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Twofold transition in PT -symmetric coupled oscillators
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The inspiration for this theoretical paper comes from recent experiments on a PT -symmetric system of two
coupled optical whispering galleries (optical resonators). The optical system can be modeled as a pair of coupled
linear oscillators, one with gain and the other with loss. If the coupled oscillators have a balanced loss and gain,
the system is described by a Hamiltonian and the energy is conserved. This theoretical model exhibits two PT
transitions depending on the size of the coupling parameter ε. For small ε, the PT symmetry is broken and
the system is not in equilibrium, but when ε becomes sufficiently large, the system undergoes a transition to an
equilibrium phase in which the PT symmetry is unbroken. For very large ε, the system undergoes a second
transition and is no longer in equilibrium. The principal result presented here is that the classical and quantized
versions of the system exhibit transitions at exactly the same values of ε.
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I. INTRODUCTION

The predicted properties of PT -symmetric Hamiltonians
[1,2] have been observed at the classical level in a wide
variety of laboratory experiments involving superconductivity
[3,4], optics [5–8], microwave cavities [9], atomic diffusion
[10], nuclear magnetic resonance [11], and coupled electronic
and mechanical oscillators [12,13]. Although PT -symmetric
systems were originally explored at a highly mathematical
level, it is now understood that one can interpret PT -
symmetric systems simply as nonisolated physical systems
having a balanced loss and gain.

In this paper, we examine a mathematical model based on
recent experiments [14], which were performed on a system
consisting of two coupled PT -symmetric whispering-gallery-
mode optical resonators with experimental coupling constant
κ . Such a system is PT -symmetric if one resonator has an
optically driven gain and the other resonator has a balanced
loss. The experimental setup is shown schematically in Fig. 1.
We examine here the properties of the mathematical model
on a theoretical level and we study both the classical and the
quantum versions of the system.

A system of two identical coupled resonators, one with loss
and the other with gain, can be modeled as coupled oscillators
whose amplitudes are x(t) and y(t). Both oscillators have
a natural frequency ω. The first oscillator x is subject to a
friction force μẋ (μ > 0), while the second oscillator y is
subject to an antifriction force −νẏ (ν > 0). The parameters
μ and ν are a measure of the loss and gain. The oscillators
are coupled linearly and the coupling strength is represented
by the parameter ε. The equations of motion of these
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oscillators are

ẍ + ω2x + μẋ = −εy, ÿ + ω2y − νẏ = −εx. (1)

To treat this system at a classical level, we seek solutions
to (1) of the form eiλt . The frequency λ satisfies the quartic
polynomial equation

λ4 − i(μ − ν)λ3 − (2ω2 − μν)λ2

+ iω2(μ − ν)λ − ε2 + ω4 = 0. (2)

An important special case arises when the loss and gain
are balanced, that is, when 2γ = μ = ν. In this case, the
frequencies λ are the roots of the quartic polynomial f (λ),
where

f (λ) = λ4 − (2ω2 − 4γ 2)λ2 − ε2 + ω4. (3)

For this special case, the classical equations of motion (1) can
be derived from the Hamiltonian [15]

H = pq + γ (yq − xp) + (ω2 − γ 2)xy + ε(x2 + y2)/2.

(4)

If the coupling parameter ε of the x and y oscillators is set to
zero, this Hamiltonian reduces to the Hamiltonian considered
by Bateman [16]. In his paper, Bateman sought a variational
principle to derive an equation of motion having a friction term
linear in velocity. To do so, he introduced an additional degree
of freedom, namely a time-reversed version of the original
damped harmonic oscillator. This auxiliary oscillator acts as
an energy reservoir and can be considered as an effective
description of a thermal bath. The classical Hamiltonian for
the Bateman system was constructed by Morse and Feschbach
[17] and the corresponding quantum theory was analyzed by
many authors, including Bopp [18], Feshbach and Tikochinsky
[19], Tikochinsky [20], Dekker [21], Celeghini, Rasetti, and
Vitiello [22], Banerjee and Mukherjee [23], and Chruściński
and Jurkowski [24]. We emphasize that in all these references,
only the noninteracting (ε = 0) case was considered. It is easy
to see that the Hamiltonian (4) is PT -symmetric, where the
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FIG. 1. (Color online) Schematic illustration of coupled PT -
symmetric whispering-gallery-mode optical microresonators. The
two microresonators are directly coupled with coupling strength κ ,
and a tapered fiber waveguide is used to couple light in and out. The
microcavity with gain (the active resonator) is a silica microtoroid
doped with erbium ions. The microcavity with matched loss (the
passive resonator) is also a silica microtoroid but without any dopant.
The probe signal is a weak coherent light from a laser in the 1550 nm
band. Gain is provided in the 1550 nm band by the erbium ions excited
by a pump laser in the 1450 nm band. After it is separated from
the pump using a wavelength-division-multiplexer, the output probe
signal from the resonator system is monitored with a photodetector.
The coupling strength ε between the microresonators is tuned by
changing their separation by using a nanopositioning stage.

action of parityP is to interchange the loss and gain oscillators,
and its effect is given by [25]

P : x → −y, y → −x, p → −q, q → −p, (5)

while the action of time reversal T is to change the signs of
the momenta,

T : x → x, y → y, p → −p, q → −q. (6)

Note that H is not symmetric under P or T separately,
but it is symmetric under combined P and T . For a one-
dimensional system, P becomes the usual parity operator P :

x → −x,p → −p, and T is the usual time-reversal operator.
Because the balanced-loss-and-gain system is Hamiltonian,
the energy (the value of H ) is conserved, that is, its numerical
value is constant in time. However, the expression for the
energy in (4) is not recognizable as a simple sum of kinetic
and potential energy (such as p2 + q2 + x2 + y2).

The noteworthy feature of PT -symmetric systems with
balanced loss and gain is that they exhibit phase transitions.
When the coupling of the two oscillators is small, the energy
flowing into the y resonator cannot transfer fast enough to
the x resonator, where the energy is flowing out. Thus, the
system cannot be in equilibrium. However, when the coupling
constant ε exceeds a critical value, all of the energy flowing
into the y resonator can transfer to the x resonator and the
entire system can be in equilibrium. The signal that the
system is in equilibrium is that the frequencies are real;
complex frequencies indicate that there is exponential growth
and decay.

To understand why there are phase transitions, we plot the
quartic polynomial f (λ) in (3) to see whether this polynomial
cuts the horizontal axis in four places (in which case there are
four real frequencies), two places (in which case there are two
real frequencies and two complex frequencies), or not at all
(here, there are four complex frequencies). As one can see in
Fig. 2, for small values of ε there are no real frequencies, but
as ε increases there is a transition at ε1 = 2γ

√
ω2 − γ 2 to a

situation in which there are four real frequencies. Interestingly,
one can see that when the coupling ε is sufficiently large, there
is a second transition at ε2 = ω2. This transition is difficult
to see in classical experiments because in the strong-coupling
regime the loss and gain components must be so close that they
overlap and therefore interfere with one another. For example,
in the pendulum experiment in Ref. [13] the pendula would
have to be so close that they touch and could no longer swing
freely. This strong-coupling region is discussed for the case of
coupled systems without loss and gain in Ref. [26], where it is
referred to as the ultrastrong-coupling regime.

We conclude that the system is in equilibrium because
the resonators exhibit Rabi oscillations (power oscillations
between the two resonators) as shown in Fig. 3. Note that the
Rabi oscillations are 90◦ out of phase.

This paper is organized as follows: In Sec. II we examine
the classical solutions to (1). Next, in Sec. III we examine the
quantized version of the system described by the Hamiltonian
(4). We identify the quantum analogs of the PT phase
transitions and show that the quantum and classical transitions
occur at exactly the same values of the physical parameters.
Finally, in Sec. IV we make some brief concluding remarks.

FIG. 2. (Color online) Five plots of f (λ) in (3) for λ in the range −1.5 < λ < 1.5. In these plots, ω = 1.0, γ = 0.3, and ε has the values
(a) ε = 0.01 (this value of ε lies in the first broken-PT region); (b) ε = ε1 = 2γ

√
ω2 − γ 2 ≈ 0.572 364 (this is the first transition); (c) ε = 0.8

(this value of ε lies in the unbroken-PT region in which the frequencies are all real); (d) ε = ε2 = ω2 = 1.0 (this is the location of the second
transition); and (e) ε = 1.4 (this value of ε lies in the second broken PT region).
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FIG. 3. (Color online) Rabi oscillations in the unbroken-PT -symmetric region. In this figure, γ = 0.01, ε = 0.05, and ω = 1.0.

II. CLASSICAL INTERPRETATION

A. Balanced loss and gain

When 2γ = μ = ν, the quartic equation (2) for λ reduces
to the biquadratic equation (3) whose solutions are

λ2 = ω2 − 2γ 2 ±
√

ε2 − 4γ 2ω2 + 4γ 4. (7)

There are four real frequencies λ when ε is in the range

2γ
√

ω2 − γ 2 < ε < ω2. (8)

This is the unbroken classical PT -symmetric region.
We plot the real and imaginary parts of the frequency λ

in Fig. 4 for the values ω = 1.0 and γ = 0.01. For these
parametric values, the PT phase transition occurs at ε1 =
2γ

√
ω2 − γ 2 ≈ 0.019 999. When ε is below this critical value,

the real part of λ has one positive value, which is shown in
Fig. 4, and one negative value. Also, below the critical value,
the imaginary part of λ is nonzero, as shown in Fig. 4. As ε

approaches the critical value from below, the imaginary part
of λ vanishes and the real part of λ bifurcates. For comparison,
the experimental measurements of the real and imaginary parts
of the frequencies as functions of the experimental coupling
κ are shown in Fig. 5. Note the strong resemblance of Figs. 4
and 5.

A second transition occurs when ε = ε2 = ω2 = 1. Above
this transition point, there is now only one supermode, as
shown in Fig. 6, instead of two pairs of real frequencies.

B. Unbalanced loss and gain

Let us consider the general case (2) in which μ �= ν (that
is, the loss and gain are not exactly balanced). In this case,
the sharp transition from a region of broken-PT symmetry
to a region of an unbroken symmetry disappears and there is
only an approximate transition [27]. To see this approximate
transition, we take μ = 0.04 and ν = 0.01 and plot the
classical frequencies λ in Fig. 7. In contrast with Fig. 4, the
frequency λ is never exactly real. Rather, there is one region
of ε in which the difference between the imaginary parts of
the frequencies is big and the difference between the real parts
of the frequencies is small but nonzero, and a second region
in which the difference between the imaginary parts of the
frequencies is small but nonzero and the difference between
the real parts of the frequencies is big. Unlike the behavior
shown in Fig. 4, at the approximate transition in Fig. 7 the
real parts of the frequencies do not separate in an orthogonal
direction but rather separate smoothly.

We can treat this problem perturbatively by taking μ, ν,
and ε small compared with the natural frequency ω. We let
μ = αε and ν = βε and expand λ in (2) in powers of the
small parameter ε: λ = λ0(1 + ελ1 + ε2λ2 + · · · ). To zeroth
order, λ0 = ±iω. To first order, our results are consistent with
the plots in Fig. 7: For ε > (μ + ν)ω,

λ =
⎧⎨
⎩

i ω ± i ε

√
4−(α+β)2ω2

4ω
+ ε

(α−β)
4 ,

−i ω ± i ε

√
4−(α+β)2ω2

4ω
+ ε

(α−β)
4

(9)

FIG. 4. (Color online) A plot of the real and imaginary parts of the classical frequency λ in (7) for ε near the PT phase transition at
ε = ε1 ≈ 0.019 999. For this figure, ω = 1.0 and γ = 0.01. Note that at the phase transition, the real and imaginary parts of the frequency
bifurcate in an orthogonal direction.
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FIG. 5. (Color online) Experimental measurements of the real and imaginary parts of the eigenfrequencies of the PT -symmetric resonators
as functions of the experimental coupling strength κ . The phase transition is observed very clearly.

and for ε < (μ + ν)ω,

λ =
⎧⎨
⎩

i ω ± ε

√
(α+β)2ω2−4

4ω
+ ε

(α−β)
4 ,

−i ω ± ε

√
(α+β)2ω2−4

4ω
+ ε

(α−β)
4 .

(10)

III. QUANTUM INTERPRETATION

When the loss and gain parameters in (1) are equal, the
coupled oscillator system is described by the Hamiltonian
H in (4). To quantize this classical Hamiltonian, we replace
the classical variables p, q, x, and y with the corresponding
quantum operators that satisfy the commutator equations
[x,p] = [y,q] = i and [x,y] = [p,q] = [x,q] = [y,p] = 0.
In Sec. III A we discuss the eigenfunctions of H , and in
Sec. III B we discuss the eigenvalues.

A. Eigenfunctions of H

The eigenfunctions of the Hamiltonian (4) satisfy the time-
independent Schrödinger equation

[−∂x∂y − iγ (y∂y − x∂x) + (ω2 − γ 2)xy]ψm,n(x,y)

+ ε

2
(x2 + y2)ψm,n(x,y) = Em,nψm,n(x,y). (11)

The eigenvalues Em,n correspond to the eigenfunctions
ψm,n(x,y). The eigenfunctions have the general form

ψm,n(x,y) = e−(2axy+bx2+cy2)/2Pm,n(x,y), (12)

where

b = c∗ = ε

2(a + iγ )
(13)

and a is a solution to the quartic equation g(a) = 0, where

g(a) = a4 + (2γ 2 − ω2)a2 + ε2/4 + γ 4 − γ 2ω2. (14)

The quantities Pm,n(x,y) are polynomials in x and y. The index
n is a non-negative integer (n = 0,1,2,3, . . .) while the index
m is an integer that runs from 0 to n. Thus, the polynomials
form a Pascal-like triangle in which the first index m labels the
row and n labels the column:

P0,0

P1,0 P1,1

P2,0 P2,1 P2,2

P3,0 P3,1 P3,2 P3,3

P4,0 P4,1 P4,2 P4,3 P4,4

. .
.

. .
.

. .
. . . .

. . .
. . .

In terms of the quantity

� =
√

bc − γ 2, (15)

the first seven polynomials are

P0,0 = 1,

P1,0 = iγ − �

c
x + y,

P1,1 = � + iγ

c
x + y,

FIG. 6. A plot of the real and imaginary parts of λ for 0 � ε � 1.75. Observe that there is a second transition at ε = ε2 = ω2 = 1. For this
figure, ω = 1.0 and γ = 0.01.
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FIG. 7. (Color online) Real and imaginary parts of the classical frequencies λ for the unbalanced case in which the loss and gain parameters
μ and ν are unequal. Compared with Fig. 4, the frequencies separate smoothly as a function of ε at the approximate transition point. For this
figure, μ = 0.04, ν = 0.01, and ω = 1.0. It is virtually impossible to have a physical system in which the loss and gain are exactly balanced,
so this figure should be regarded as physically realistic while Fig. 4 is an idealization.

P2,0 =
[

(iγ − �)x

c
+ y

]2

− iγ − �

c(a − �)
,

P2,1 =
[
iγ x

c
+ y

]2

− �2x2

c2
− iγ

ac
,

P2,2 =
[

(� + iγ )x

c
+ y

]2

− � + iγ

c(a + �)
,

P3,0 =
[

(iγ − �)x

c
+ y

]3

− 3(iγ − �)

2c(a − �)

[
(iγ − �)x

c
+ y

]
.

(16)

The polynomials Pm,n satisfy two three-term recursion
relations, one in the first index with the second index held
fixed at 0 (at the left edge of the Pascal triangle),

Pn+1,0 = (iγ − �)x + cy

c
Pn,0 + n(� − iγ )

c(a − �)
Pn−1,0, (17)

and another with both indices being equal (at the right edge of
the Pascal triangle),

Pn+1,n+1 = (� + iγ )x + cy

c
Pn,n − n(� + iγ )

c(a + �)
Pn−1,n−1.

(18)

The operators ∂x and ∂y are lowering operators for the
polynomials Pn,0 and Pn,n:

∂xPn,0 = n
−� + iγ

c
Pn−1,0, ∂yPn,0 = nPn−1,0,

(19)

∂xPn,n = n
� + iγ

c
Pn−1,n−1, ∂yPn,n = nPn−1,n−1.

These equations are the analogs of the relation ∂xHn(x) =
nHn−1(x) for the Hermite polynomials Hn(x).

Upon substituting (19) into (17) and (18), we obtain the
relations

Pn,0 = iγ − �

c
x Pn−1,0 + y Pn−1,0 + � − iγ

c(a − �)
∂yPn−1,0

(20)

and

Pn,n = � + iγ

c
x Pn−1,n−1 + y Pn−1,n−1

− 1

a + �
∂xPn−1,n−1,

(21)

from which we obtain the differential equation satisfied by the
polynomials at the left and right edges of the Pascal triangle:

[
(iγ − �)x + cy

c
∂y + � − iγ

c(a − �)
∂2
y

]
Pn,0 = nPn,0, (22)

[
bx + (� − iγ )y

b
∂x + � + iγ

c(a − �)
∂2
x

]
Pn,n = nPn,n. (23)

We can also construct operators that connect the polyno-
mials on a given horizontal level in the Pascal triangle. To do
this, we define the left shift operator L as

L ≡ (y + r1x)∂y − (r∗
1 y + x)∂x + r2∂

2
y − r∗

2 ∂2
x + r3∂x∂y,

(24)

FIG. 8. (Color online) A plot of g(a) in (14) for −1.5 < a < 1.5, ω = 1.0, γ = 0.3, where (a) ε = 0.01 (this is in the first broken region);
(b) ε = ε1 = 2γ

√
ω2 − γ 2 ≈ 0.572 364 (this is the location of the first transition); (c) ε = 0.8 (this is in the unbroken-PT region in which the

classical frequencies are all real); (d) ε = ε2 = ω2 = 1.0 (this is the location of the second transition); and (e) ε = 1.4 (this is in the second
broken-PT region).
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FIG. 9. (Color online) Real and imaginary parts of a1 in (32)
plotted as functions of ε for 0 � ε � 1.5. For this plot, we have taken
γ = 0.05 and ω = 1.0. For these values, the region of unbroken-PT
symmetry is 0.099 874 9 � ε � 1.0.

where

r1 = iγ − �

c
, r2 = (a + iγ )(� − iγ )

2ac(a − �)
, r3 = iγ

a(a − �)
.

(25)

The effect of L on Pm,n is

L Pm,n = 2n
�2 + i�γ

bc
Pm,n−1.

We also define the right shift operator R as

R ≡ (x + s1y)∂x − (s∗
1x + y)∂y + s2∂

2
x − s∗

2∂2
y + s3∂x∂y,

(26)

where

s1 = � − iγ

c
,

s2 = − (a − iγ )(� − iγ )

2ab(a + �)
, (27)

s3 = − iγ

a(2a + �)
.

The effect of R on Pm,n is

R Pm,n = 2(m − n)
−�2 + i�γ

bc
Pm,n+1.

Note that Pn,m are eigenstates of the operators LR and RL:

LR Pm,n = 4(n − 1)(n − m)
�2

bc
Pm,n (28)

for n = 0,1, . . . ,m, and

RL Pm,n = 4n(n − m − 1)
�2

bc
Pm,n (29)

FIG. 10. (Color online) Plots of the real parts of R1 and b1 (the
values of R and b corresponding to a = a1) for 0 � ε � 1.5. For this
plot, γ = 0.05 and ω = 1.0.

FIG. 11. (Color online) Real and imaginary parts of a3 in (32)
plotted as functions of ε for 0 � ε � 1.5. For this plot, we have taken
γ = 0.05 and ω = 1.0.

for n = 0,1, . . . ,m. If we combine (28) and (29), we obtain
the interesting result

[R,L] Pm,n = −4m
�2

bc
Pm,n. (30)

B. Eigenvalues of H

The eigenvalues have the general form

Em,n = (m + 1)a + (2n − m)�, (31)

where m = 0,1,2, . . . and n = 0,1,2, . . . ,m. Note that there
are four possible spectra of eigenvalues corresponding to the
four possible solutions for a, which are the roots of g(a) in (14):

a1 = − 1
2

√
2ω2 − 4γ 2 − 2

√
ω4 − ε2,

a2 = 1
2

√
2ω2 − 4γ 2 − 2

√
ω4 − ε2,

(32)

a3 = − 1
2

√
2ω2 − 4γ 2 + 2

√
ω4 − ε2,

a4 = 1
2

√
2ω2 − 4γ 2 + 2

√
ω4 − ε2.

Although there are four possible sets of eigenvalues, we will
see that only two of these sets are physically acceptable; that is,
there are only two sets of eigenvalues that are real and bounded
below. These sets only occur in the classical unbroken-PT -
symmetric region of ε in (8).

Corresponding to the two classical phase transitions dis-
cussed earlier, there are also two quantum transitions at
the same values of the coupling ε1 and ε2 as the classical
transitions. To locate the quantum phase transitions, we plot in
Fig. 8 the quartic polynomial g(a) in (14) as a function of a for
various values of ε, and we observe whether this polynomial
cuts the horizontal axis in four places, two places, or not at all.

It is important to understand why there are four possible sets
of quantum eigenvalues. This comes about because there are
four possible pairs of Stokes wedges in the complex domain

FIG. 12. (Color online) Plots of the real parts of R3 and b3 for
0 � ε � 1.5. For this plot, γ = 0.05 and ω = 1.0.
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FIG. 13. (Color online) Real and imaginary parts of a2 in (32)
plotted as functions of ε for 0 � ε � 1.5. For this plot, we have taken
γ = 0.05 and ω = 1.0.

in which the eigenfunctions ψ in (12) vanish exponentially. To
explain what is going on, we use, as an elementary example,
the quantum harmonic oscillator, whose Hamiltonian is H =
p2 + x2. One set of eigenfunctions ψ of this Hamiltonian in
complex-x space has the form ψn(x) = e−x2/2Pn(x), where
Pn(x) is a Hermite polynomial. These eigenfunctions vanish
exponentially in a pair of Stokes wedges of opening angle
π/2 centered about the positive and negative real axes in
the complex-x plane. The eigenvalues En = 2n + 1 (n =
0,1,2, . . .) associated with these eigenfunctions are real and
bounded below. There is a second set of eigenfunctions of
the form ψn(x) = ex2/2Pn(x), where Pn(x) is again a Hermite
polynomial. These eigenfunctions vanish exponentially in a
pair of Stokes wedges of opening angle π/2 centered about the
positive and negative imaginary axes in the complex-x plane.
The eigenvalues En = −2n − 1 (n = 0,1,2, . . .) associated
with these eigenfunctions are real and bounded above. A
full description of these two classes of eigenfunctions and
eigenvalues is given in Ref. [1].

For the coupled-oscillator problem discussed in this paper,
the eigenfunctions have the general form (12). The exponential
component of these eigenfunctions can be rewritten as

e−(2axy+bx2+cy2)/2 = e−(bu2+Ry2)/2, (33)

where

u = x + ay/b and R = c − a2/b. (34)

It is important to determine the Stokes wedges in the complex-
u plane and in the complex-y plane in which the eigenfunctions
vanish. We consider each of the four values of a in (32) in turn.

First, we consider a1 in (32). In Fig. 9 we plot the real and
imaginary parts of a1 as functions of ε and see that a1 is real
in the unbroken-PT region (8). Furthermore, � in (15) is real
and positive in this region. Thus, the eigenvalues in (31) are
real. In the unbroken region, Re b in (13) and Re R in (34) are
both negative (see Fig. 10). Thus, the eigenfunctions vanish

FIG. 14. (Color online) Plots of the real parts of R2 and b2 for
0 � ε � 1.5. For this plot, γ = 0.05 and ω = 1.0.

FIG. 15. (Color online) Real and imaginary parts of a4 in (32)
plotted as functions of ε for 0 � ε � 1.5. For this plot, we have taken
γ = 0.05 and ω = 1.0.

exponentially in pairs of 90◦-Stokes wedges centered about
the imaginary axes in the u and y planes. However, since a1

is negative, the eigenspectrum (31) is not bounded below, and
thus this case must be rejected on physical grounds.

Next, we consider a3 in (32). In Fig. 11, we plot a3 as a
function of ε and see that a3 is real in both the first broken-PT
region and the unbroken-PT region (8). Furthermore, � in
(15) is real and positive in the unbroken region of ε. Thus,
the eigenvalues in (31) are real in the unbroken-PT region.
In the unbroken region Re b in (13) is negative and Re R in
(34) is positive (see Fig. 12). Thus, the eigenfunctions vanish
exponentially in pairs of 90◦-Stokes wedges centered about the
imaginary axis in the u plane and centered about the real axis
in the y plane. However, a3 is negative, so the eigenspectrum
(31) is not bounded below, and again this case must be rejected
on physical grounds.

Next, we consider a2 in (32). In Fig. 13, we plot a2 as
a function of ε and see that a2 is real and positive in the
unbroken-PT region (8). Again, � in (15) is real and positive
in this region. Thus, the eigenvalues in (31) are real and
positive. In the unbroken region, Re b in (13) and Re R in
(34) are both positive (see Fig. 14). Thus, the eigenfunctions
vanish exponentially in pairs of 90◦-Stokes wedges centered
about the real axes in both the u and y planes. Because the
eigenspectrum (31) is bounded below and the eigenfunctions
vanish exponentially in the appropriate Stokes wedges, we
regard this as a physically acceptable case.

Finally, we consider a4 in (32). In Fig. 15, we plot a4 as
a function of ε and see that a4 is real in the first broken-PT
region and in the unbroken-PT region (8). Furthermore, � in
(15) is real and positive in the unbroken-PT region. Thus, the
eigenvalues in (31) are real. In the unbroken region, Re b in
(13) is positive and Re R in (34) is negative (see Fig. 16). Thus,
the eigenfunctions vanish exponentially in pairs of 90◦-Stokes
wedges centered about the real axis in the u plane and centered
about the imaginary axis in the y plane. Because a4 is positive,

FIG. 16. (Color online) Plots of the real parts of R4 and b4 for
0 � ε � 1.5. For this plot, γ = 0.05 and ω = 1.0.
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the eigenspectrum (31) is bounded below, and because the
eigenfunctions vanish exponentially in the appropriate Stokes
wedges in the u and y planes, we again regard this case as
physically acceptable.

It is interesting but perhaps not surprising that the Hamil-
tonian (4) has two distinct physically allowed positive spectra,
which correspond to the choices a = a2 and a = a4. It is not
surprising that in the context of PT quantum mechanics, one
Hamiltonian can have two independent positive spectra. This
phenomenon was discussed previously for the case of the sextic
quantum-mechanical Hamiltonian H = p2 + x6 in Ref. [28].
This sextic Hamiltonian also has two positive spectra, which
are associated with two distinct pairs of Stokes wedges in
which the eigenfunctions vanish exponentially.

IV. CONCLUDING REMARKS

In this paper, we have studied the behavior of a system
of two coupled oscillators, one with gain and the other with
loss. If the gain and loss parameters are equal, the system is
PT -symmetric. Furthermore, it is described by a Hamiltonian
and thus the energy is exactly conserved. Both the classical
and the quantum systems exhibit two transitions at exactly the
same values of the coupling parameter, ε = ε1 and ε = ε2.

Specifically, if the coupling is smaller than the critical value
ε1, the system is not in equilibrium even though the energy
is conserved. At the classical level, the lack of equilibrium
manifests itself as complex frequencies and exponentially
growing and decaying modes; at the quantum level, the lack

of equilibrium is associated with complex energy levels.
Above the critical value ε1, the system is in an unbroken-
PT -symmetric phase; at the classical level, the system is in
equilibrium and the oscillators exhibit Rabi oscillations; and
at the quantum level, the system exhibits not one but two
independent sets of real spectra and associated eigenfunctions.

There is also a second transition point ε2 above which the
system is no longer in equilibrium and the quantum energy
levels become complex. This superstrong-coupling regime is
very hard to study at the classical experimental level because
it requires that the oscillators be strongly coupled, so much so
that they are likely to interfere with one another. However, at
the quantum level it might be possible to perform experiments
using quantum optics techniques that can actually observe the
second phase transition. Such quantum experiments might also
prove to be extremely interesting because they may provide a
platform upon which to study quantum entanglement [26].

In future work, we will study systems of more than two cou-
pled oscillators. The phase structure of such systems is inter-
esting; we have found that as the number of coupled oscillators
increases, there are more and more phase transition points.
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