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Local exclusion principle for identical particles obeying intermediate and fractional statistics
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A local exclusion principle is observed for identical particles obeying intermediate and fractional exchange
statistics in one and two dimensions, leading to bounds for the kinetic energy in terms of the density. This has
implications for models of Lieb-Liniger and Calogero-Sutherland type and implies a nontrivial lower bound for
the energy of the anyon gas whenever the statistics parameter is an odd numerator fraction. We discuss whether
this is actually a necessary requirement.
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I. INTRODUCTION

The majority of interesting phenomena in many-body
quantum mechanics are in some way associated with the
fundamental concepts of identical particles and statistics.
Elementary identical particles in three spatial dimensions are
either bosons, obeying Bose-Einstein statistics, or fermions,
obeying Fermi-Dirac statistics. The former are usually rep-
resented using wave functions which are symmetric under
particle permutations, while the latter implement Pauli’s
exclusion principle by exhibiting total antisymmetry under
particle interchange. On the other hand, for point particles
living in one and two dimensions, there are logical possibilities
different from bosons and fermions, so-called intermediate or
fractional statistics [1–3]. Although first regarded as of purely
academic interest—filling the loopholes in the arguments
leading to the two standard permutation symmetries—these
have recently become a reality in the laboratory, with the
advent of trapped bosonic gases [4] and quantum Hall physics
[5], and thus the discoveries of effective models of particles
(or quasiparticles) that seem to obey these generalized rules
for identical particles and statistics. We refer to Refs. [6–8] for
extensive reviews on these topics.

Although noninteracting bosons and fermions are well
understood in terms of single-particle Hilbert spaces and
operators, the same cannot be said about particles obeying
these generalized interchange statistics. Namely, despite some
effort in this direction [9,10], many-particle quantum states
for intermediate and fractional exchange statistics have in
general not admitted a simple description in terms of single-
particle states restricted by some exclusion principle. The
reason for this difficulty is that the general symmetry of the
wave function under particle interchange is naturally modeled
using pairwise or many-body interactions, hence leaving the
much simpler realm of single-particle Hamiltonians (and also
introducing other mathematical difficulties as well, already at
the formulation of these models).

As a different approach, we stress in the following that the
effects of exclusion are also encoded in inequalities for many-
particle energy forms, such as the Lieb-Thirring inequality
[11]. For the case of identical spinless fermions in an external
potential V in d-dimensional space, it states that there is a uni-
form bound for the energy of a normalized N -particle state ψ :

〈ψ,Ĥψ〉 � −
N−1∑
k=0

|λk| � −Cd

∫
|V−(x)|1+d/2 dd x, (1)

with the N -particle Hamiltonian operator

Ĥ = T̂0 + V̂ =
N∑

j=1

(
−1

2
∇2

j + V (xj )

)
,

the conventions h̄ = m = 1, V± := (V ± |V |)/2, and a
positive constant Cd . The inequality (1) incorporates Pauli’s
exclusion principle via the intermediate sum over the negative
energy levels λk of the one-particle Hamiltonian ĥ = − 1

2∇2 +
V (x). It furthermore incorporates the uncertainty principle
and is in fact equivalent to the kinetic energy inequality

〈ψ,T̂0ψ〉 � d (2/Cd )2/d

(d + 2)1+2/d

∫
ρ(x)1+2/d dd x, (2)

involving the one-particle density ρ of ψ , normalized∫
ρ(x) dd x = N . In dimension d = 3, the expression on the

right-hand side of relation (2) may be recognized as the kinetic
energy approximation from Thomas-Fermi theory. It is in this
case conjectured [11] that relation (2) holds with exactly the
Thomas-Fermi expression on the right. The best-known result
is, however, smaller by a factor of (3/π2)1/3 [12].

The bounds (1) and (2) need to be weakened in the case
of weaker exclusion. In the case that each single-particle state
can be filled q times (e.g., in models with q spin states or cf.
Gentile intermediate statistics [13]) the right-hand side of the
inequalitites (1) [respectively (2)] are to be multiplied by q

(respectively q−2/d ). Bosons can then be accommodated by
q = N , yielding trivial bounds as N → ∞.

In this work we report on a new set of Lieb-Thirring-type
inequalities for intermediate and fractional statistics, which
follow from a corresponding local version of the exclusion
principle, applicable to such interacting systems. Our approach
is very much inspired by the work [14] of Dyson and Lenard
(see also Ref. [15]), who used only such a local form of the
Pauli principle to rigorously prove the stability of ordinary
fermionic matter in the bulk [the inequalities (1) and (2) were
subsequently invented by Lieb and Thirring to simplify their
proof]. Although the numerical constants resulting from our
method are comparatively weak, we believe the forms of our
bounds to be conceptually very useful, and as a result we also
learn something nontrivial about the elusive anyon gas.

Starting by recalling the models for intermediate and
fractional statistics which we are concerned with here, we
proceed by showing how a local form of the exclusion principle
can be established for such statistics, leading to bounds for the
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kinetic energy in terms of the one-particle density ρ(x). For
clarity, we leave out some of the technical details, referring to
the mathematical papers [16,17], and instead focus on general
aspects of the procedure. With these preparations, we consider
the problem of determining the ground-state energy for a large
number N of anyons in a harmonic oscillator potential and can
conclude that the energy grows like N3/2 under the assumption
that the anyonic statistics phase is an odd numerator rational
multiple of π . In the final section we discuss a structural
difference between such odd and even numerator fractions
using a class of trial states which are related to the Read-Rezayi
states for the fractional quantum Hall effect.

II. IDENTICAL PARTICLES IN ONE AND TWO
DIMENSIONS

We recall three well-established models for intermediate
and fractional exchange statistics for scalar nonrelativistic
quantum mechanical particles in one or two spatial dimen-
sions. As mentioned in the introduction, there are by now
a number of standard references for their background and
derivations, which we accordingly skip here. We mainly follow
the notation in Ref. [6], with technical details addressed in
Ref. [17].

Identical particles in 2D, anyons, have the possibility to pick
up an arbitrary but fixed phase eiαπ upon continuous simple
interchange of two particles [2,3]. A standard way to model
such (Abelian) anyons, in the so-called magnetic gauge, is by
means of bosons in R2 together with a statistical magnetic
interaction given by the vector potential

Aj = α
∑
k �=j

(xj − xk)I

|xj − xk|2 , α ∈ R (mod 2),

where xI denotes a 90◦ counterclockwise rotation of the vector
x. This attaches to every particle an Aharonov-Bohm point
flux of strength 2πα, felt by all the other particles. The kinetic
energy for N such particles is thus given by TA := 〈ψ,T̂Aψ〉,

T̂A := 1

2

N∑
j=1

D2
j , (3)

where Dj = −i∇j + Aj , and the wave function ψ is repre-
sented as a completely symmetric square-integrable function
on (R2)N . The case α = 0 then corresponds to bosons, and
α = 1 corresponds to fermions.

The case of identical particles confined to move in only
one spatial dimension is special and in some sense degenerate,
since particles cannot be interchanged continuously without
colliding. In quantum mechanics this necessitates some choice
of boundary conditions for the wave function at the collision
points. It turns out that, depending on which approach one takes
to quantization [2,6,18], identical particles in one dimension
(1D) can again be modeled as bosons, i.e., wave functions
symmetric under the flip r 
→ −r of any two relative particle
coordinates r := xj − xk , together with a local interaction
potential, singular at r = 0, and either of the form δ(r) or
1/r2. We write

VLL(r) := 2ηδ(r), VCS(r) := α(α − 1)

r2
, (4)

with statistics parameters η,α ∈ R, for the respective models
resulting from a Schrödinger (respectively, Heisenberg) ap-
proach to quantization. These statistics potentials correspond
to the choices of boundary conditions for the wave function ψ

at the boundary r = 0 of the configuration space

∂ψ

∂r
= ηψ, at r = 0+, resp. ψ(r) ∼ rα, as r → 0+.

Here η = 0 (respectively α = 0) represent bosons (Neumann
boundary conditions) while η = +∞ (respectively α = 1) rep-
resent fermions (Dirichlet or analytically vanishing boundary
conditions; see Ref. [17]). As suggested by such pairwise
boundary conditions, one may define [19] the total kinetic
energy for a normalized completely symmetric wave function
ψ describing N identical particles on the full real line R to be
TLL/CS := 〈ψ,T̂LL/CSψ〉 where

T̂LL/CS := −1

2

N∑
j=1

∂2

∂x2
j

+
∑

1�j<k�N

VLL/CS(xj − xk). (5)

In other words, the LL case in our notation is nothing but the
Lieb-Liniger model for one-dimensional bosons with pairwise
Dirac δ interactions [20], while the CS case corresponds
to the homogeneous part of the Calogero-Sutherland model
with inverse-square interactions [21]. It is well known that
these models can describe a continuous interpolation between
the properties of bosons and fermions for certain ranges of
the statistics parameters. We restrict the following results
to η � 0 (Lieb-Liniger-type intermediate statistics) and α �
1 (Calogero-Sutherland-type superfermions) for which the
statistics potentials (4) are non-negative, i.e., repulsive.

In all of the above cases, the one-particle density ρ(x)
is defined such that the expected number of particles on a
local region Q of space (typically a d-dimensional cube in the
following) equals

∫
Q

ρ(x) dx =
N∑

j=1

∫
RdN

|ψ |2 χQ(xj ) dx,

where χQ ≡ 1 on Q and χQ ≡ 0 on the complement Qc.
In particular,

∫
Rd ρ = N . Similarly, it is useful to be able to

speak about the expected kinetic energy of a wave function
on a local region. For fermions or bosons we naturally define
this quantity to be

T
Q

0 := 1

2

N∑
j=1

∫
RdN

|∇jψ |2 χQ(xj ) dx.

Analogously for anyons,

T
Q

A := 1

2

N∑
j=1

∫
R2N

|Djψ |2 χQ(xj ) dx,

and for 1D intermediate statistics, T
Q

LL/CS :=

1

2

N∑
j=1

∫
RN

⎛
⎝|∂jψ |2 +

∑
k �=j

VLL/CS(xj − xk)|ψ |2
⎞
⎠χQ(xj ) dx.

Note that if the full space Rd has been partitioned into a family
of nonoverlapping regions {Qk} then the total kinetic energy
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decomposes as T0/LL/CS/A = ∑
k T

Qk

0/LL/CS/A. We furthermore
write TF = T0 to denote the free kinetic energy for the
particular case of fermions inR3, i.e., totally antisymmetric ψ .

III. LOCAL EXCLUSION

The starting point for our energy bounds will be the
following local consequence of the Pauli exclusion principle
for fermions, which was used by Dyson and Lenard in their
proof of stability of matter [14]: Let ψ be a wave function of
n spinless fermions in R3, i.e., antisymmetric with regard to
every pair of particle indices, and let Q be a cube of side length
l. Then, for the contribution to the free kinetic energy with all
particles in Q,

1

2

∫
Qn

n∑
j=1

|∇jψ |2 dx � (n − 1)
ξ 2

F

l2

∫
Qn

|ψ |2 dx, (6)

where ξF = π/
√

2. In other words, due to the Pauli principle,
the energy is nonzero for n � 2 and grows at least linearly
with n (indeed linearity proves to be sufficient; cf. also [15]). In
Ref. [14], Q was replaced by a ball of radius l and

√
2ξF by the

smallest positive root of the equation (d2/dξ 2)(sin ξ/ξ ) = 0.
The inequality (6) follows by expanding ψ in the eigenfunc-
tions of the Neumann Laplacian on Q, or by the pairwise
method below at the cost of a slightly weaker constant ξF.

Now, for the 1D case we introduce ξLL(ηl) [respectively
ξCS(α)] to be the smallest positive solutions of ξ tan ξ = ηl

[respectively (d/dξ )[ξ 1/2J (ξ )] = 0], where J is the Bessel
function of order α − 1/2. These ξLL/CS arise as quantiza-
tion conditions for the wave function upon considering the
Neumann problems[ − ∂2

r + VLL/CS(r)
]
ψ = λψ, ∂rψ |r=±l = 0, (7)

in the pairwise relative coordinate r on an interval [−l,l],
yielding a lowest bound for the energy λ = ξ 2

LL/CS/l2. A
good numerical approximation to ξLL is given by ξLL(t) ≈
arctan

√
t + 4t2/π2 for all t � 0 (see Fig. 1), while we have

ξCS(1) = π/2 and, asymptotically, ξCS(α) ∼ α as α → ∞ (see
Fig. 2).

In the case of anyons we define the expression

ξA(α,n) := min
p∈{0,1,...,n−2}

min
q∈Z

|(2p + 1)α − 2q|, (8)

which measures the fractionality of the parameter α and arises
in a bound for a local pairwise magnetic operator, which is the
2D analog to relation (7) (and defined on an annulus instead of
an interval [16]). The absolute quantity which is being mini-
mized in the expression (8) can be understood as the magnetic
gauge phase (2p + 1)απ arising from a pairwise interchange
of two anyons, with the odd integer 2p + 1 depending on the
number p of other anyons that can appear inside such a two-
anyon interchange loop and the additional +1 stemming from
the statistics flux of the interchanging pair itself. This is taken
modulo the pairwise orbital angular momentum of the wave
function which is an even integer −2q due to the underlying
bosonic symmetry. Note that for bosons ξA(α = 0,n) ≡ 0
while for fermions we have ξA(α = 1,n) ≡ 1 for all n.

We call the following observation a local exclusion princi-
ple for generalized exchange statistics since it implies that the

FIG. 1. (Color online) Plot of ξLL(t) (solid) and
arctan

√
t + 4t2/π 2 (dashed) as a function of t � 0.

local kinetic energy is nonzero whenever we have more than
one particle, and hence that the particles cannot occupy the
same single-particle state (which on a local region would be
the zero-energy ground state).

Lemma 1: Local exclusion principle. Given any finite
interval Q ⊂ R of length |Q|, we have for η � 0

∫
Qn

ψ̄ T̂LLψ dx � (n − 1)
ξLL(η|Q|)2

|Q|2
∫

Qn

|ψ |2 dx, (9)

FIG. 2. (Color online) Plot of ξCS(α) as a function of α � 0.
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and for α � 1∫
Qn

ψ̄ T̂CSψ dx � (n − 1)
ξCS(α)2

|Q|2
∫

Qn

|ψ |2 dx, (10)

while for a square Q ⊂ R2 with area |Q| and any α ∈ R

1

2

∫
Qn

n∑
j=1

|Djψ |2 dx � (n − 1)
c ξA(α,n)2

|Q|
∫

Qn

|ψ |2 dx,

(11)

with c = 0.056. It then follows for the expected kinetic energy
on a d-dimensional cube Q with volume |Q| that

T
Q

LL/CS/A/F �
ξ 2

LL/CS/A/F

|Q|2/d

(∫
Q

ρ(x) dx − 1

)
+

, (12)

where ξLL/CS/A/F here stands for ξLL(η|Q|), ξCS(α),√
c ξA(α,N ) (respectively ξF), with corresponding dimension

d = 1,1,2,3.
Let us consider the proof for the one-dimensional (1D)

Calogero-Sutherland case. Using the separation of the
center-of-mass n

∑
j ∂2

j = (
∑

j ∂j )2 + ∑
j<k(∂j − ∂k)2, the

(Neumann) kinetic energy for n � 2 particles on an interval
Q = [a,b] is∫

Qn

ψ̄ T̂CSψ dx

�
∫

Qn

∑
j<k

ψ̄

(
− 1

2n
(∂j − ∂k)2 + VCS(xj − xk)

)
ψ dx

� 2

n

∑
j<k

∫
Qn−2

∫
Q

∫
[−δ(R),δ(R)]

ψ̄
[−∂2

r + VCS(r)
]
ψ dr dR dx ′

� 2

n

∑
j<k

∫
Qn−2

∫
Q

ξCS(α)2

δ(R)2

∫
[−δ(R),δ(R)]

|ψ |2 dr dR dx ′,

(13)

where for each particle pair we have introduced R := (xj +
xk)/2, r := xj − xk , x ′ = (x1, . . . ,x�j , . . . ,x�k, . . . ,xN ), and
δ(R) := 2 min{|R − a|,|R − b|}. We then use relation (13)
and δ(R)−2 � |Q|−2 to obtain relation (10). By inserting the
partition of unity 1 = ∑

A⊆{1,...,N}
∏

l∈A χQ(xl)
∏

l /∈A χQc (xl)

into the expression for T
Q

CS we then obtain (cf. Refs. [14–17])

T
Q

CS =
∑
A

∫
RN

∑
j∈A

1

2

⎛
⎝|∂jψ |2 +

N∑
(j �=)k=1

VCS(xj − xk)|ψ |2
⎞
⎠ ∏

l∈A

χQ(xl)
∏
l /∈A

χQc (xl) dx

�
∑
A

∫
(Qc)N−|A|

∫
Q|A|

1

2

⎛
⎝∑

j∈A

|∂jψ |2 +
∑

j �=k ∈A

VCS(xj − xk)|ψ |2
⎞
⎠ ∏

l∈A

dxl

∏
l /∈A

dxl

�
∑
A

(|A| − 1)
ξCS(α)2

|Q|2
∫

(Qc)N−|A|

∫
Q|A|

|ψ |2
∏
l∈A

dxl

∏
l /∈A

dxl

= ξCS(α)2

|Q|2
∫
RN

⎛
⎝ N∑

j=1

χQ(xj ) − 1

⎞
⎠ |ψ |2dx,

where in the last step we again used the partition of unity.
This proves relation (12) in the α � 1 Calogero-Sutherland
case. The Lieb-Liniger case follows similarly, while in the
anyon case the application of the above-mentioned pairwise
magnetic operator inequality gives rise to a local repulsive
inverse-square pair potential, with its strength measured by
the expression (8). We refer to Refs. [16,17] for the detailed
proofs.

The constants ξ 2
LL/CS/A/F of proportionality in relation (12)

appear as lower bounds on the strength of local exclusion,
and could, e.g., be compared with the global constant of
proportionality in Haldane’s generalized exclusion statistics
[9]. For the case of anyons, the constant ξA ∝ ξA(α,N ) is
actually N dependent, and it is clear from the definition (8)
that this constant can become identically zero for sufficiently
large N if α is an even numerator (reduced) fraction. However,
we have shown in Ref. [16] that for α = μ/ν an odd
numerator fraction, the limiting constant is nonzero and equal
to limN→∞ ξA(α,N ) = 1/ν (see Fig. 3). It hence also becomes
weaker with a bigger denominator ν in the statistics parameter.

For irrational α the constant is nonzero for all finite N , but
the limit is again zero. We return to a discussion on the true
dependence on α for the exclusion and statistics of anyons
below.

IV. LIEB-THIRRING-TYPE INEQUALITIES

The inequalities (1) and (2) for fermions combine the Pauli
exclusion principle with the uncertainty principle to produce
nontrivial and useful bounds for the energy as the number of
particles N becomes large. We complement the local form of
the exclusion principle above with the following local form of
the uncertainty principle on a d-dimensional cube Q, valid for
the free kinetic energy of any bosonic wave function ψ , and
hence applicable in our cases of intermediate statistics after
discarding the positive statistics potentials or, in the case of
anyons, using the diamagnetic inequality |Djψ | � |∇j |ψ ||:

T
Q

0/LL/CS/A � c1

∫
Q

ρ1+2/d dx( ∫
Q

ρ dx
)2/d

− c2

∫
Q

ρ dx

|Q|2/d
. (14)
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FIG. 3. (Color online) A sketch of Cα = limN→∞ ξA(α,N ) as a
function of α.

The constants c2 > c1 > 0 only depend on d. Mathematically,
relation (14) is a form of Poincaré-Sobolev inequality, and
we refer to refs. [16,17] for details and proofs. Note that the
right-hand side is bigger for less constant density but scales
with the number of particles only as N (in contrast to the
Lieb-Thirring inequality).

Combining local uncertainty with local exclusion, and
cleverly splitting the space into smaller cubes depending on the
density [the bound (12) is strongest for cubes Q such that the
expected number of particles to be found on Q is

∫
Q

ρ ≈ 2],
one can then prove the following energy bounds:

Theorem 2: L-T inequalities for anyons. For any α ∈ R, the
free kinetic energy for N anyons satisfies the bound

TA � CA ξA(α,N )2
∫
R2

ρ(x)2 dx, (15)

for some constant 10−4 � CA � π . It follows that if α = μ/ν

is a reduced fraction with odd numerator μ and the density ρ

is supported on an area L2 then

TA/L2 � CA
ρ̄2

ν2
, ρ̄ := N/L2. (16)

Theorem 3: L-T inequalities for 1D Lieb-Liniger. For η � 0

TLL � CLL

∫
R

ξLL[2η/ρ(x)]2ρ(x)3 dx, (17)

for some constant 10−5 � CLL � 2/3. In particular, if ρ is
homogeneous, e.g., ρ � γ ρ̄ for some γ > 0, then

TLL � CLL ξLL[2η/(γ ρ̄)]2
∫
R

ρ(x)3 dx, (18)

and if ρ is supported on an interval of length L

TLL/L � CLL ξLL[2η/(γ ρ̄)]2ρ̄3, ρ̄ := N/L. (19)

It is illustrative to compare with the results of Lieb and
Liniger [20], where for a free system in the thermodynamic

Q0

A A

A A A B BA A

A A A B
A A

A
A A
A

B

B

A

B
A

A

A

FIG. 4. Example of a splitting of Q0 and a corresponding tree T
of subsquares. For the B square at level 3 in the tree, the set A(Q)
of all associated A squares (cf. A1(Q) in the text) consists of eight
elements, whereas for the two B squares at level 2, A(Q) coincides
and has four elements.

limit N,L → ∞ with fixed density ρ̄, TLL/L → 1
2e(2η/ρ̄)ρ̄3

with e(t) ∼ t,t � 1, e(t) → π2

3 ,t → ∞ (see also Ref. [22]).
Theorem 4: L-T inequalities for 1D C.-S. For α � 1 and

arbitrary intervals Q such that the expected number of particles∫
Q

ρ � 2

T
Q

CS � CCS ξCS(α)2

( ∫
Q

ρ(x) dx
)3

|Q|2 , (20)

with a constant 1/32 � CCS � 2/3. It follows in particular
that if ρ is confined to a length L and N � 2 then

TCS/L � CCS ξCS(α)2ρ̄3, ρ̄ := N/L. (21)

Compare with Calogero and Sutherland [21], where
one finds TCS/L → π2

6 α2ρ̄3 in the thermodynamic limit
N,L → ∞.

The reason for the more technical forms (17) and (20) as
compared to the bounds (2) and (15) is the local dependence of
the strength of exclusion in the Lieb-Liniger case [respectively,
the possibility for arbitrarily strong exclusion (α → ∞) in the
Calogero-Sutherland case]. We sketch a proof below only for
the simpler anyonic case and refer readers to Refs. [16,17,23]
for further details. For an application of the same method to
fermions in three dimensions (3D) and the generalization to
q spin states, we refer to Ref. [24], where a model for point
interactions was considered.

Let us for simplicity assume ρ to be supported on some
square Q0 in the plane which we proceed to split into four
smaller squares iteratively, organizing the resulting subsquares
Q in a tree T (see Fig. 4). The procedure can be arranged
so that Q0 is finally covered by a collection Q ∈ TB of
nonoverlapping squares marked B such that 2 �

∫
Q

ρ < 8,
and Q ∈ TA marked A such that 0 �

∫
Q

ρ < 2, and such that
at least one B square is at the topmost level of every branch of
the tree T . On the B squares we use relation (12) together with
relation (14) to obtain (with c′

k > 0 some numerical constants)

T
Q

A � ξA(α,N )2

(
c′

1

∫
Q

ρ2 + c′
2

|Q|
)

, Q ∈ TB. (22)

The A squares are further grouped into a subclass
A2 on which the density is sufficiently nonconstant,∫
Q

ρ2 > 2c2
c1

(
∫
Q

ρ)2/|Q| for Q ∈ TA2 ⊆ TA, so that by
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relation (14)

T
Q

A >
c1

4

∫
Q

ρ2, Q ∈ TA2 , (23)

and a subclass A1 on which
∫
Q

ρ2 � 2c2
c1

(
∫
Q

ρ)2/|Q|. One
can then use the structure of the splitting of squares to prove
that, for the set A1(QB) of all such A1 squares which can
be found by stepping backwards in the tree T from a fixed
B-square QB and then one step forward,

∑
Q∈A1(QB )

∫
Q

ρ2 �
∞∑

k=0

3
2c2

c1

22

4k|QB | = 32c2

c1

1

|QB | . (24)

In other words the energy on all subsquares with constant low
density is dominated by that from exclusion on the B squares.
We therefore find from relation (22) that

T
QB

A � ξA(α,N )2

⎛
⎝c′

1

∫
QB

ρ2 + c′
3

∑
Q∈A1(QB )

∫
Q

ρ2

⎞
⎠ ,

and hence, since all A1 squares are covered in this way,
TA = ∑

Q∈T T
Q

A �
∑

Q∈TB∪TA2
T

Q
A � CA ξA(α,N )2

∫
Q0

ρ2

for some numerical constant CA > 0.
For relations (19) and (16) we use

∫
Q0

ρpdx � Np|Q0|1−p,
and for relation (16) we use the fact that limN→∞ ξA(α,N ) =
1/ν for such odd numerator fractions and zero otherwise.

V. AN APPLICATION TO HARMONIC OSCILLATOR
CONFINEMENT

Consider N anyons with statistics parameter α confined
in an external one-body harmonic oscillator potential V (x) =
ω2

2 |x|2. Using the bound (15) for the kinetic energy we obtain
as a lower bound for the total energy the following functional
of the density:

TA + 〈V̂ 〉ψ �
∫
R2

(
CAξA(α,N )2ρ(x)2 + ω2

2
|x|2ρ(x)

)
dx.

(25)

It is straightforward [17] to extremize this functional with
regard to ρ under the constraint

∫
R2 ρ = N to obtain the

minimizer

ρ(x) = (ωξA(α,N )
√

2CAN/π − ω2|x|2/2)+
2CAξA(α,N )2

,

and therefore the (rigorous) lower bound for the ground-state
energy E0:

TA + 〈V̂ 〉ψ � E0 � 1

3

√
8CA

π
ξA(α,N ) ωN3/2. (26)

In the case of odd numerator rational α this improves the bound
given in Ref. [25] (which is also valid for arbitrary α):

E0 � ω

(
N +

∣∣∣∣L + α
N (N − 1)

2

∣∣∣∣
)

, (27)

where L denotes the total angular momentum of the state ψ .
Note that if L = −α( N

2 ) (which could occur for certain N and
rational α as long as the right-hand side is an even integer)

then this bound reduces to the bosonic bound for the energy,
which is always valid as a trivial lower bound.

It was argued in Ref. [25] using perturbation theory that the
behavior for the exact ground-state energy as N → ∞ is ap-
proximately E0 ∼ √

αωN3/2 for α ∼ 0 and E0 ∼ 1
3

√
8ωN3/2

for α ∼ 1, requiring L = −α( N

2 ) + O(N3/2) by relation (27).
In fact, we can show that the ground-state energy necessarily
always satisfies the upper bound E0 � ωN3/2, up to a constant
independent of α. Namely, given a (possibly nonsymmetric)
N -particle wave function φ such that all particles are supported
on disjoint sets, we can form its symmetrization

ψ(x) := 1√
N !

∑
σ∈SN

φ(xσ (1), . . . ,xσ (N)) (28)

and conclude by the properties of the supports that ‖ψ‖ = ‖φ‖
and

∫ ∑
j |Djψ |2dx = ∫ ∑

j |Djφ|2dx. Now take, e.g.,

φ(x) :=
N∏

j=1

ϕ(xj − yj )
∏
k<l

e−iαφkl , (29)

where yj are fixed points in the plane separated by a minimal
length r; the function ϕ localizes each particle in a ball of radius
r/2, and φkl is the angle between particle k and l relative to a
fixed axis. Note that this angle is well defined and smooth and
that the resulting phase factor (gauge) cancels the magnetic
potentials Aj in Djφ. Then, by choosing the points yj to fill

a disk of radius R ∼ √
Nr , we conclude that the energy E of

ψ is bounded by E � N/r2 + ω2NR2 ∼ N2/R2 + ω2NR2,
and hence, choosing r such that R2 ∼ √

N/ω, we have E �
ωN3/2. It therefore follows that, for odd numerator α, relation
(26) yields the correct dependence in N up to the value of
the constant. In a similar way one can also prove that the
ground-state energy per unit area for the free anyon gas is
uniformly bounded by a constant times ρ̄2.

For comparison, we can also consider the 1D Calogero-
Sutherland case together with an external potential, for which
some exact results are available [21]. After splitting the real
line into intervals big enough to contain a sufficient number
of particles, the local bound (20) can be applied on each such
interval with the addition of an external potential, thereby
obtaining an energy functional and lower estimates for the
ground-state energy (along with estimates for the correspond-
ing ground-state density). Depending on the potential, the
lower bound can be optimized to the better by choosing the
splitting suitably. As an example, we considered in Ref. [17]
the external one-body potential V (x) = aμ|x|μ and obtained
a lower bound for the total ground-state energy

TCS + 〈V̂ 〉ψ � E0 � C(μ)[ξCS(α)a]
2μ

μ+2 N
3μ+2
μ+2 , (30)

in the limit N → ∞ and with an explicit constant C(μ). In
the harmonic oscillator case μ = 2, a = ω/

√
2, one obtains

E0 �
√

3
8π

ξCS(α)ωN2, which can be compared to the exact
ground-state energy for the Calogero-Sutherland model, E0 =
1
2ωN [1 + α(N − 1)]. We can also compare these rigorous
bounds with the approximate Thomas-Fermi theory [26] and
collective field theory [27].
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VI. DISCUSSION

The bound (16) provides a nontrivial lower bound for the
energy per unit area for an ideal gas of anyons with odd-
fractional statistics parameter α. The numerical constant CA �
10−4 in this bound has in Ref. [17] been improved to � 0.021,
which is still quite far from the exact semiclassical constant
π for the two-dimensional spinless fermion gas. In any case,
these nontrivial bounds (16) and (26) raise the very interesting
question of whether such Lieb-Thirring inequalities are in fact
not valid for even numerator and irrational α. We give some
reasons for why this could be the case by considering the
following observations.

In these bounds the expression ξA(α,N ) appears as a
measure of exclusion. Its complicated behavior in α and N is
related to the fact that only for even numerator fractions do the
anyons appear to have the possibility to completely cancel out
the statistical phase which is responsible for a local repulsive
force between them, by assuming certain configurations.
Consider, e.g., a pair of α = 2/3 anyons which symmetrically
encircle a third one with relative angular momentum −2,
leading to a local cancellation of the interchange phase with
the orbital phase, and ξA(α,3) = 0. A similar complete cancel-
lation would never be possible for odd numerator α, and indeed
ξA(α,N ) remains strictly bounded away from zero for all N .

Let us again consider the model of N anyons in a harmonic
oscillator potential. It is well known that energy levels and
degeneracies in this model depend very nontrivially on both N

and α, and we can point out certain similarities in the limiting
graph of ξA(α,N ) (see Fig. 3) with known features in spectra
for N = 2,3,4 and corresponding extrapolations to large N

[2,7,25,28]. It is intriguing to compare this graph—which can
be obtained by cutting out a wedge of slope ν from the upper
half-plane at every even numerator rational point μ/ν on the
horizontal axis—with the general structure indicated in Fig. 1
in Ref. [25].

The question remains whether for particular α (even
numerator rational and/or irrational) the energy could be
of lower order than O(N3/2) for some special states with
L ∼ −α( N

2 ). With the above considerations, and motivated by
the Laughlin states in the fractional quantum Hall effect [29],
we could for particular N = νK consider trial wave functions
of the form ψ = �ψα , with

ψα :=
∏
j<k

|zjk|−α S

⎡
⎣ ν∏

q=1

∏
(j,k)∈Eq

(z̄jk)μ
∏
l∈Vq

ϕ0(xl)

⎤
⎦ (31)

for even numerator fractions α = μ/ν ∈ [0,1], and

ψα :=
∏
j<k

|zjk|−α S

⎡
⎣ ν∏

q=1

∏
(j,k)∈Eq

(z̄jk)μ
K−1∧
k=0

ϕk (xl∈Vq
)

⎤
⎦ (32)

for odd numerators μ, where the role of the factor � is
to regularize the short-scale behavior [necessary due to the
singular Jastrow factor in expressions (31) and (32)]. We
have written zjk := zj − zk for the complex relative particle
coordinates; ϕk denotes the eigenstates of the one-particle
Hamiltonian ĥ = − 1

2∇2 + V and of which we may form a
Slater determinant

∧
k ϕk , while Eq andVq are sets of edges and

vertices of ν disjoint complete graphs involving K particles

each, and S denotes the operation of symmetrization [com-
pare expression (28)]. Two possible choices of regularizing
symmetric functions �, giving rise to the expected pairwise
short-scale behavior ∼|zjk|α in ψ , could be

�r0 =
∏
j<k

|zjk|2α
(
r2

0 + |zjk|2
)−α

, (33)

with a parameter r0 > 0, or the parameter-free (but less
smooth)

� =
N∏

j=1

ν−1∏
k=1

|zj k(j )|α, (34)

with k(j ) denoting the kth nearest neighbor of particle j .
These states ψ have L = −α( N

2 ) + α ν−1
2 N [for expression

(31) and for certain magic numbers K in expression (32)]
and the property that only up to ν particles can be selected in
each term without involving a repulsive factor (z̄jk)μ from an
edge in Eq for some q, allowing for the formation of groups
of ν anyons with integer statistics flux μ. Namely, while
the Jastrow factor acts to attract all particles, this attraction
is on large scales exactly balanced whenever a group of ν

nonrepelling anyons has formed, since an anyon xj far outside
the group, seeing the total attractive factor ∼(r−α)ν = r−μ

where r is the distance from the group, is also repelled by
at least one anyon xk in the group, with a factor |z̄jk|μ ∼ rμ

from that corresponding edge in Eq . This balance could act
to distribute the anyons, on the average, in such groups of ν.
Furthermore, the total contribution from such a group to the
statistics potential Aj seen by the distant particle xj would
be ∼ναrI/r2 = μrI/r2, while the particle also has an orbital
angular momentum −μ around the group [due to that same
edge to xk and phase of (z̄jk)μ] with velocity ∼−μrI/r2, again
leading to a cancellation of terms in the kinetic energy Djψ .

The forms (31) and (32) bring out a structural difference
between even and odd numerators μ. The limit α = 1 of
expression (32) is the fermionic ground state in the bosonic
representation, and also generalizes to the correct gauge copies
for arbitrary integer α, whereas the states with ν > 1 in
expression (31) are (modulo the Jastrow factor) actually found
to be exactly the Read-Rezayi states for fractional quantum
Hall liquids in their bosonic form [30]. The state (31) is an exact
but singular (requiring the regularization by �) eigenstate
of the Hamiltonian with energy E = ω(N + deg ψα), where
deg ψα = −α ν−1

2 N is the total degree of the non-Gaussian
part of the wave function (cf. Ref. [31]). In all known exact
eigenstates there is this simple correspondence between the
degree and the energy. It is an interesting fact that adding
the degree of � in the nearest-neighbor form (34) produces
ω(1 + α ν−1

2 )N , i.e., exactly the right-hand side of relation
(27) for the above value of L, speaking for a low energy for
even numerator fractions. On the other hand, the degree of the
odd numerator states (32) necessarily grows with K as ∼K3/2

due to the Slater determinant. While the resulting energy E =
ω(N + deg ψα) ∼ ων(N/ν)3/2 satisfies but does not match
the bound (26) exactly with regard to α, a corresponding
picture of ideal anyons forming essentially free ν-anyon
groups with fermionic-type statistics would actually match
the form of the bound (16), involving the reduced density
ρ̄/ν = K/L2.
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We finally remark that there are also many interesting
connections between the forms of the fractions appearing here
and those of fractionally charged quantum Hall quasiparticles
[32]. Another question concerns possible relations with q-
commutation relations, with q = eiαπ [33].
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FIM ETH Zurich, and the Isaac Newton Institute (EPSRC
Grant EP/F005431/1) for support and hospitality via EPDI
and CARMIN fellowships. J.P.S. acknowledges support by
ERC AdGrant Project No. 321029. This work was partly done
while participating in the research programs “Hamiltonians
in Magnetic Fields” at Institut Mittag-Leffler and “Variational
and Spectral Methods in Quantum Mechanics” at Institut Henri
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Sém. Poincaré 11, 77 (2007); F. Wilczek, Fractional Statistics
and Anyon Superconductivity (World Scientific, Singapore,
1990).

[9] F. D. M. Haldane, Phys. Rev. Lett. 67, 937 (1991).
[10] S. B. Isakov, Phys. Rev. Lett. 73, 2150 (1994).
[11] E. H. Lieb and W. Thirring, Phys. Rev. Lett. 35, 687 (1975);

Studies in Mathematical Physics, edited by E. H. Lieb, B. Simon,
and A. S. Wightman (Princeton University Press, Princeton,
NJ, 1976), pp. 269–303; see also E. H. Lieb and R. Seiringer,
The Stability of Matter in Quantum Mechanics (Cambridge
University Press, Cambridge, 2010).

[12] J. Dolbeault, A. Laptev, and M. Loss, J. Eur. Math. Soc. 10,
1121 (2008).

[13] G. Gentile, Nuovo Cimento 17, 493 (1940); 19, 109 (1942).
[14] F. J. Dyson and A. Lenard, J. Math. Phys. 8, 423 (1967).
[15] F. J. Dyson, in Statistical Physics, Phase Transitions and Su-

perfluidity, Brandeis University Summer Institute in Theoretical
Physics 1966 (Gordon and Breach, New York, 1968), pp. 179–
239; A. Lenard, in Statistical Mechanics and Mathematical
Problems, edited by J. Ehlers, K. Hepp, and H. A. Weidenmüller
Lecture Notes in Physics Vol. 20 (Springer-Verlag, Berlin,
Heidelberg, New York, 1973), pp. 114–135.

[16] D. Lundholm and J. P. Solovej, Commun. Math. Phys. 322, 883
(2013).

[17] D. Lundholm, J. P. Solovej, Ann. Henri Poincaré, doi:
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