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Hardy’s proof is considered the simplest proof of nonlocality. Here we introduce an equally simple proof that
(i) has Hardy’s as a particular case, (ii) shows that the probability of nonlocal events grows with the dimension
of the local systems, and (iii) is always equivalent to the violation of a tight Bell inequality. Our proof has all
the features of Hardy’s and adds the only ingredient of the Einstein-Podolsky-Rosen scenario missing in Hardy’s
proof: It applies to measurements with an arbitrarily large number of outcomes.
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I. INTRODUCTION

Nonlocality, namely, the impossibility of describing corre-
lations in terms of local hidden variables [1], is a fundamental
property of nature. Hardy’s proof [2,3], in any of its forms
[4–7], provides a simple way to show that quantum correlations
cannot be explained with local theories. Hardy’s proof is
usually considered “the simplest form of Bell’s theorem” [8].

However, if one wants to study nonlocality in a systematic
way, one must define the local polytope [9] corresponding
to any possible scenario (i.e., for any given number of
parties, settings, and outcomes) and check whether quantum
correlations violate the inequalities defining the facets of
the corresponding local polytope. These inequalities are the
so-called tight Bell inequalities. In this sense, Hardy’s proof
has another remarkable property: It is equivalent to a violation
of a tight Bell inequality, the Clauser-Horne-Shimony-Holt
inequality [10]. This was observed in [5].

Hardy’s proof requires two observers, each with two
measurements, each with two possible outcomes. The proof
has been extended to the case of more than two measurements
[11,12] and more than two outcomes [13–15]. However, none
of these extensions is equivalent to the violation of a tight
Bell inequality. Hardy-like proofs can also be applied to
contextuality [16].

Hardy’s paradox brings together two features that no other
proof of nonlocality has: (i) It proves Bell’s theorem under the
condition proposed by Einstein, Podolsky, and Rosen (EPR)
that one party’s measurement outcome allows this party to
predict with certainty the other party’s measurement outcome
[17] and (ii) it is equivalent to a violation of the condition
that exactly separates local from nonlocal correlations for the
2-2-2 scenario (i.e., the tight Bell inequality for the scenario
with two parties, two settings, and two outcomes). However,
Hardy’s paradox has a drawback: The EPR scenario is not
2-2-2 but 2-2-n with n arbitrarily large.
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The aim of this work is to introduce an alternative paradox
that keeps all the virtues of Hardy’s but has the only ingredient
of the EPR scenario that is missing in Hardy’s paradox:
It applies to measurements with an arbitrary number of
outcomes. The alternative paradox shows that the maximum
probability of nonlocal events, which has a limit of 0.09 in
Hardy’s paradox (and in previously proposed extensions of
Hardy’s paradox), actually grows with the number of possible
outcomes, tending asymptotically to a limit that is more than
four times higher than the one in Hardy’s paradox. Moreover,
we show that, for any given number n of outcomes, the
alternative paradox is equivalent to a violation of the condition
that exactly separates local from nonlocal correlations for the
2-2-n scenario. Arguably, all these features make this paradox
of fundamental importance.

II. ALTERNATIVE FORMULATION
OF HARDY’S PARADOX

Let us consider two observers: Alice, who can measure
either A1 or A2 on her subsystem, and Bob, who can measure
B1 or B2 on his. Suppose that each of these measurements has
d outcomes that we will number as 0,1,2, . . . ,d − 1. Let us
denote as P (A2 < B1) the joint conditional probability that
the result of A2 is strictly smaller than the result of B1, that is,

P (A2 < B1) =
∑
m<n

P (A2 = m,B1 = n), (1)

with m,n ∈ {0,1, . . . ,d − 1}. Explicitly, for d = 2, P (A2 <

B1) = P (A2 = 0,B1 = 1); for d = 3, P (A2 < B1) = P (A2 =
0,B1 = 1) + P (A2 = 0,B1 = 2) + P (A2 = 1,B1 = 2); etc.

Then the proof follows from the fact that, according to
quantum theory, there are two-qudit entangled states and
local measurements satisfying, simultaneously, the following
conditions:

P (A2 < B1) = 0, (2a)

P (B1 < A1) = 0, (2b)

P (A1 < B2) = 0, (2c)

P (A2 < B2) > 0. (2d)
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Therefore, if events A2 < B1, B1 < A1, and A1 < B2 never
happen, then, in any local theory, event A2 < B2 must never
happen either. However, this is in contradiction with (2d). If
d = 2, the proof is exactly Hardy’s [2,3].

III. BEYOND HARDY’S LIMIT

Let us define

PHardy = max P (A2 < B2) (3)

satisfying conditions (2a)–(2c). For d = 2,

P
(d=2)
Hardy = 5

√
5 − 11

2
≈ 0.09, (4)

which is achieved with two-qubit systems [2,3]. In previous
extensions of Hardy’s paradox to two-qudit systems [13–15],
(4) is also the maximum probability of events that cannot
be explained by local theories. For example, the extension
considered in Ref. [13] is based on the following four
probabilities: P (A1 = 0,B1 = 0) = 0, P (A1 �= 0,B2 = 0) =
0, P (A2 = 0,B1 �= 0) = 0, and P (A2 = 0,B2 = 0) = PKC >

0. Reference [14] proves that, for two-qutrit systems, max PKC

equals (4) and conjectures that max PKC is always (4) for
arbitrary dimension. Reference [15] provides a proof of this
conjecture.

Interestingly, in the proof presented in the previous section,
PHardy equals Hardy’s limit (4) for d = 2, but this is no longer
true for higher-dimensional systems. To show this, we will
consider pure states satisfying the three conditions (2a)–(2c).
An arbitrary two-qudit pure state can be written as

|�〉 =
d−1∑
i=0

d−1∑
j=0

hij |i〉A|j 〉B, (5)

where the basis states |i〉A,|j 〉B ∈ {|0〉,|1〉, . . . ,|d − 1〉} and
hij are coefficients satisfying the normalization condition∑

ij |hij |2 = 1.
The coefficients hij completely determine the state |�〉.

We can associate any two-qudit state |�〉 with a coefficient-
matrix H = (hij )d×d , where i,j = 0,1, . . . ,d − 1 and hij is
the ith row and the j th column element of the d × d matrix
H . The connection between the coefficient matrix H and the
two reduced density matrices of |�〉〈�| is

ρA = trB(|�〉〈�|) = HH †, (6a)

ρB = trA(|�〉〈�|) = HT (HT )†, (6b)

where T denotes the matrix transpose and H † is the Hermitian
conjugate matrix of H .

The probability P (Ai = m,Bj = n) can be calculated as

P (Ai = m,Bj = n) = tr
[(

�̂m
Ai

⊗ �̂n
Bj

)
ρ
]
, (7)

where �̂m
Ai

and �̂n
Bj

are projectors and ρ = |�〉〈�|. Explicitly,
the projectors are given by

�̂m
A1

= U1|m〉〈m|U†
1 , (8a)

�̂n
B1

= V1|n〉〈n|V†
1, (8b)

�̂m
A2

= U2|m〉〈m|U†
2 , (8c)

�̂n
B2

= V2|n〉〈n|V†
2, (8d)

TABLE I. Values of P
opt
Hardy and P

app
Hardy for d = 2, . . . ,7.

d P
opt
Hardy P

app
Hardy Error rates

2 0.090170 0.088889 0.014207
3 0.141327 0.138426 0.020527
4 0.176512 0.171533 0.028208
5 0.203057 0.195869 0.035399
6 0.224221 0.214825 0.0419051
7 0.241728 0.230172 0.047807

where U1, V1, U2, and V2 are, in general, SU(d) unitary
matrices. Hereafter we denote by P

opt
Hardy the optimal value

of PHardy by ranging over all unitary matrices and the state
|�〉.

To calculate P
opt
Hardy, it is sufficient to choose the settings

A1 and B1 as the standard bases, i.e., taking U1 = V1 = 1,
where 1 is the identity matrix. Evidently, the condition (2b)
leads to hij = 0 for i > j . This implies that the matrix H is
an upper-triangular matrix.

In Table I we list the optimal values of P
opt
Hardy for d =

2, . . . ,7. The corresponding optimal Hardy states H opt are
explicitly given in Appendix A.

The calculations for d > 7 are beyond our computers
capability. However, we observe that H opt, written in the
representation of H , have reflection symmetry with respect
to the antidiagonal line, that is, hij = hd−1−j,d−1−i . We use
this to calculate approximately the maximum probability for
nonlocal events P

app
Hardy by using a special class of states H app.

The explicit form of states H app is given in Appendix B. This
allows us to go beyond d = 7 and compute P

app
Hardy from d = 2

to 28 000. In Fig. 1 we have plotted P
app
Hardy from d = 2 to 1000,

showing that P
app
Hardy increases with the dimension. Values for

higher dimensions are given in Appendix B.
In Table I we also compare the PHardy for the optimal

states and the approximate optimal states. This allows us to
speculate that the asymptotic limit may be a little higher
than the one showed in Fig. 1. However, the limit 1/2 can
never be surpassed since P (A2 > B2) is always bigger than
P (A2 < B2), as observed in the numerical computations. At
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FIG. 1. (Color online) Plot of P
app
Hardy from d = 2 to 1000.
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TABLE II. Entanglement degrees of the optimal states and the
approximate optimal states for d = 2, . . . ,7.

d Optimal states Approximate states

2 0.763932 0.825885
3 0.793888 0.845942
4 0.813483 0.861735
5 0.827702 0.874459
6 0.838679 0.884926
7 0.847510 0.893695

this point, we do not know whether or not 1/2 may be the
asymptotic limit.

IV. DEGREE OF ENTANGLEMENT

Hardy’s proof does not work for maximally entangled
states. The same is true for the proof introduced here. However,
in our proof, as d increases, the degree of entanglement tends
to 1. To show this we use the generalized concurrence or degree
of entanglement [18] for two-qudit systems given by

C =
√

d

d − 1

[
1 − tr

(
ρ2

A

)] =
√

d

d − 1

[
1 − tr

(
ρ2

B

)]
. (9)

In Table II we list C for the optimal Hardy states and the
approximate Hardy states. From Table II we observe that, for
d = 2, the optimal Hardy state occurs at Copt ≈ 0.763 932 and
this value increases to Copt ≈ 0.827 702 when d = 5. For a
fixed d, the corresponding Capp is larger than that of Capp and
it also increases with the dimension d. For d = 800, Capp ≈
0.998 062 and tends to 1 as d grows.

Finally, we can prove that the proof cannot work for two-
qudit maximally entangled states

|�〉MES = 1√
d

d−1∑
j=0

|j 〉A|j 〉B. (10)

Proof. Here tr[(�̂m
A1

⊗ �̂n
B1

)|�〉〈�|] can be expressed as

tr[(|m〉〈m| ⊗ |n〉〈n|)(U†
1 ⊗ V†

1)|�〉〈�|(U1 ⊗ V1)]. (11)

We will use

HMES 	→ |�〉MES, H ′ 	→ (U†
1 ⊗ V†

1)|�〉MES. (12)

Taking into account that, (i) given a pure state H 	→ |�〉AB

and a local action U acting on Alice (the first part) and V

acting on Bob (the second part), then

H ′ 	→ (U ⊗ V )|�〉AB = UHV T , (13)

(ii) Eq. (2b) requires H ′ to be an upper-triangular matrix, and
(iii) HMES = 1√

d
1, we have the solution

U1VT
1 = D1, (14)

where D1 = diag(eiχ0 ,eiχ1 , . . . ,eiχd−1 ). Similarly, from (2a)
and (2c), we have

U1VT
2 = D2, U2VT

1 = D3, (15)

where D2 and D3 are diagonal matrices similar to D1. From
(14) and (15) we have

U2VT
2 = D3D†

1D2, (16)

which directly leads to P (A2 < B2) = 0 for |�〉MES. This ends
the proof.

V. CONNECTION TO TIGHT BELL INEQUALITIES

As can be easily seen, for any d, our proof can be
transformed into the following Bell inequality:

P (A2 < B1) + P (B1 < A1)

+P (A1 < B2) − P (A2 < B2)
LHV
� 0, (17)

where LHV indicates that the bound is satisfied by local
hidden variable theories. The interesting point is that, for
any d, inequality (17) is equivalent to Zohren and Gill’s
version [19] of the Collins-Gisin-Linden-Massar-Popescu
inequalities (plural because there is a different inequality for
each d) [20], which are tight Bell inequalities for any d

[21]. This feature distinguishes our proof from any previously
proposed nonlocality proof having Hardy’s as a particular
case.

VI. CONCLUSION

We have introduced a simple proof of nonlocality for pairs
of systems of arbitrary dimension that has all the features
of the celebrated proof by Hardy but applies to many other
scenarios, including the scenario originally considered by
Einstein, Podolsky, and Rosen in which measurements have
an arbitrarily large number of outcomes [22].

As in the case of Hardy’s paradox, an experimental test
of our paradox consists of observing that the probabilities of
three events are zero while the probability of a fourth event is
not zero. The fact that in our proof the value of this fourth
probability is larger than in Hardy’s (since it grows with
the dimension of the physical system from the value it has
in Hardy’s proof) makes it more adequate for experimental
observation of Hardy-like nonlocality and for applications
based on this type of nonlocality.
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APPENDIX A: OPTIMAL HARDY STATES

The optimal Hardy states Hd for d = 2, . . . ,7 are

H2 =
(

0.618 034 0.485 868
0 0.618 034

)
, (A1a)

H3 =
⎛
⎝0.498 328 0.316 483 0.329 301

0 0.441 108 0.316 483
0 0 0.498 328

⎞
⎠, (A1b)

H4 =

⎛
⎜⎝

0.429 796 0.262 169 0.224 332 0.249 934
0 0.376 021 0.217 224 0.224 332
0 0 0.376 021 0.262 169
0 0 0 0.429 796

⎞
⎟⎠, (A1c)

H5 =

⎛
⎜⎜⎜⎝

0.383 613 0.230 044 0.189 636 0.175 427 0.201 533
0 0.334 102 0.185 035 0.157 012 0.175 427
0 0 0.330 72 0.185 035 0.189 636
0 0 0 0.334 102 0.230 044
0 0 0 0 0.383 613

⎞
⎟⎟⎟⎠, (A1d)

H6 =

⎛
⎜⎜⎜⎜⎜⎝

0.349 686 0.207 877 0.168 45 0.150 559 0.144 455 0.168 83
0 0.303 795 0.165 105 0.134 967 0.125 208 0.144 455
0 0 0.299 72 0.160 666 0.134 967 0.150 559
0 0 0 0.299 72 0.165 105 0.168 45
0 0 0 0 0.303 795 0.207 877
0 0 0 0 0 0.349 686

⎞
⎟⎟⎟⎟⎟⎠

, (A1e)

H7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.323 377 0.191 279 0.153 539 0.135 037 0.125 45 0.122 887 0.145 233
0 0.280 442 0.150 851 0.121 193 0.108 665 0.104 707 0.122 887
0 0 0.276 282 0.145 271 0.117 498 0.108 665 0.125 45
0 0 0 0.275 414 0.145 271 0.121 193 0.135 037
0 0 0 0 0.276 282 0.150 851 0.153 539
0 0 0 0 0 0.280 442 0.191 279
0 0 0 0 0 0 0.323 377

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A1f)

APPENDIX B: APPROXIMATE OPTIMAL HARDY STATES

The form of Hd for d = 2, . . . ,7 suggests to define the
approximate optimal Hardy states as follows:

H
app
d =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 α2 α3 · · · αd−1 αd

α1 α2 · · · αd−2 αd−1

. . .
. . .

...
...

α1 α2 α3

α1 α2

α1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B1)

where

αr = βr√
d + 1 − r

, r = 1,2, . . . ,d, (B2)

with βr > 0 satisfying the following relations:

β1 : β2 : β3 : · · · : βd = 1 :
1

2
:

1

3
: · · · :

1

d
, (B3a)

d∑
r=1

β2
r = 1. (B3b)

In Table III we have listed P
app
Hardy up to d = 28 000.

TABLE III. Values of P
app
Hardy from d = 2 to 28 000.

d P
app
Hardy d P

app
Hardy d P

app
Hardy d P

app
Hardy

2 0.088889 300 0.405106 2000 0.414711 10000 0.416300
10 0.263168 400 0.407749 2200 0.414885 11000 0.416339
20 0.316491 500 0.409394 2400 0.415031 12000 0.416371
30 0.340836 600 0.410520 2600 0.415156 13000 0.416398
40 0.355158 700 0.411341 2800 0.415263 14000 0.416421
50 0.364700 800 0.411966 3000 0.415357 16000 0.416459
60 0.371554 900 0.412459 4000 0.415687 18000 0.416489
70 0.376736 1000 0.412857 5000 0.415889 20000 0.416513
80 0.380803 1200 0.413464 6000 0.416024 22000 0.416533
90 0.384085 1400 0.413903 6000 0.416024 24000 0.416549
100 0.386793 1600 0.414230 8000 0.416196 26000 0.416563
200 0.400116 1800 0.414499 9000 0.416254 28000 0.416575
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