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Transparent Dirac potentials in one dimension: The time-dependent case
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We generalize the original derivation of transparent, static Schrödinger potentials by Kay and Moses, to obtain a
large class of time-dependent transparent Dirac potentials in one spatial dimension. They contain previously found
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fermionic quantum field theories of Gross-Neveu and Nambu–Jona-Lasinio types.
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I. INTRODUCTION

Transparent, static potentials of the one-dimensional
Schrödinger equation were first characterized systematically
in the seminal paper by Kay and Moses (KM) [1]. These are
potentials with the property that the reflection coefficient for a
scattered particle vanishes at all energies. KM constructed the
most general potential of this type by algebraic methods [1].
Their proof that this was indeed the most general transparent
potential was based on inverse scattering theory and the
Gel’fand-Levitan-Marchenko equation (for a review see [2]).
One can also define transparent, time-dependent potentials.
The reason is the fact that the asymptotic behavior of the
scattering wave functions is the same as for static potentials, if
one takes the limit x → ±∞ at a fixed time. The generalization
of the KM work to time-dependent Schrödinger potentials can
be found in the work of Nogami and Warke on soliton solutions
of the multicomponent nonlinear Schrödinger equation [3]. Al-
though these authors did not address the issue of transparency,
it is easy to find the scattering solutions to their time-dependent
potential and confirm that these are reflectionless. As a matter
of fact, the continuum wave functions (in a notation adapted
to that of [3]) are given by

gk =
(

1 +
∑

α

u∗
αgα

ik + κ∗
α

)
ei(kx−k2t), (1)

where the gα are bound-state wave functions, and the uα are
exponentials in x,t .

The KM results have also been generalized to the
relativistic regime. Toyama, Nogami, and Zhao [4] solve a
stationary, nonlinear Dirac equation by reducing it to a pair
of (supersymmetric) Schrödinger equations. This enables
them to derive all static, Lorentz-scalar, transparent Dirac
potentials from the known KM potentials. Their results agree
with independent work on the large-N solution of baryons
and multibaryon bound states in the Gross-Neveu (GN)
model [5–7]. In this context, it has long been known that self-
consistent mean-field potentials are necessarily transparent
[6]. The authors of [4] argue heuristically that Lorentz-vector
potentials are unlikely to be transparent. They also point out
that their method fails in the nonstatic case, simply because
one cannot reduce the time-dependent Dirac equation to a
Schrödinger equation. Later on, Nogami and Toyama reported

on transparent, pseudoscalar Dirac potentials as well [8]. With
hindsight, their search was too narrow, being restricted to
an x-dependent pseudoscalar and a constant scalar potential.
This situation changed only very recently with a series of
works by Takahashi, Nitta, and co-workers [9–11]. Working
on self-consistent, static solutions of the Nambu–Jona-Lasinio
(NJL2) model or, equivalently, the Bogoliubov–de Gennes
(BdG) equation, they found a very general class of
static, transparent scalar-pseudoscalar potentials of the
one-dimensional Dirac equation. These correspond to bound
states of any number of chirally twisted kinks of the type first
discussed by Shei in the context of the NJL2 model [12].

If it is indeed correct that only scalar and pseudoscalar
Dirac potentials have a chance of being transparent, the only
step missing so far is the generalization of these relativis-
tic transparent potentials to the time-dependent case. This
problem is intimately related to the self-consistent solution
of dynamical problems in the GN and NJL2 models, such
as scattering of kinks, breathers, and bound states thereof.
Lorentz-scalar potentials are relevant for time-dependent
Hartree-Fock (TDHF) solutions of the large-N GN model.
Scalar-pseudoscalar potentials are needed to solve the NJL2

model or the BdG equation in condensed matter physics, where
chiral twists are possible. It is the purpose of this paper to fill
this gap and construct a general class of transparent scalar and
pseudoscalar, time-dependent Dirac potentials. Related results
have already been presented in a recent letter [13], and here
we give an even simpler characterization of time-dependent
transparent Dirac potentials. The detailed application of the
results obtained here to exactly solvable quantum field theories
will be the subject of a forthcoming presentation [14].

II. FORMALISM AND RESULTS

A. Formalism

Our starting point is the Dirac equation in one space
dimension with real scalar (S) and pseudoscalar (P ) potentials
depending on x and t ,

(i∂/ − S − iγ5P )ψ = 0. (2)

We choose a chiral representation of the Dirac matrices,

γ 0 = σ1, γ 1 = iσ2, γ5 = γ 0γ 1 = −σ3, (3)
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and go over to light-cone coordinates,

z = x − t, z̄ = x + t, ∂0 = ∂̄ − ∂, ∂1 = ∂̄ + ∂. (4)

(Note that z̄ is not the complex conjugate of z, which we would
write as z∗.) Momentum k and energy E are encoded in the
light-cone spectral parameter (using natural units where the
fermion mass is set to 1),

k = 1

2

(
ζ − 1

ζ

)
, E = −1

2

(
ζ + 1

ζ

)
. (5)

In these variables, the Lorentz-scalar argument of a plane wave
reads

kμxμ = −1

2

(
ζ z̄ − z

ζ

)
. (6)

The Dirac equation in light-cone coordinates can be written in
components as

2i∂̄ψ2 = 	ψ1, 2i∂ψ1 = −	∗ψ2, (7)

where the scalar and pseudoscalar potentials are combined into
a single complex potential 	:

	 ≡ S − iP . (8)

In Eq. (7), ψ1 and ψ2 are the upper and lower spinor
components with left- and right-handed chirality, respectively.

B. Ansatz

In order to find transparent potentials 	, we start from the
following ansatz for the continuum spinor:

ψζ = 1√
1 + ζ 2

(
ζχ1

−χ2

)
ei(ζ z̄−z/ζ )/2. (9)

We impose the condition limx→−∞ χ1,2 = 1 onto the functions
χ1,2. Then the ansatz reduces to an incoming free, massive
spinor with a standard continuum normalization for x → −∞.
We also demand that χ1 and χ2 approach some constant for
x → ∞. In that case, the continuum spinor behaves like a
plane wave traveling to the right for x → −∞ as well as for
x → ∞ (for k > 0); hence it is manifestly reflectionless. The
Dirac equation for the reduced spinor components χ1 and χ2

takes on the form

(2i∂̄ − ζ )χ2 + ζ	χ1 = 0, (10)

(2iζ ∂ + 1)χ1 − 	∗χ2 = 0. (11)

We introduce N basis functions en,fn, reminiscent of plane
waves, but with complex spectral parameters,

en = ei(ζ ∗
n z̄−z/ζ ∗

n )/2, fn = en

ζ ∗
n

, ζn ∈ C, n = 1, . . . ,N.

(12)
As our ansatz to construct a transparent potential we assume
that χ1,2 can be represented as a finite sum of these basis
functions, with a finite number N of poles in the complex
spectral plane:

χ1 = 1 + i

N∑
n=1

1

ζ − ζn

e∗
nφ1,n,

(13)

χ2 = 1 − i

N∑
n=1

ζ

ζ − ζn

e∗
nφ2,n,

where φ1,n and φ2,n are 2N functions defined as the solutions
of the following systems of linear, algebraic equations:

N∑
m=1

(ω + B)nmφ1,m = en,

(14)
N∑

m=1

(ω + B)nmφ2,m = −fn.

Here, ω is a constant, Hermitian, but otherwise arbitrary N ×
N matrix, and B is an N × N matrix constructed from the
basis functions en(z,z̄) and spectral parameters ζn as follows:

Bnm = i
ene

∗
m

ζm − ζ ∗
n

. (15)

From Eq. (13) we see that the parameters ζn introduced in (12)
correspond to the positions of the bound-state poles of ψζ in
the complex ζ plane.

C. Proof of solution

To show that the ansatz above provides an exact time-
dependent solution of the Dirac equation, with a transparent
potential 	, we use the following elementary algebraic steps.
We denote by e,f,φ1,φ2 the N -dimensional column vectors
with components en,fn,φ1,n,φ2,n, respectively, whereas ω and
B denote N × N matrices. Equation (14) becomes the pair of
matrix equations:

(ω + B)φ1 = e, (16)

(ω + B)φ2 = −f. (17)

Differentiating the column vectors e and f , using the defini-
tions (12), leads to the simple relations

2i∂e = f, 2i∂̄f = −e, (18)

showing that the N spinors with components (en,−fn)T

are (unnormalizable, due to the complex spectral parameter)
solutions of the free, massive Dirac equation (m = 1). This
then implies an important property of the matrix B: its
derivatives with respect to z and z̄ are separable matrices,

∂B = 1
2ff †, ∂̄B = 1

2ee†. (19)

Let us apply 2i∂ to (16) and 2i∂̄ to (17). Using (18) and (19),
we find

(ω + B)2i∂φ1 = f (1 − if †φ1),
(20)

(ω + B)2i∂̄φ2 = e(1 − ie†φ2).

Upon multiplying these equations from the left by (ω + B)−1,
we get

2i∂φ1 = −φ2(1 − if †φ1), 2i∂̄φ2 = φ1(1 − ie†φ2), (21)

showing that the φ1,n and φ2,n are the upper and lower
components of N distinct solutions of the Dirac equation with
potential

	 = 1 − ie†φ2 = 1 + iφ
†
1f = 1 + ie†

1

ω + B
f. (22)
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The three different expressions for 	 given here in (22) are
equivalent owing to Eqs. (16) and (17). The φ1,φ2 are (nor-
malizable) bound state spinors of the potential 	. If we insert
them into our ansatz for the continuum spinor (13), it is now
straightforward to verify that the continuum spinor satisfies the
Dirac equation (10),(11) with the potential (22), proving that
this potential is transparent. In view of the crucial importance
of this last step, we give a few details of the calculation. Let
us spell out the three terms appearing in Eq. (10),

2i∂̄χ2 = −i
∑

n

ζ

ζ − ζn

e∗
n(ζnφ2,n + 	φ1,n),

−ζχ2 = −ζ + i
∑

n

ζ 2

ζ − ζn

e∗
nφ2,n, (23)

ζ	χ1 = ζ	 + ζ	i
∑

n

1

ζ − ζn

e∗
nφ1,n,

where we have carried out ∂̄e∗
n, and used the Dirac equation

to evaluate ∂̄φ2,n. To obtain a solution, these three terms
should add up to zero. The terms containing φ1,n in the first
and third lines of (23) clearly cancel. The terms containing
φ2,n in the first and second lines of (23) add up to ζ (1 − 	),
using Eq. (22), and therefore cancel the remaining terms in
the second and third lines of (23). Likewise, the three terms
of Eq. (11) become

2iζ ∂χ1 = −i
∑

n

ζ

ζ − ζn

(f ∗
n φ1,n + e∗

n	
∗φ2,n),

χ1 = 1 + i
∑

n

1

ζ − ζn

e∗
nφ1,n, (24)

−	∗χ2 = −	∗ + i	∗ ∑
n

ζ

ζ − ζn

e∗
nφ2,n.

Here, the terms containing φ2,n in the first and third lines
cancel. The terms containing φ1,n in the first and second lines
add up to (	∗ − 1), and cancel the remaining terms in the
second and third lines.

This completes the proof that we have indeed found a whole
class of transparent, time-dependent potentials of the Dirac
equation. The potential 	 is given by (22) in terms of the
basis functions en and/or fn, and the solutions of the algebraic
equations (16) and (17). These time-dependent transparent
potentials 	(x,t) are parametrized by N complex constants
ζn related to N bound-state poles in the complex ζ plane, and
by a constant, Hermitian N × N matrix ω. Further conditions
can be placed on the matrix ω to ensure that the potential 	

is physical; for example, to ensure that the solution does not
develop singularities as a function of x and t , or violate cluster
separability. Details of choosing physical scattering solutions
will be discussed in a separate work [14].

We have not yet been able to prove that our result is the
most general transparent potential. The tools used by KM in
their corresponding proof for the static Schrödinger potentials,
namely, inverse scattering theory and the Gel’fand-Levitan-
Marchenko equation, are not available in the present time-
dependent case.

III. GENERAL PROPERTIES OF THE RESULT

The transparent potentials derived above in Eq. (22)
describe a rich variety of solitons, multisoliton bound and

scattering states, and states involving breathers of increasing
complexity. Since these solitons play the role as TDHF
potentials in integrable quantum field theories like the GN
and the NJL2 models, we postpone a detailed discussion to
a forthcoming presentation, where also the self-consistency
will be shown explicitly [14]. Rather than studying concrete
examples, we collect in this section some general properties
of our solution which will turn out to be helpful in analyzing
the above-mentioned integrable field theoretic models.

A. Determinants

Since the bound-state spinors can be regarded as residues of
the continuum spinor at the bound-state poles ζn, essentially all
information is contained in the three quantities 	, χ1, and χ2:
recall that 	(x,t) is the complex potential whose real and
imaginary parts give the scalar and pseudoscalar Dirac poten-
tials, respectively, while χ1,2 define the chiral components
of the associated continuum spinors in (9). Our algebraic
construction leads to simple and explicit representations of
these key quantities in terms of determinants. Let us define the
following N × N matrices, related to the matrix B defined in
Eq. (15):

Anm = ζm

ζ ∗
n

Bnm, Cnm = ζ − ζ ∗
n

ζ − ζm

Bnm, Dnm = ζm

ζ ∗
n

Cnm.

(25)

The distinguishing feature of these three matrices is the fact
that they differ from B only through separable matrices,

A − B = if e†, C − B = ieg†, D − B = iζfg†.

(26)

Here we have introduced a third vector g, in addition to the
vectors e and f defined in Eq. (12), with components

gn = en

ζ − ζ ∗
n

. (27)

The determinant of the sum of an invertible matrix M and a
separable matrix a b† can be computed as follows [15]:

det(M + a b†)

det(M)
= 1 + b†

1

M
a. (28)

Applying this algebraic identity to the quantities
	, χ1, and χ2, using their expressions in (22) and (13),
yields

	 = 1 + ie†
1

ω + B
f = det(ω + A)

det(ω + B)
,

χ1 = 1 + ig† 1

ω + B
e = det(ω + C)

det(ω + B)
, (29)

χ2 = 1 + iζg† 1

ω + B
f = det(ω + D)

det(ω + B)
.

Equation (29) is a compact expression of our main result: we
have expressed each of the three key quantities, the potential
and the components of the continuum spinors, as a ratio of
determinants of simple matrices.
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B. Diagonal matrix ω: Scattering of chirally twisted kinks

The expressions (29) can be further simplified in the case
where the matrix ω is diagonal. As will be discussed in more
detail elsewhere [14], this corresponds to the situation where N

twisted kinks scatter without forming breathers. In this special
case, because of the extra symmetry of the mixing matrix ω,
it is advantageous to introduce N functions Un, and a N × N

coefficient matrix bnm, as follows:

Un = i|en|2
ωnn(ζn − ζ ∗

n )
, bnm =

∣∣∣∣ζn − ζm

ζn − ζ ∗
m

∣∣∣∣
2

. (30)

The determinant of ω + B can then be reduced to the following
simple expression:

det(ω + B)

detω
= 1 +

∑
n

Un +
∑
n<m

bnmUnUm

+
∑

n<m<k

bnmbnkbmkUnUmUk

+ · · · +
∏
n<m

bnm

∏
k

Uk. (31)

Furthermore, the other determinants appearing in (29) can be
inferred from this expression by merely rescaling the variables
Un by complex factors,

det(ω + A) = det(ω + B)

(
Un → ζn

ζ ∗
n

Un

)
,

det(ω + C) = det(ω + B)

(
Un → ζ − ζ ∗

n

ζ − ζn

Un

)
, (32)

det(ω + D) = det(ω + B)

(
Un → ζn

ζ ∗
n

ζ − ζ ∗
n

ζ − ζn

Un

)
.

If we further restrict this special case to the situation where the
complex spectral parameters ζn all lie on the unit circle, these
determinant expressions (32) provide an explicit closed-form
solution to the finite algebraic system of equations used in
[9–11] to define static transparent Dirac potentials.

C. Diagonal matrix ω and pure imaginary spectral parameters
ζn: Scattering of real kinks

A further simplification is obtained by choosing the mixing
matrix ω to be diagonal, as in the previous section, but
restricting the spectral parameters to be purely imaginary. In
this case, the determinant expressions in (29) reduce to

det(ω + A) = det(ω + B)(Un → −Un),

det(ω + C) = det(ω + B)

(
Un → ζ + ζn

ζ − ζn

Un

)
, (33)

det(ω + D) = det(ω + B)

(
Un → −ζ + ζn

ζ − ζn

Un

)
.

Now the potential can be chosen to be real, 	 = S, and these
solutions describe the scattering of real kinks with twist angle
π . Furthermore, they are in fact characterized by solutions
to the sinh-Gordon model, as S(x,t) satisfies the nonlinear

equation [16]

∂∂̄(ln S2) = 1

2

(
S2 − 1

S2

)
= sinh(ln S2). (34)

D. Master equation

Our general transparent solutions do not satisfy the sinh-
Gordon equation (34). The most general nonlinear partial
differential equation satisfied by the transparent potential 	

relates it to the common denominator det(ω + B) of the three
expressions in (29):

4∂∂̄ ln det(ω + B) = 1 − |	|2. (35)

We refer to this equation as the “master equation,” since in
large-N fermionic field theories 	 plays a role similar to the
“master field” in large-N gauge theories [17]. To prove (35),
we evaluate its left-hand side, using ln det = Tr ln,

4∂∂̄ ln det(ω + B)

= 4Tr

(
1

ω + B
∂∂̄B − 1

ω + B
∂B

1

ω + B
∂̄B

)
. (36)

With the help of (19) and the second derivative

∂∂̄B = i

4
(ef † − f e†), (37)

we find

4∂∂̄ ln det(ω + B) = if † 1

ω + B
e − ie†

1

ω + B
f

− e†
1

ω + B
ff † 1

ω + B
e

= 1 − |	|2, (38)

thus confirming Eq. (35). The master equation may be viewed
as the generalization of the following equation of KM [1]:

V (x) = −∂2
x ln det(1 + A), Aij = √

aiaj

e(κi+κj )x

κi + κj

.

(39)

Restricting by the algebraic conditions of diagonal ω and
spectral parameters lying on the unit circle, and expanding
|	| ≈ 1 + V in a nonrelativistic limit, the master equation
(35) reduces to the log det form of the Kay-Moses transparent
potential in (39).

Summarizing this section, we have shown that the modulus
of 	 can be expressed in terms of the denominator of 	,
det(ω + B). The master equation clearly does not allow us to
determine 	, but may be useful in the future for finding a
nonlinear partial differential equation for 	, if it exists at all.

E. Spatial asymptotics of potential and continuum spinors

The determinantal forms of 	, χ1, and χ2 derived in
Secs. III B and III C are particularly convenient for extracting
the asymptotics of the potential and associated spinors for
x → ±∞. With each bound-state pole ζn, we can associate a
complex momentum

kn = 1

2

(
ζn − 1

ζn

)
. (40)
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Let us assume that Im kn > 0 for all n. Then the matrix B blows
up exponentially for x → ∞, and vanishes for x → −∞. Thus
the matrices A,B,C,D dominate over the matrix ω for x →
∞, whereas ω dominates over A,B,C,D for x → −∞. The
potential 	 satisfies

lim
x→−∞ 	 = 1, lim

x→∞ 	 = detA

detB
=

N∏
n=1

ζn

ζ ∗
n

. (41)

This shows that 	 has a chiral twist. It starts out at the
point (S = 1,P = 0) on the chiral (unit) circle at x → −∞,
and reaches another point on the chiral circle at x → +∞,
say, ei�. According to (41), the chiral twist angle � can be
computed by simply adding up the phases of all bound-state
pole parameters ζn,

� = 2
N∑

n=1

θn, ζn = |ζn|eiθn . (42)

The spinor components have the asymptotic behavior

lim
x→−∞ χ1 = 1, lim

x→∞ χ1 = detC

detB
=

N∏
n=1

ζ − ζ ∗
n

ζ − ζn

, (43)

lim
x→−∞ χ2 = 1, lim

x→∞ χ2 = detD

detB
=

N∏
n=1

ζn

ζ ∗
n

ζ − ζ ∗
n

ζ − ζn

. (44)

The product in (43) can be identified with the fully factorized,
unitary transmission amplitude T (ζ ) with the expected pole
structure,

T (ζ ) =
N∏

n=1

ζ − ζ ∗
n

ζ − ζn

, |T (ζ )| = 1. (45)

The extra factors in the product in (44) are necessary to
account for the chiral twist of the potential 	 at x → ∞,
which also affects the spinors.

F. Normalization and orthogonality of bound states

According to Eqs. (16) and (17), the spinor components of
the nth bound-state spinor φn are given by

φ1,n =
(

1

ω + B
e

)
n

, φ2,n = −
(

1

ω + B
f

)
n

. (46)

Consider the “density matrix”

φ†
nφm = φ∗

1,nφ1,m + φ∗
2,nφ2,m

=
(

1

ω + B
(ee† + ff †)

1

ω + B

)
mn

. (47)

Here, the words “density matrix” refer to the bound-state labels
n and m, with the understanding that all spinors are evaluated
at the same space-time arguments. Since, accoording to (19),

∂xB = (∂ + ∂̄)B = 1
2 (ee† + ff †), (48)

the density matrix can be written as a total spatial
derivative,

φ†
nφm = −2∂x

(
1

ω + B

)
mn

. (49)

This is very useful, as it enables us to evaluate the normaliza-
tion matrix trivially,

Rnm =
∫ ∞

−∞
dx φ†

nφm = −2

(
1

ω + B

)
mn

∣∣∣∣
x=+∞

x=−∞

= 2(ω−1)mn. (50)

In the last step, we have once again assumed that the bound-
state poles have Im kn > 0. Orthonormalized bound states φ̂n

can be constructed from the φn via

φ̂n =
∑
m

Cnmφm,

∫
dx φ̂†

nφ̂m = δn,m. (51)

The following condition for the matrix C follows from
Eqs. (50) and (51),

2Cω−1C† = 1. (52)

This condition is needed for applying the present results to
integrable quantum field theories in the large-N limit [13,14].

IV. SUMMARY AND CONCLUSIONS

We have found a simple algebraic characterization of a
large class of transparent, scalar-pseudoscalar Dirac potentials
in one dimension. The main feature is the fact that these
potentials are time dependent. Whether our results exhaust all
transparent Dirac potentials remains to be seen. They contain
previously found transparent potentials as special cases, be
they static Dirac potentials, or static and nonstatic Schrödinger
potentials, and also provide classes of time-dependent Dirac
potentials associated with multibaryons and multibreathers
[13,14]. Our expressions in terms of determinants are natural
generalizations of the original Kay-Moses results for static
Schrödinger potentials. In view of the tremendous generaliza-
tion from the static Schrödinger potentials of KM more than
half a century ago, it is very surprising that the derivation in
the time-dependent Dirac case is hardly more complicated. In
fact, we were strongly guided by the KM work when setting
up the proof for the time-dependent, relativistic case.

Our results open the door for solving a variety of dynamical
problems in large-N fermionic quantum field theories. These
include scattering problems of arbitrary number of baryonic
bound states, but also breathers of any degree of complex-
ity and their interactions. According to general experience,
the self-consistent potentials in Hartree-Fock or TDHF ap-
proaches to integrable models are always transparent, so that
the present study gives a good starting point for identifying
self-consistent solutions [13,14]. However, transparent poten-
tials may also have other applications than the one to integrable
quantum field theories, such as, for example, in condensed
matter physics, quantum optics, or cold atom physics.
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