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Pseudorandom circuits from Clifford-plus-T gates
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We explore the implementation of pseudorandom single-qubit rotations and multiqubit pseudorandom circuits
constructed only from Clifford gates and the T gate, a phase rotation of π/4. Such a gate set would be
appropriate for computations performed in a fault tolerant setting. For single-qubit rotations the distribution
of parameters found for unitaries constructed from Clifford plus T quickly approaches that of random rotations
and requires significantly fewer gates than the construction of arbitrary single-qubit rotations. For Clifford-plus-T
pseudorandom circuits we find an exponential convergence to a random matrix element distribution and a Gaussian
convergence to the higher-order moments of the matrix element distribution. In addition, the nearest-neighbor
eigenangle statistics distribution almost immediately converges to that of random unitary matrices. All of these
convergence rates are found to be insensitive to the number of qubits.
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Quantum information can be protected against errors by
properly encoding it into suitable quantum error correction
codes [1]. Manipulating the information while it remains
encoded can be done if all manipulations, such as quantum
gates and the like, respect the symmetries of the code. The
framework which allows the implementation of a universal
set of gates on the encoded information in such a way that
the quantum information does not leave the encoded space
is known as quantum fault tolerance (QFT) [2–5]. Within a
QFT setting many quantum error correction codes, such as the
Calderbank-Shor-Steane (CSS) codes [6,7], utilize a universal
gate set consisting of Clifford gates, gates that map Pauli
matrices to Pauli matrices, plus the T gate, a single-qubit π/4
phase rotation. Clifford gates can be implemented bitwise,
while the T gate is implemented with the utilization of
appropriate ancilla qubits.

The universality of the gate set Clifford plus T , meaning
the ability to implement any quantum operation using only
gates from this set, does not by itself provide a prescription
of how to use these gates to implement quantum protocols. A
major difficulty in such a prescription is the implementation
of arbitrary single-qubit rotations. Initial work on this problem
was done in [8,9] and more recent investigations have resulted
in techniques with markedly improved efficiencies with respect
to the number of necessary gates needed to achieve a prescribed
gate accuracy ε [10–16]. In this paper we are interested
not in implementing any specific gate, but in implementing
random single-qubit gates and random unitary operations with
an arbitrary number of qubits with gates that are appropriate
for QFT. Thus, it is necessary to design algorithms that can
implement random unitary operators using only Clifford and
T gates.

Random unitary operators and quantum states play an
important role in many quantum information protocols. Ran-
dom states saturate the classical communication capacity of a
noisy quantum channel [17], and are used for superdense
coding of quantum states [18], and data hiding schemes [19].
Random quantum states can also be used for randomized
benchmarking of quantum processes in the presence of noise
[20]. Random unitaries themselves are useful for remote state
preparation [21] and noise characterization [22–24].

The above protocols require random unitary operators
drawn uniformly from the Haar measure of the circular
unitary ensemble (CUE). However, the number of quantum
gates necessary to implement CUE random unitaries on a
quantum computer grows exponentially with the number of
qubits [22,25]. A possible substitute for CUE random matrices
is the pseudorandom (PR) unitaries introduced in [22]. PR
unitaries have statistical moments that approximate those of
CUE matrices.

An efficient means of implementing PR unitaries is via
PR circuits [22,26–29]. PR circuits consist of an iterated
set of one- and two-qubit gates having certain degrees of
freedom which are chosen at random. As an example, each
iteration of the standard PR circuit introduced in [22] consists
of a random rotation on each single qubit followed by
controlled-phase (CZ) gates between all nearest neighbors.
The three Euler angles that determine the single-qubit rotations
serve as the degrees of freedom for the PR circuit. They are
chosen randomly and independently for each rotation. As more
iterations are applied (using different single-qubit gates for
each qubit and at each time step) the statistical properties of the
total unitary operator implemented compare more favorably to
the statistical properties of random unitaries.

Subsequent studies of PR circuits have focused on the
convergence of such algorithms to different statistical prop-
erties of random unitaries [30,31]. Reference [32] specifically
demonstrates that such circuits can efficiently implement
unitaries whose statistical moments up to order k approximate
that of the Haar measure, within any prescribed accuracy ε,
for arbitrary k. Additional work has been done on the choice
of two-qubit gates [27], the choice of single-qubit gates [29],
some aspects of the topology of the qubits [27,28,33], and the
ability of such unitaries to efficiently construct states of generic
entanglement [26]. PR circuits have also been formulated for
cluster-state quantum computation [29,34].

Unlike previous work, here we restrict our gate set to those
appropriate when operating within a QFT framework. We
do not assume the ability to perform arbitrary single-qubit
rotations but instead limit our gate set to those that will
keep quantum information within the quantum error correction
encoding. Thus, we will attempt to construct random rotations
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and PR unitaries utilizing only single-qubit Clifford gates, the
T gate, and the CZ gate.

We first explore the construction of random single-qubit
rotations using only the Clifford gates Hadamard H and phase
S, and the T gate given by

H = 1√
2

(
1 1

1 −1

)
S =

(
1 0

0 i

)
T =

(
1 0

0 ei π
4

)
.

(1)

We note that the phase gate is equivalent to implementing
the T gate twice in a row, S = T 2. Nevertheless, we identify
it separately because it can be implemented bitwise at
much less of a cost in time and ancilla qubits than even a
single implementation of a T gate. One possible construction
protocol would be to randomly apply one of these three gates
at every time step t . However, we reject this suggestion as there
are too many combinations of gates that would be extraneous:
T 2 = S and H 2 = 1. Instead we look to the gate sequences
commonly found in prescriptions of arbitrary rotation using
only gates from the set Clifford plus T [10,15,16]. We choose
the sequences HT and SHT and apply one or the other at every
time step to construct our single-qubit rotations. We equally
weigh every one of the 2t possible rotations for every time step
up to t = 25 and compare the statistics of these unitaries with
those of random single-qubit rotations.

Random single-qubit rotations are unitaries drawn uni-
formly with respect to the Haar measure of SU(2) and are
completely parametrized by the Euler angles ψ , χ , and φ, as
follows:

U1 =
(

eiψ cos φ eiχ sin φ

−e−iχ sin φ e−iψ cos φ

)
, (2)

where ψ and χ are drawn independently and uniformly from
between 0 and 2π , and φ = sin−1 √

ξ where ξ is drawn
uniformly from between 0 and 1.

To compare the Clifford-plus-T -gate constructed unitaries
with single-qubit random unitaries we extract from each of the
2t constructed unitaries the paramaters ψ , χ , and ξ which are
then sorted into equally spaced bins (our simulations are only
slightly dependent on the number of bins). The normalized
distributions of these parameters, P̃ (α) for α = ψ,χ,ξ , are
compared to the appropriate distributions for random unitaries,
P (α). The difference between these distributions is then
calculated as D(α) = ∑ |P̃ (α) − P (α)|2 where the sum is
taken over all bins.

Figure 1 plots each D(α) as a function of time step. As
shown, D(α) decreases at an exponential rate e−κt where a
least-squares fit for the decay constant κ gives 0.63, 0.60, and
0.66 for D(χ ), D(ψ), and D(ξ ) respectively. These results
demonstrate that the distribution of single-qubit rotations
based on Clifford-plus-T gates quickly approaches that of
random unitaries, justifying our initial choice of gate to
sequences to be applied. We note that the average number
of time steps to achieve D(α) < 10−5 is 20 which translates
into 20 T gates and an average total of 50 single-qubit gates.
This number is significantly below the number of single-qubit
gates needed to construct an arbitrary single-qubit rotation to
the same accuracy [15,16].
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FIG. 1. (Color online) Difference D(α) between the distributions
of ξ (×), ψ (◦), and χ (�) for random single-qubit unitary matrices
and those constructed from Clifford-plus-T gates as a function of
time step t . The least-squares fit to D(ψ) (dotted line) is given by
exp(0.54–0.60t). Least-squares fitting to D(χ ) and D(ξ ) gives similar
coefficients.

Based on the above, a straightforward way to implement
PR circuits on multiple qubits using only gates from Clifford
plus T is to simply replace the single-qubit unitaries drawn
from SU(2) of the standard PR circuit [22] with a sequence of
HT and SHT gates that would implement a PR single-qubit
unitary. The convergence to CUE statistics would be similar
to the standard case at an increased cost in number of gates
applied equal to the number of gates used to implement the
PR single-qubit rotation (depending on the desired accuracy)
times the number of qubits.

For the sake of increased efficiency, however, we would
like to explore the possibility of applying only one iteration of
the sequence HT or SHT on each of the qubits in place of
the random single-qubit rotations of the standard PR circuit.
Thus, a time step t of the Clifford-plus-T gate PR circuit on
a line of n qubits would involve applying to each qubit either
the single-qubit gates HT or the gates SHT (each with a
probability of 0.5), followed by CZ gates between all nearest
neighbors.

To determine the randomness of the PR unitaries con-
structed in this way we compare a number of statistical
properties of the constructed unitaries to those of CUE
matrices. We start with the matrix element distribution and
its higher-order moments. For CUE matrices, random matrix
theory provides the following distribution [35]:

P (l) = N − 1

N
el

(
1 − el

N

)N−2

, (3)

where N = 2n is the Hilbert space dimension and l is a
function of the matrix elements Uij given by l = ln(N |Uij |2).
We compare this distribution to that of the PR unitaries from
Clifford-plus-T gates by constructing a sample number r of
PR unitaries and binning the rN2 l values into equally spaced
bins. The distance between the normalized distributions is, as
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FIG. 2. (Color online) Matrix element distribution P̃ (l) for n = 6
PR circuits from Clifford-plus-T gates at different time steps. For
t = 2 (top left inset) and t = 3 (bottom left inset) the distribution
is simply a series of large spikes. For higher t (main figure) the
spikes merge into a continuous distribution and collapse into the
CUE random matrix element distribution.

above, given by

D(l) =
∑

|P̃ (l) − P (l)|2, (4)

where the sum is taken over all bins. This is done for n = 6,
8, 10, 12, and 14 qubits using r = 10 000 for the cases n = 6
and 8, r = 1000 for n = 10, r = 50 for n = 12, and r = 5 for
n = 14.

The convergence of the matrix element distribution for the
Clifford-plus-T -gate constructed unitaries to that of CUE is
shown in Fig. 2 for the case of n = 6. Of note is the behavior of
the approach. Initially the matrix elements are confined to very
specific magnitudes such that the distribution is simply a series
of large spikes. As t increases the spikes shrink and increase
in number before joining together to collapse into the desired
distribution. This behavior should be contrasted, for example,
with that demonstrated in [36] where for low t the distribution
is heavily weighted towards higher magnitude elements before
spreading out and filling up the lower magnitude parts of the
distribution.

The complete results are shown in Fig. 3 and demonstrate
the ability to construct PR unitaries from the Clifford-plus-T
gates. As the number of time steps increase P̃ (l) converges
to P (l) at an exponential rate marred only by an overshoot
at t = n followed by a spike at t = n + 1. The magnitude of
this overshoot and spike decreases with increasing number
of qubits. In addition, the rate of convergence is independent
of the number of qubits and the decay constant is κ � 1.71
(this will depend somewhat on the level of binning). We note
that the lack of sensitivity to qubit number is due to the PR
circuit prescribing that two-qubit gates are applied between
all nearest neighbors at every time step. PR circuits that apply
only one two-qubit gate at a time, such as [36], converge at a
rate that is strongly dependent on the number of qubits.

To explore further the accuracy with which the PR unitaries
built from Clifford-plus-T gates resemble random unitaries
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FIG. 3. (Color online) Difference D(l) between the distributions
for CUE random matrices and those constructed via PR circuits from
Clifford-plus-T gates for n = 6 (×), 8 (◦), 10 (�), 12 (�), and 14
(+) qubits. The least-squares fit to the 12-qubit case (dotted line) is
given by exp(2.21–1.71t). The insets show the deviation from the
random matrix derived moments of the matrix element distribution
as a function of time step for moments k = 2 (top left), 4 (top right),
and 8 (bottom). Note that the convergence to the moments is not
exponential but Gaussian.

we look at higher-order moments of the matrix element
distributions P̃ (l). Moments of distribution of matrix elements
were analyzed in the context of PR unitaries in Ref. [36]. Here
we are especially interested in whether the evolution of these
moments will depend on the number of qubits. The kth moment
of the matrix element distribution μk is defined as Nk〈|Ui,j |2k〉.
For CUE matrices the moments are given by [36]

μk = k!Nk(N − 1)!

(N + k − 1)!
. (5)

We look at the deviation from the random matrix derived
moments via

Dμk
= |μk − μ̃k|

μk

, (6)

where μ̃k is the calculated matrix element distribution moment
for the unitaries constructed from the set of gates Clifford
plus T . The results for moments k = 2, 4, and 8 are shown in
the insets of Fig. 3. First, we see that, as with the difference
in distributions, the results are basically independent of the
number of qubits except for the same overshoot and recovery
phenomenon discussed above at time steps t = n and n + 1.
In contrast to the difference in distributions however, the rate
of convergence to the CUE is not exponential but a Gaussian
with the exact behavior depending on k: the higher the moment
the slower the initial convergence.

We now look at the nearest-neighbor eigenangle separation
distribution for our constructed unitaries and compare them to
the same distribution for CUE matrices. For CUE matrices the
distribution of nearest-neighbor eigenangle separation is given
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FIG. 4. Distribution of nearest-neighbor eigenangle difference
distribution for Clifford-plus-T -gate PR circuits with 2 (�), 4 (×), and
6 (◦) iterations, compared to the same distribution for CUE matrices
(solid line). As the number of iterations increases, the eigenangle
difference distribution quickly approaches that of CUE matrices.

by [37]

P (s) = 32s2

π2
e4s2/π , (7)

where s is the difference between two ordered eigenangles.
Figure 4 shows the almost immediate convergence of the
nearest-neighbor eigenangle difference distribution of PR

unitaries to P (s). While the results shown are for six qubits,
very similar statistical distributions were found for 8, 10, 12,
and 14 qubits. In addition, the distribution of eigenvector
elements for circuits with all the above numbers of qubits was
determined and compared to that of CUE. The convergence
was again almost immediate and similar to the convergence of
the nearest-neighbor eigenangle difference distribution.

In conclusion, we have demonstrated the construction of
random single-qubit unitaries by stringing together sequences
of the gates HT and SHT . We have shown that the
statistical distributions of the Euler angles from the set of
unitaries quickly approach that of random SU(2) matrices.
We then extended the exploration to more qubits, devising
pseudorandom circuits utilizing only Clifford gates and the T

gate. The matrix elements from the unitaries thus constructed
quickly approach the distribution of CUE matrix elements with
little sensitivity to the number of qubits.

This exploration provides a useful algorithm to construct
random states and unitaries within the quantum fault tolerant
framework. Future work will focus on the accuracy and
robustness of the algorithm when subject to errors. In that
case (noisy) gates will be implemented on logical qubits that
allow quantum error correction to be explicitly implemented.
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