Bn � Bn+1 ∀ n > N/2), each pair of degenerate sites is
almost decoupled from all the other pairs and the linear
combinations |ψ+〉 and |ψ−〉 are spontaneously selected in the
dynamical process. This result can be understood considering
that in the limit of very large p the hopping term of the
Hamiltonian only contributes as a perturbation. In the single-
site representation, the spectrum is then composed of N/2
pairs of degenerate levels, each of them with an energy Bn. By
adding the hopping and using a degenerate perturbation-theory
approach, one finds that the degeneracy within any of the pairs
is removed, and the true eigenstates are close to the linear
combinations (|n〉 ± |N − n + 1〉)/√2. Then, in this regime,
it is in principle possible to obtain QST between any pair of
spins symmetrically displaced with respect to the center of
the chain. In the limit of p → ∞, the potential induces local
barriers, giving rise to a transfer mechanism similar to the one
proposed by Lorenzo et al. in Ref. [32].

Roughly speaking, by assuming J1/J 
 1, the mode
description for the channel fails to give a correct picture when
J 2/|B2 − B3| � 1, that is, when the localization effects of the
potential start becoming predominant. For the case depicted in
Fig. 2, this rough estimation gives a threshold value pth � 1.4,
which is in very good agreement with the observed result.
Then, to summarize, high-fidelity QST is achieved either if
p � pth, irrespective of J1/J , or if J1/J 
 1. The dynamics
of |〈1|1(t)〉|2 and |〈N |1(t)〉|2, that is, of the probability to find

0 104 3 104
0

1

t

P
t

FIG. 3. (Color online) Dynamics of |〈1|1(t)〉|2 [red (gray)] and
|〈N |1(t)〉|2 (black) for a chain of eight sites. The Hamiltonian
parameters are p = 2, a = 0.5, and J1/J = 1. The fast oscillations
represent the deviation of the real dynamics from the two-level
approximation.

the excitation respectively in the sender and in the receiver
station, without relying on the weak-coupling approximation,
is depicted in Fig. 3. Channel modes contribute to introduce
noise in the transmission process, as witnessed by high-
frequency oscillations, but the leading two-mode behavior
guarantees high-fidelity QST. Far from the weak-coupling
limit, the sharp transition to highly efficient QST in Fig. 2 can
be justified, within the perturbation-theory approach described
before, by assuming J 2/|B1 − B2| � 1.

As discussed before, efficient QST in the weak-coupling
regime can be obtained either by exploiting the resonance with
a single band level or by detuning from all levels comprising
the bus. Adding an external potential with adjustable strength
or shape can then allow one to drive the system between the first
regime and the latter. While the distinction between the two
regimes becomes difficult for long chains, where a continuum
of states is established, the differences between on and off
resonance are clearly observable in short chains, for example,
by monitoring the QST time t∗, which is dramatically shorter
in the presence of a resonant level. In Fig. 4 (upper panel,
red line), the behavior of t∗ is plotted as a function of p for
a chain of 12 sites. Whenever one of the chain eigenvalues
approaches the energy levels of the dimer formed by the
sender and the receiver, a faster three-body oscillation takes
place causing a reduction of t∗. The number of resonances
and their positions therefore depend on the size of the chain.
For p large enough, the weak-coupling corrections become
negligible since the localizing effect of the potential becomes
dominant, as discussed before, and t∗ increases monotonically.
However, for small values of p, approaching a resonance also
implies a degradation of the QST quality (see Fig. 4, upper
panel, black line). This can be understood by monitoring how
the Hamiltonian eigenvalues change as a function of p. For
small p, the two eigenvalues responsible for efficient QST
E+ and E−, whose corresponding eigenvectors are close to
|ψ+〉 = (|1〉 + |N〉)/√2 and |ψ−〉 = (|1〉 − |N〉)/√2, are well
separated in energy from the rest of the spectrum (Fig. 4,
lower panel). There, the continuous line corresponds to the
almost degenerate pair E+ and E−, while the dotted lines
represent the remaining part of the spectrum. As p moves
towards the first minimum in Fig. 4, a third eigenvalue
becomes closer to E+ and E−, and a more efficient three-body
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FIG. 4. (Color online) Upper panel: QST time t∗ [red (gray) line]
as a function of p in the weak-coupling limit (J1/J = 10−2) with
a = 0.5 for 12 spins. Here, t∗ is defined as the first time in which the
receiver’s site population probability has a relevant maximum (fast os-
cillations are washed out by averaging the signal over a few periods).
The excitation probability at the receiver’s site [PN (t∗)] is plotted in
black. As explained in the main text, the dips around p(t∗) are caused
by the appearance of two oscillation frequencies with unbalanced
weights. Lower panel: spectrum of H . The two almost degenerate
eigenvalues responsible for high-fidelity QST are the continuous
black line, while all the other eigenvalues are in drawn in red (gray).

interaction is established. In this phase, the QST remains very
high while t∗ decreases. As the three levels get too close
to each other, an asymmetric oscillation with two leading
frequencies characterized by different weights takes place,
whose interference leads to a decrease of the QST fidelity.
However, a fine-tuning of p can lead to a substantial reduction
of t∗, while keeping the transmission almost perfect.

So far we have described the emergence of localization by
tuning p, but obviously the potential depth a can play a similar
role. In Fig. 5 we display F as a function of p and potential
depth a, by assuming J1/J = 1 and N = 8. As expected, for
small a, the external sites can be efficiently isolated from
the transmission chain only if p is very large, while smaller
values of p are sufficient for larger a. However, increasing a

too much amounts to a substantial increase of the QST time.
An example is given in Fig. 6, where t∗ is studied as a function
of a in the harmonic case p = 2. We use both the numerical
observation of t∗, taken by considering the first time in which
|〈N |1(t)〉|2 reaches the arbitrary threshold value of 0.95, and its
estimation t∗est = π |E+ − E−|−1, obtained simply considering
a bare model described by the two eigenstates closest to |ψ+〉
and |ψ−〉. Given the arbitrary value fixed for the numerical

FIG. 5. (Color online) F as a function of p and a in the constant
coupling regime (J1 = J ) for N = 8.

threshold, the two curves do not assume perfectly identical
values. Yet, the qualitative agreement testifying the effective
two-level behavior is evident. By comparing Figs. 5 and 6 we
deduce that there exists an optimal value of a such that F is
close enough to zero and compatible with a relatively short
value of t∗. In the harmonic case, such an optimal value is
aopt ∼ 0.35.

IV. EXPERIMENTAL PROPOSAL

The nearest-neighbor interaction Hamiltonian model intro-
duced in Eq. (1), in the presence of the harmonic potential
described in Eq. (2), was used in Ref. [11] to describe the
experimentally observed high-fidelity single-particle tunnel-
ing in optical lattices with less than 20 sites. There, coherent
evolution in agreement with quantum walk dynamics was
observed within a coherence time of a few milliseconds. The
experimentally calculated tunneling coupling was J (0)/h̄ =
940 Hz in the lower band and the trapping frequency ωtrap,
which is related to the external potential through Vext =
mω2

trapa
2
lat/2, where m is the atomic mass of 87Rb and alat =

532 nm is the lattice spacing, was ωtrap/(2π ) = 103 Hz. Using
these numbers, one obtains Vext/J

(0) ≈ 0.1, which is very
close to the optimal value necessary to obtain a high fidelity
in a QST protocol (see Fig. 5). Therefore, in the context of
atomic lattices, our proposal is only a few technological steps
away from being experimentally feasible. Before concluding

0.4 0.5 0.6 0.7 0.8
0

105

2 105

a

t

FIG. 6. (Color online) QST time t∗ for J1 = J , p = 2, and for
eight sites. The red (gray) line represents the first time |〈N |1(t)〉|2
reaches the threshold value of 0.95, while the black line is the
theoretical estimation π |E+ − E−|−1 of a Rabi oscillation period.
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this discussion, we remark that in Ref. [11] coherent spin
tunneling was observed in a lattice of 18 sites; however, this
is merely a technical and not a fundamental limit for QST
implementations.

In the context of ion-trap simulation of spin chains [4], the
use of local laser fields can induce an external modulation and
any of the values of a and p can in principle be implemented,
allowing one to find the optimal conditions for high fidelity
and short transfer times.

V. CONCLUSIONS

In conclusion, we have discussed the possibility of imple-
menting a QST protocol in spin chains in the presence of
a site-dependent external magnetic field. The field can play a
double role. In the weak-coupling limit and for relatively small
intensities, it can be used to tune the sender’s and the receiver’s
stations with one of the energy levels of the chain, resulting

in a dramatic reduction of the transfer time of the protocol.
Moreover, we have also shown that use of an external field also
allows high-fidelity state transfer when traditionally spatially
dependent spin-spin coupling would have been necessary.

Among the class of mirror-symmetric potential we have
discussed, a prominent role is played by the harmonic
modulation, since it is especially suitable for experimental
implementation in optical lattices.
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