
PHYSICAL REVIEW A 88, 062304 (2013)

State-dependent linear-optical qubit amplifier

Karol Bartkiewicz,1,2,* Antonı́n Černoch,3 and Karel Lemr1,†
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3Institute of Physics of Academy of Sciences of the Czech Republic, Joint Laboratory of Optics of PU and IP AS CR,
17. listopadu 50A, 772 07 Olomouc, Czech Republic

(Received 18 September 2013; published 2 December 2013)

We propose a linear-optical setup for heralded qubit amplification with tunable output qubit fidelity. We study
its success probability as a function of output qubit fidelity, showing that at the expense of lower fidelity, the
setup can considerably increase probability of successful operation. These results are subsequently applied in
a proposal for state-dependent qubit amplification. Similar to state-dependent quantum cloning, the a priori
information about the input state allows us to optimize the qubit amplification procedure to obtain a better fidelity
versus success probability trade-off.
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I. INTRODUCTION

Photons are well suited to be quantum information carriers
[1]. Over the past decades, there has been a large number
of both theoretically proposed and experimentally tested
quantum information protocols designed for photons [2–4].
A notable example with practical applications is quantum
cryptography, which allows for unconditionally secure trans-
mission of information [5–9]. One can use both both fiber
[10] and free-space [11] optics to distribute photon-encoded
information over considerable distances. Even though photons
are not so susceptible to interaction with the environment as,
for instance, atoms [12], their state also deteriorates because of
noise and absorption in the communication channel [13–15].

Since channel transmissivity and level of noise are limited
by unavoidable technological imperfections, a viable alter-
native strategy to increase communication range is based on
amplification. However, quantum properties of photon states
(unless the state is known a priori) are not preserved by
classical amplification based on a mere “measure and resend”
or stimulated emission approach; thus these approaches are
not always suitable [16]. Quantum amplifiers have to be used
instead [17–22].

In discrete variable encoding, the polarization or spatial
degree of freedom of individual photons is usually used to
encode qubits. It is therefore not surprising that optical qubit
amplifiers are proposed and built to address these degrees
of freedom [23–28]. Similar to other linear-optical quantum
gates [29], the qubit amplifiers are also probabilistic, and their
successful operation has to be heralded by a specific detection
outcome on ancillary photons. Thus apart from amplification
gain, one has to introduce success probability to characterize
the performance of qubit amplifiers.

In general, a qubit amplifier performs the following trans-
formation on a mixture of vacuum and single-qubit states:

p0|0〉〈0| + p1ρ̂Q → p0

N
|0〉〈0| + p1G

N
ρ̂ ′

Q, (1)
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FIG. 1. (Color online) Conceptual scheme of a heralding qubit
amplifier. The input state is transformed according to Eq. (1). D,
detector; EPR, ancillary photons; G, amplifier: FF, feed forward.

where ρ̂Q and ρ̂ ′
Q stand for the input and output qubit density

matrices, N denotes normalization, and G is the overall
(nominal) gain of the amplifier (see conceptual scheme in
Fig. 1). So far, only perfect amplifiers (ρ̂Q = ρ̂ ′

Q) have been
discussed in the literature. In this paper, we extend the analysis
of our previously published scheme [28] to the general case of
imperfect amplification (ρ̂Q �= ρ̂ ′

Q).
This paper is organized as follows: In Sec. II, we describe

the principle of operation of the proposed scheme. Moreover
we introduce the basic quantities used to characterize our
proposed amplifier. We introduce the fidelity of the operation
as the overlap between the input and output qubit states. This
analysis allows us to establish the success probability versus
fidelity trade-off and observe increased success probability at
the expense of a fidelity drop that we describe in Sec. III.
Finally, in Sec. IV, inspired by optimal state-dependent
quantum cloning [30–32], we also show that having some
a priori information about the input state allows us to optimize
the amplification procedure in order to improve this fidelity
versus success probability trade-off. We conclude in Sec. V.

II. PRINCIPLE OF OPERATION

In this section we describe the principle of operation of our
scheme depicted in Fig. 2 so that in subsequent sections we can
analyze the above-mentioned fidelity vs success probability
trade-off and state-dependent amplification.
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FIG. 2. (Color online) Scheme for a state-dependent linear-
optical qubit amplifier as described in the text. EPR, source of en-
tangled ancillary photon pairs; PBS, polarizing beam splitter; PPBS,
partially polarizing beam splitter (defined in the text); WP, wave plate;
PDF, polarization-dependent filter; D, standard polarization analysis
detection block (for reference see [33]).

The signal state |ψs〉 is prepared in superposition of vacuum
|0〉 and polarization-encoded single-qubit state |Q〉,

|ψs〉 = α|0〉 + β|Q〉, (2)

where (|α|2 + |β|2 = 1) and the qubit

|Q〉 = cos
θ

2
|H 〉 + sin

θ

2
eiϕ|V 〉 (3)

is parametrized by angles θ and ϕ describing the superposition
of horizontal |H 〉 and vertical |V 〉 polarization basis states.
The amplifier also makes use of an ancillary pair of entangled
photons in a state parametrized by angle χ ∈ [0; π

4 ],

|ψa〉 = cos χ |HH 〉 + sin χ |V V 〉. (4)

In the first step, the signal impinges on the first fully
polarizing beam splitter PBSin, where the horizontal and
vertical components of the signal qubit are separated into
their respective modes. In these modes the interaction with
the ancillary pairs of photons takes place: the horizontal
component of the signal interacts with the first ancillary photon
on a partially polarizing beam splitter PPBS1; similarly,
the vertical signal component is combined with the second
ancillary photon on the partially polarizing beam splitter
PPBS2. The partially polarizing beam splitter PPBS1 fully
reflects vertically polarized photons and has reflectivity r for
horizontal polarization. On the other hand, PPBS2 reflects all
horizontally polarized light and has reflectivity r for vertical
polarization. Partially polarizing beam splitter PPBS1 can be
described in terms of creation operators

â
†
in,H → râ

†
out,H +

√
1 − r2â

†
D1,H ,

â
†
a1,H → −râ

†
D1,H +

√
1 − r2â

†
out,H ,

â
†
a1,V → −â

†
D1,V ,

where labeling of modes corresponds to the scheme in Fig. 2.
Analogous transformation describes the action of the PPBS2.

Projection on diagonal |D〉 = (|H 〉 + |V 〉)/√2 and antidiag-
onal |A〉 = (|H 〉 − |V 〉)/√2 linear polarization is performed
in both detection modes D1 and D2. The resulting signal state
is recovered by combing horizontal and vertical components
on the output fully polarizing beam splitter PBSout.

One can trace how the individual components of the
three-photon total state (signal and ancillary photons) get
transformed by the setup assuming postselection on detection
of one photon in each detection mode D1 and D2:

|0inHa1Ha2〉 → r|0outHD1HD2〉,
|0inVa1Va2〉 → r|0outVD1VD2〉,

|HinHa1Ha2〉 → (2r2 − 1)|HoutHD1HD2〉,
|HinVa1Va2〉 → r2|HoutVD1VD2〉,
|VinHa1Ha2〉 → r2|VoutHD1HD2〉,
|VinVa1Va2〉 → (2r2 − 1)|VoutVD1VD2〉.

After the photons in the detection modes get projected to
diagonal |DD〉 or antidiagonal |AA〉 linear polarization states
(both detected photons share the same polarization), the output
signal state can be expressed as

|ψout1〉 = αr

2
(cos χ + sin χ )|0〉

+βx+
2

cos
θ

2
|H 〉 + βy+

2
sin

θ

2
eiϕ |V 〉, (5)

where

x± = (2r2 − 1) cos χ ± r2 sin χ,
(6)

y± = (2r2 − 1) sin χ ± r2 cos χ.

The output state |ψout1〉 is intentionally kept unnormalized
to provide a simple expression for success probability in
subsequent calculations. Alternatively, the output signal state
(also not normalized) takes the form of

|ψout2〉 = αr

2
(cos χ − sin χ )|0〉

+βx−
2

cos
θ

2
|H 〉 − βy−

2
sin

θ

2
eiϕ|V 〉 (7)

if |DA〉 or |AD〉 coincidence is observed (detected photons
have mutually orthogonal polarizations).

A feed-forward operation has to be adopted to correct the
qubit part of the state given by Eq. (5) to be identical to the
qubit part of Eq. (7). This feed-forward transformation consists
of polarization-dependent filtrations τH and τV when |DD〉 or
|AA〉 coincidence is detected. These filtrations are functions
of the ancilla parameter χ and reflectivity r but are signal state
independent:

τH = x−
x+

, τV = y−
y+

. (8)

In the case of |DA〉 or |AD〉 coincidence detection, additional
phase shift (sign flip) is imposed on vertical polarization (V →
−V ). This process is not lossy, so we assume it is performed
in all the subsequently evaluated scenarios.

A. Success probability

For the subsequent analysis, several quantities are crucial.
The first is the overall success probability of the procedure
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Psucc. It can be expressed using the norm of the output state
|ψout1〉 and |ψout2〉. Not implementing the lossy feed-forward,
the success probability reads

Psucc = 2(|〈ψout1|ψout1〉| + |〈ψout2|ψout2〉|)

= |α|2r2 + |β|2 x2
+ + x2

−
2

cos2 θ

2

+ |β|2 y2
+ + y2

−
2

sin2 θ

2
, (9)

where the factor of 2 describes the two equally probable
coincidences leading to |ψout1〉 or |ψout2〉. On the other hand, if
the feed-forward is implemented, the output states |ψout1〉 and
|ψout2〉 are transformed to the forms

|ψout1FF〉 = αr

2
(cos χ + sin χ ) |0〉

+ βx−
2

cos
θ

2
|H 〉 + βy−

2
sin

θ

2
|V 〉,

|ψout2FF〉 = αr

2
(cos χ − sin χ ) |0〉

+ βx−
2

cos
θ

2
|H 〉 + βy−

2
sin

θ

2
|V 〉, (10)

and the corresponding success probability reads

Psucc = 2(|〈ψout1FF|ψout1FF〉| + |〈ψout2FF|ψout2FF〉|)
= |α|2r2 + |β|2

(
x2

− cos2 θ

2
+ y2

− sin2 θ

2

)
. (11)

B. Amplification gain

A second very important parameter of the amplifier is the
gain G, the ratio between the qubit and vacuum components
for the amplified state divided by the analogous ratio for the
initial input state, as shown in Eq. (1). In general, the gain can
differ for horizontal and vertical polarizations. One can easily
define the gain for both polarizations in the case where the
feed-forward is implemented:

GHFF = x2
−

r2
, GVFF = y2

−
r2

. (12)

If the lossy feed-forward is not implemented, the gain can be
calculated as the average gain for output states |ψout1〉 and
|ψout2〉,

GH = x2
+ + x2

−
2r2

, GV = y2
+ + y2

−
2r2

. (13)

The overall gain defined in Eq. (1) is obtained by combining
the two gains for horizontal and vertical polarization. In the
case of applied feed-forward, the overall gain is given by

GFF = cos2 θ

2
GHFF + sin2 θ

2
GVFF,

and in the case without the lossy feed-forward (only the phase
flip is performed) it is given similarly by

G = cos2 θ

2
GH + sin2 θ

2
GV .

C. Amplification fidelity

The last quantity that has to be calculated in this section is
the output qubit fidelity FQ. This fidelity compares the overlap
between the qubit state |Q〉 at the input with the qubit subspace
of the output state |ψoutQ〉. If the feed-forward is implemented,
the fidelity is simply

FQFF = |〈ψoutQ|Q〉|2 =
(
x− cos2 θ

2 + y− sin2 θ
2

)2

x2− cos2 θ
2 + y2− sin2 θ

2

. (14)

If only the feed-forward phase correction and not the full lossy
transformation is performed, the fidelity of the output qubit
reads

FQ = 〈Q|ρ̂outQ|Q〉

=
(
x+ cos2 θ

2 + y+ sin2 θ
2

)2 + (
x− cos2 θ

2 + y− sin2 θ
2

)2

(x2+ + x2−) cos2 θ
2 + (y2+ + y2−) sin2 θ

2

,

(15)

where ρ̂outQ is the normalized density matrix of the single-
photon subspace, which is a balanced mixture of |ψout1〉〈ψout1|
and |ψout2〉〈ψout2|, with the V → −V transformation per-
formed on the latter.

III. SUCCESS-PROBABILITY-FIDELITY TRADE-OFF

In this section we investigate the trade-off between success
probability Psucc and the output-state fidelity FQFF. For this
analysis, we fixed the parameters α = β = 1√

2
, and we also

took into account the lossy feed-forward.

A. Infinite gain

First, we studied this trade-off on the particular case of
infinite gain. The infinite gain is an important setting of
qubit amplifiers. To achieve this regime, one simply sets
r = 0. Thus the previously obtained expressions can be
considerably simplified. Coefficients x+ = x− = −cos χ and
y+ = y− = − sin χ become equal, so there is no need for
lossy feed-forward any more (τH = τV = 1); only V → −V

is performed. Success probability and qubit fidelity take the
forms

Psucc = |β|2
(

cos2 χ cos2 θ

2
+ sin2 χ sin2 θ

2

)

= |β|2
2

[
cos2

(
χ − θ

2

)
+ cos2

(
χ + θ

2

)]
(16)

and

FQFF =
(

cos χ cos2 θ
2 + sin χ sin2 θ

2

)2

cos2 χ cos2 θ
2 + sin2 χ sin2 θ

2

, (17)

respectively.
Figure 3 shows the dependence of the success probability on

output-state fidelity for four different input states parametrized
by θ = {π/2,2π/5,π/3,π/4} and ϕ = 0. The calculation
reveals that there is no improvement in success probability
in the case of a balanced input state (θ = π/2), and the
success probability remains constant and fidelity independent.
In contrast to that, the more the input state is unbalanced, the
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FIG. 3. (Color online) Success probability Psucc given by Eq. (16)
as a function of output-state fidelity FQFF given by Eq. (17) in the case
of infinite gain is depicted for four different input states as described
in the text.

more pronounced the dependence of the success probability on
fidelity is. This fact will reemerge in Sec. IV, which discusses
state-dependent amplification. For instance, in the case of
θ = π/4, the success probability can be increased by a factor
of 1.7 at the expense of 85% output-state fidelity.

B. Maximum success probability

In the next step, we performed a numerical calculation of
the maximum achievable success probability for given values
of overall gain given by Eq. (1) and the output-state fidelity
given by Eq. (14). This calculation has been carried out on
the same four input states mentioned above by varying the χ

and r parameters. Plots in Fig. 4 present the obtained results,

FIG. 4. (Color online) Success probability Psucc as a function of
both output-state fidelity and amplification gain GFF is depicted for
four different input states: (a) θ = π/2, (b) θ = 2π/5, (c) θ = π/3,
and (d) θ = π/4. THR stands for the threshold of unreachable area.

confirming the finding described in Fig. 3. In addition, one
can observe that when set to lower values of gain, the setup
performs better for higher fidelities than for lower ones. In the
case of higher gains, however, the setup behaves as described
in the infinite-gain analysis. Also we were able to establish
a state-dependent unreachable area, a set of gain and fidelity
coordinates that cannot be reached by the presented setup. This
area is visualized by the threshold (TRH) line shown in Fig. 4.

IV. STATE-DEPENDENT AMPLIFICATION

This section brings forward the main result of the paper:
how can we improve the success probability of amplification
given some a priori knowledge about the input qubit state?
For the purpose of quantifying the a priori information about
the input signal, we use the von Mises–Fisher distribution [34]
(also known as the Kent distribution) describing dispersion on
a sphere. This probability density function is defined as

g(θ,κ) = κ

4π sinh(κ)
exp(κ cos θ ), (18)

where θ is the input-state parameter describing the axial angle
of the state on the Poincaré sphere and κ , i.e., the concentration
parameter, determines the amount of knowledge about the
input qubit. Figure 5 depicts the probability distribution over
the Poincaré sphere for various values of κ . Note that in the
case of κ = 0, all states are equally probable (therefore no a
priori knowledge), and the larger the concentration parameter
κ is, the more precise the information about the input state
is. This trend is illustrated in Table I, which provides the
values of medians θm and first deciles θd for various values
of κ . Note that while throughout this paper we center the

FIG. 5. (Color online) Probability density function g = g(θ,κ)
given by Eq. (18) over the Poincaré sphere for various values of the
κ parameter used in subsequent numerical simulations: (a) κ = 0,
(b) κ = 1, (c) κ = 3, (d) κ = 10. Labels |H 〉, |D〉, and |R〉 = (|H 〉 +
i|V 〉)/2 denote the position of the horizontal, diagonal, and right-hand
circular-polarization states, respectively.
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TABLE I. Values of medians and first deciles of the von
Mises–Fisher distribution for several values of the concentration
parameter κ .

Parameter κ Median θm (rad) First decile θd (rad)

0 π/2 0.205π

1 0.357π 0.136π

3 0.220π 0.085π

10 0.119π 0.046π

distribution g(κ,θ ) around the northern pole of the sphere
(horizontal polarization), the generality of our scheme does
not suffer by this choice. If the knowledge about the input
state is not centered around the north pole, one can always
perform a deterministic rotation to make it so and inverse
it after the state comes out of the amplifier. Using this
quantification of input-state knowledge, we performed a series
of numerical calculations with the goal being to determine
the fidelity-success-probability trade-offs. Our results show
the relation between the highest achievable average success
probability,

〈Psucc〉 =
∫

�

g(θ,κ)Psucc dω,

for the fixed values of average gain and fidelity,

〈G〉 =
∫

�

g(θ,κ)GFF dω,

〈F 〉 =
∫

�

g(θ,κ)FQFF dω,

respectively, where dω = −d cos θ dφ and � is the surface
of the Poincaré sphere. Only the 〈F 〉 integral is not trivial
since FQFF is a rational function of cos θ ; thus it was
calculated numerically. However, the other integrals can be
expressed as linear functions of 〈cos θ〉 = coth κ − 1/κ . The
investigated cases are depicted in Fig. 6. In each case we
targeted one specific average overall gain value from the set
〈G〉 ∈ {3 dB,10 dB,20 dB,∞}, where the average was taken
over input states distributed according to the von Mises–Fisher
distribution for four different values of κ ∈ {0; 1; 3; 10}. For
all the average gain and κ combinations, we determined the
relation between the average output-state fidelity and the
average success probability. Note that similar to the previous
section, we assumed α = β = 1√

2
and we also took into

account the lossy feed-forward.
Similar to the case analyzed in Sec. III, not all the values

of fidelity are accessible simply because the setup cannot
produce fidelity lower than a certain threshold that depends
on the values of κ and average gain. It is a very expected result
that for the combination of κ = 0 and infinite gain, the success
probability of the setup and fidelity are state independent. This
result can be analytically verified using formulas from Sec. II
for r = 0. In contrast, for other than infinite average gains,
there is always a maximum of success probability depending
on κ . For κ → ∞, this maximum is found for unit fidelity
〈F 〉 = 1. It follows from the above-mentioned observations
that for a given value of average gain 〈G〉 and κ , there
exists a specific fidelity value 〈F 〉 giving maximum success
probability max〈F 〉 〈P 〉 = Pmax. In some cases this maximum

FIG. 6. (Color online) Maximum achievable success probability
〈P 〉 as a function of average fidelity 〈F 〉 for various values of average
overall gain [(a) 〈G〉 = 3 dB, (b) 〈G〉 = 10 dB, (c) 〈G〉 = 20 dB,
(d) 〈G〉 → ∞] and state knowledge described by parameter κ of the
probability density function g = g(θ,κ) given by Eq. (18).

is to be found on the threshold providing the lower bound
on the accessible fidelity values, but surprisingly, this is not
always the case. This effect reflects the fact that the space
of χ and r values providing, at the same time, the required
value of the fidelity and the average gain has a nontrivial
structure. Thus it seems that the question about the limits on
the success rate of the state-dependent quantum amplifier for
fixed amplification parameters does not have a simple answer.
Nevertheless, it is apparent that, in general, one can increase
the success probability of the setup at the expense of the lower
success probability, but sometimes the maximum value Pmax

can be reached at a lower cost than approaching the fidelity
threshold.

A. Merit function

One can argue that some applications require perfect
amplification with unit fidelity and thus it is not suitable to
increase the success probability of the setup at the expense of
lower fidelity. While this may indeed be true in some cases,
realistic protocols for quantum communication have to be
robust against at least some degree of fidelity drop. This leads
us to formulate a figure of merit function inspired by [35]

M = max{PsuccF }
Psucc(F = 1)

, (19)

where the numerator is the maximum of the product of fidelity
and the corresponding success probability and the denominator
is just the success probability at unit fidelity. Since the product
of fidelity and success probability can be understood as some
sort of output rate of signal qubits, the function M gives the
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M M

M M

FIG. 7. (Color online) Merit function M given by Eq. (19)
depicted for various parameters κ and average gains: (a) 〈G〉 =
3 dB, (b) 〈G〉 = 10 dB, (c) 〈G〉 = 20 dB, (d) 〈G〉 → ∞.

maximum factor of increased output signal rate if one allows
for the fidelity to be smaller than 1 (see Fig. 7).

It can be easily shown that for the very specific case of both
infinite average gain and infinite κ , the setup gives exactly the
same outcomes of the simple photon amplifier [36] based on
the “detect and reproduce” method. However, for no a priori
knowledge about the input state κ = 0, the setup provides the
same functionality as a previously published qubit amplifier
[28]. In this sense, the setup covers the transition between these
two conceptually different devices.

V. CONCLUSIONS

The possibility to operate a qubit amplifier in an imperfect
regime, where output qubit fidelity may be smaller than 1,
offers a significant increase in success probability if one
has some a priori information about the input qubit state.
In this paper, we analyzed the capabilities of the proposed
linear-optical setup for the state-dependent qubit amplifier.
We determined the output-state fidelity, gain, and success
probability as functions of the setup parameters.

Next, we performed a numerical optimization of success
probability depending on target output-state fidelity and gain
for various input states. This calculation shows that the closer
the state is to the pole of a Poincaré sphere, the more
pronounced the success probability improvement is if fidelity
is allowed to drop. Also this effect manifests more strongly in
the cases of higher gains.

Furthermore we performed numerical analysis of success
probability as a function of average output-state fidelity for
several target average gains and levels of a priori information
about the input state quantified by the von Mises–Fisher
distribution [34]. The results show how the maximum success

probability versus fidelity trade-off behaves depending on
average gain and a priori information about the input state.
To clearly visualize the potential improvement in success
probability, we have constructed a specific function of merit
that we use to characterize the amplifier in several regimes
(various gains and levels of a priori knowledge about the
input state). This analysis indicate that success probability can
be increased on the order of tens of percent depending on the
conditions.

Interestingly, we found that, in general (for cases other than
infinite gain), the success probability of the amplifier does
not increase in a monotonic way for decreasing fidelity. This
result clearly demonstrates that the success probability of state-
dependent amplifiers can be maximally increased without a
significant drop in output-state fidelity. For this reason we
believe that our results can stimulate further research on state-
dependent qubit amplifiers and their potential applications.

If we draw a comparison between state-dependent amplifi-
cation and cloning, we will notice a number of similarities.
In this paper, we optimize the success probability of the
former operation for a given target fidelity, gain, and a priori
information. In contrast to amplification, cloning schemes
are usually optimized to maximize fidelity given certain a
priori information, disregarding other parameters such as
the success probability of the cloning operation. In case
of quantum cloning, the analysis of the fidelity vs success
probability trade-off has been investigated, for instance, in
a recent paper on cloning-based amplification [37]. In the
relevant paper, fidelity and probability of success are optimized
by switching between optimal probabilistic quantum cloning
and deterministic classical cloning based on the measure and
reproduce method. Drawing a direct comparison between the
setup presented in this paper and the cloning-based amplifier is
an intricate problem since they perform qualitatively different
operations. The scheme presented in this paper removes the
vacuum term from the qubit-vacuum superposition, while the
cloning-based amplifier duplicates qubits, making the signal
more resistant to attenuation.

The presented analysis assumes the existence of perfect
photon-number-resolving detectors and a perfect source of
ancillary photons. In an experimental setting, however, one
has to take into account the actual properties of laboratory
setup components. Experimental imperfections will negatively
affect the performance of the setup. For example, if the
detectors do not resolve photon numbers, the amplifier will
impose a lower gain than predicted. This is because in some
cases it is possible for all photons to leak into detection
modes, leaving a vacuum at the output; at the same time
the operation is misleadingly heralded as successful. Such
additional heralding would increase the success probability
of the amplification. On the other hand, lower detection
efficiency will not affect amplification gain, only lower the
success rate. One of the key ingredients in our scheme is
a pair of ancillary photons. Their preparation is crucial for
this device to function correctly. The fidelity of the amplifier
operation depends on how accurately this ancillary photon pair
is prepared. Higher photon number contributions generated in
the process of spontaneous parametric down-conversion can
negatively affect amplification. In such cases the device may
yield a “false success” and, instead of amplifying the input
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state, send superfluous photons from the ancillary mode to
the output port. Failing to deliver ancillary states will result
in device malfunction. Therefore ancillary photon-source
efficiency imposes a limit on the success rate of the amplifier.
The functioning of the proposed setup is affected by a number
of other factors, the detailed analysis of which falls beyond the
scope of this paper.
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