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Spin-glass-like behavior in the spin turbulence of spinor Bose-Einstein condensates
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We study numerically the spin turbulence (ST) in spin-1 ferromagnetic spinor Bose-Einstein condensates
(BECs). ST is characterized by a −7/3 power law in the spectrum of the spin-dependent interaction energy. The
direction of the spin density vector is spatially disordered but temporally frozen in ST, showing an analogy with the
spin-glass state. Thus, we introduce the order parameter of spin glass into ST in spinor BECs. When ST develops
through some instability, the order parameter grows with a −7/3 power law, thus succeeding in describing ST well.
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Turbulence has been a great mystery in nature [1] mainly
because it is a complicated dynamic phenomenon with strong
nonlinearity far from an equilibrium state. When we consider
such complicated phenomena, it is important to focus on sta-
tistical laws. The most important statistical law in turbulence
is the Kolmogorov −5/3 law. The Kolmogorov spectrum is
confirmed in fully developed turbulence in classical fluids,
being the smoking gun of turbulence.

Apart from these studies in classical fluid dynamics, there
have been studies on quantum fluids such as superfluid helium
and atomic Bose-Einstein condensates (BECs). A quantized
vortex appears as a stable topological defect in quantum
fluids. Such vortices give rise to quantum turbulence (QT)
[2–4]. Quantum turbulence has long been studied in superfluid
helium, whereas atomic BEC has only recently become an
important research area.

An important interest regarding QT is how to char-
acterize the turbulent state. Numerical simulation of the
Gross-Pitaevskii (GP) model shows that the spectrum of
imcompressible kinetic energy obeys the Kolmogorov −5/3
law in a uniform system [5,6] and in a trapped system [7].
Confirmation of such an energy spectrum power law would
certainly provide strong proof of turbulence. However, there
must be a better way to characterize QT.

Spinor BECs have spin degrees of freedom and exhibit phe-
nomena characteristic of spin [8], which can be another novel
stage of turbulence in quantum fluids. The hydrodynamics
of spinor BECs has recently been studied by several authors
[9–12]. In previous studies, we found that hydrodynamic
instability in spin-1 spinor BECs exhibits unique behavior
due to their spin degrees of freedom and form spin turbulence
(ST) in which the spin density vector has various directions.
Although the spin-dependent interaction can be ferromagnetic
or antiferromagnetic, we confine ourselves to the case of
ferromagnetic interaction in this work. The first study ad-
dressed the counterflow between the m = ±1 components
in a uniform system, where m is the magnetic quantum
number. Through the instability, the counterflow leads to
ST, in which the spectrum of the spin-dependent interaction
energy obeys a −7/3 power law [13]; the −7/3 power law
is understood by the scaling analysis of the time-development
equation of the spin density vector. Such a spin-disordered
state was experimentally created in a trapped system through
the instability of the initial helical structure of spins [14],

which allowed us to study ST numerically in a similar situation
and confirm the −7/3 power law again [15]. An oscillating
magnetic field applied to a uniform ferromagnetic system can
also create ST with a −7/3 power law [16].

These three works [13,15,16] reveal the important charac-
teristics of ST. First, the −7/3 power law is robust indepen-
dently of whether the system is uniform or trapped, or how the
system is excited. Second, observation of the spin motion in
all three cases indicates that the spin density vectors become
spatially random but temporally frozen, which reminds us of
spin glass. Spin glasses are magnetic systems in which the
interactions between the magnetic moments are in conflict
with each other [17]. Thus, these systems have no long-range
order but exhibit a freezing transition to a state with a kind of
order in which the spins are aligned in random directions.

In this paper, we introduce the order parameter of spin
glass [17,18] to characterize ST in spinor BECs. The spin-
glass-like behavior is shown clearly in the movies of ST in
the supplemental material (SM) [19]. Movie (a.mpg) shows
how the spins become random in the early period t/τ =
60–360 through the counterflow instability, where τ is the
characteristic time in the uniform system [13]. Movie (b.mpg)
in the late period t/τ = 4000–4300 shows the behavior of
spins after the −7/3 power law appears. We can find a
clear difference between two movies; compared with movie
(a.mpg), the random spins in movie (b.mpg) look to oscillate
at each site rapidly with small amplitude. This introduction of
the order parameter of spin glass is so successful that it grows
with the setup of the −7/3 power law. This success paves the
way for two innovative approaches. One is to propose a useful
order parameter in the turbulence of quantum fluids. The other
is to connect the study of spinor BECs with that of magnetism
including spin glass.

We consider a spin-1 spinor BEC at zero temperature. The
macroscopic wave functions ψm (m = 1,0,−1) obey the GP
equation [20,21]
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FIG. 1. (Color online) Distribution of spin density vectors in
ST at t/τ = 4000 obtained by the counterflow instability with
VR/csound = 0.78, where VR , csound, and τ are the relative velocity
of counterflow, the sound velocity, and the characteristic time in
a uniform system [13]. The system size is 128ξ × 128ξ with the
coherence length ξ . This numerical calculation starts from the initial
state of the counterflow between the m = ±1 components, which
induces the spin modulation, finally leading to ST [13].

Here, V and B are the trapping potential and magnetic
field. The parameters M , g, μB , and q are the mass of a particle,
the Landé g factor, the Bohr magneton, and a coefficient of
the quadratic Zeeman effect, respectively. The total density
n and the spin density vector si (i = x,y,z) are given by
n = ∑1

m=−1 |ψm|2 and si = ∑1
m,n=−1 ψ∗

m(Ŝi)mnψn with the
spin-1 matrices (Ŝi)mn. The parameters c0 and c1 are the
coefficients of the spin-independent and spin-dependent in-
teractions. We focus on the spin-dependent interaction energy
Espin = c1

2

∫
s2d r , whose coefficient c1 determines whether

the system is ferromagnetic (c1 < 0) or antiferromagnetic
(c1 > 0). We are interested in the ferromagnetic case in which
ST clearly exhibits the −7/3 power law.

In this paper, we study the two-dimensional ST obtained
by (i) the counterflow instability [13], (ii) the instability of
spin helical structure [15], and (iii) an oscillating magnetic
field [16]. All parameters of the numerical calculation of
(i) and (ii) are the same as in the previous studies. In the case of
(iii), we use a method different from the previous study [16];
the magnetic field is turned off after the formation of ST [22].
The parameters are different from the previous study too [23].

Figure 1 shows a typical case of ST developing from the
instability of the counterflow between the m = ±1 compo-
nents [13]. As ST develops, the spectrum of the spin-dependent
interaction energy begins to exhibit the −7/3 power law.
Figure 2 shows that the −7/3 power law appears in all three
cases we have studied: counterflow instability in a uniform
system [Fig. 2(a)] [13], instability of the initial helical structure
of the spin density vector in a trapped system [Fig. 2(b)]
[15,24], and application of an oscillating magnetic field in a
uniform ferromagnetic system [Fig. 2(c)] [16]. All cases show
that the spin density vector is spatially random but temporally
frozen. Such a behavior of spins reminds us of the analogy with
spin glass, which invites us to introduce the order parameter
of spin glass.

The order parameter of spin glass is ordinarily introduced
as follows: An equilibrium system is supposed to consist of N

lattice sites, each site i having spin Si (i = 1,2, . . . ,N). The
time average 〈Si(t)〉 and the space average [Si(t)] are defined
as

〈Si(t)〉 = lim
T →∞

1

T

∫ T

0
Si(t)dt, [Si(t)] = 1

N

∑
i

Si(t). (2)

Then it is possible to introduce two order parameters, namely
the magnetization M = [〈Si(t)〉] and q = [〈Si(t)〉2] [17,18].
If the system is paramagnetic, both M and q vanish. A
ferromagnetic order gives nonzero M and q. When M = 0
but q is nonzero, the state is called spin glass [18], and the
directions of spin are spatially random but temporally frozen.

To apply the order parameter to our case, we have to
consider two things. First, we address the spin density vector
s(r,t) instead of Si(t). Our spinor BECs are usually trapped
so that the amplitude of the spin density vector is not uniform.
To extract this effect and focus on the direction of the spin
density vector, we define the order parameter with the unit
vector ŝ(r,t) = s(r,t)/|s(r,t)|. The definition of the space
average of Eq. (2) is replaced by

[ŝ(r,t)] = 1

A

∫
A

ŝ(r,t)d r (3)
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FIG. 2. (Color online) Spectrum of the spin-dependent interaction energy in three cases: (a) counterflow instability in a uniform system,
(b) instability of the initial helical structure of the spin density vector in a trapped system, and (c) application of an oscillating magnetic field in
a uniform ferromagnetic system. Each spectrum is calculated at (a) t/τ = 4000, (b) tω = 200, and (c) t/τ = 9000, when ST is fully developed.
In the case of (c), the magnetic field is tuned off at t/τ = 5000. The parameters ω, ah, RTF, n0, ξ , and L are, respectively, the trapping frequency,
the harmonic oscillator length, the Thomas-Fermi radius, the total density in the uniform system, the coherence length, and the system size.
The details of these parameters are described in [13,15,23], respectively. The blue broken lines show the −7/3 power law. The spectrum in all
cases exhibits the −7/3 power law in the region [(a) 2π/L < k < 2π/ξs , (b) 2π/RTF < k < 2π/ξs , (c) 2π/L < k < 2π/ξs] [25], where ξs is
the spin coherence length.

061601-2



RAPID COMMUNICATIONS

SPIN-GLASS-LIKE BEHAVIOR IN THE SPIN . . . PHYSICAL REVIEW A 88, 061601(R) (2013)

(a) (b) (c)

t/τ tω

√
q

√
q

√
q

t/τ

np np np

:

:

:

√
q

np

np = −7/3

:

:

:

√
q

np

np = −7/3

√
q (r < RTF )

√
q (r < RTF /2)

:

:

:

:

np

np = −7/3

FIG. 3. (Color online) Time development of the exponent np and the spin-glass order parameter
√

q(t) for (a) the counterflow instability
in a uniform system, (b) the instability of the initial helical structure of the spin density vector in a trapped system, and (c) the application of
the oscillating magnetic field in a uniform ferromagnetic system. In (b), the squares and triangles show that the calculation of

√
q is performed

in the regions r < RTF/2 and r < RTF, respectively. The exponents np in (a)–(c) are evaluated by the least-squares method in the region [(a)
4π/L < k < 2π/ξs , (b) 2π/RTF < k < 2π/ξs , (c) 4π/L < k < 2π/ξs]. Then, in the uniform systems of (a) and (b), we omit the point 2π/L,
where the spectrum can be affected by the finite-size effect. The insets of (a) and (b) are the enlarged graphs of np .

with the system area A. Second, the system starts from some
initial state to develop ST, which should be characterized by
the time-dependent order parameter. Thus, we introduce the
time average of ŝ(r,t) during the period [t,t + T ] as

〈ŝ(r,t)〉T = 1

T

∫ t+T

t

ŝ(r,t1)dt1 (4)

and we define the time-dependent order parameter

q(t) = [〈ŝ(r,t)〉2
T

]
. (5)

When we calculate q(t), we should be careful how to
take T . Generally, a longer T is desirable, but in reality, we
should estimate q(t) with some finite T . The criterion for
the appropriate value of T would be that T should be longer
than the characteristic time of the system. In this system, the
velocity characteristic of spin is given by cs = √|c1|n/M [26].
Then, a typical characteristic time is the system size L divided
by the velocity cs . We will show in the following that this time
L/cs is so long that the system in the initial state becomes
sufficiently disturbed by the time. Thus, we take T comparable
to L/cs . In ST, the order parameter q(t) decreases with T , but
the dependence is weak. If the spin density vector is completely
frozen in ST, q(t) should be unity.

We show how q(t) grows toward ST with a −7/3 power
law of the spin-dependent interaction energy. Figure 3 shows
the time dependence of the power exponent of the spectrum
of the spin-dependent interaction energy obtained by the
least-squares method and q(t) for the cases of Figs. 2(a)–2(c).
Figures 3(a) and 3(b) show that q(t) increases obviously as the
exponent np approaches −7/3. Furthermore, the magnetiza-
tion |m(t)| = |[〈ŝ(r,t)〉T ]| is much smaller than

√
q(t) because

[s(r,t)] is conserved to keep vanishing under Eq. (1) without
the magnetic field. On the other hand, in the case of Fig. 3(c),
the state at t/τ = 5000 is much disturbed [22], so that the
power exponent np is already close to −7/3. As the time
passes, the exponent approaches −7/3 and q(t) grows too.
Also, the magnetization |m(t)| is almost zero at t/τ = 5000.
Thus, the two order parameters q(t) and |m(t)| are found to be
effective for describing the ST in the three cases.

Only the case (b) is affected by the inhomogeneity. Because
the system is trapped, the amplitude of the spin density
vector is reduced going from the center to the boundary. The
low condensate density near the boundary induces a large
fluctuation of the condensate phase, thus causing s(r,t) to
fluctuate temporally. As a result, the space average of Eq. (3)
depends on the area A of the integral. Figure 3(b) shows two
cases for which the radius of A is RTF/2 and RTF, with the
Thomas-Fermi radius being RTF. The larger value of q(t) for
RTF/2 means that the central spins are more likely to be frozen.

We note that the time T = L/cs is so long that the
system becomes disturbed enough, which is found by the time
development of np. The time T is (a) 572τ , (b) 40/ω, and
(c) 572τ , respectively. We find that np rapidly changes in the
period 0 < t < T , which means that the distribution of the
spin density vector in the wave-number space changes rapidly
too. Thus, in this period, the spin density vector temporally can
point in various directions. Therefore, the time L/cs is appro-
priate for the calculation of the spin-glass order parameter q(t).

We do not know the origin of the spin-glass-like behavior
currently. Of course, our system of spinor BECs is much
different from a magnetic system yielding spin glass, and the
spin turbulence is not spin glass. One possible mechanism
causing the spin-glass-like behavior may be related with the
growth of large-scale spin structures, which is reported for two-
component BECs [27] and spin-1 ferromagnetic spinor BECs
under magnetic fields [28]. We will report this issue shortly.

In summary, we have studied numerically ST in spin-1
spinor BECs. The spectrum of the spin-dependent interaction
energy is found to exhibit a −7/3 power law independently of
the details of the system or how the ST is created. The direction
of the spin density vector is spatially disordered but temporally
frozen in ST, which shows an analogy with the spin-glass state.
Thus we introduced the order parameter of the spin glass into
ST in spinor BECs. The order parameter q(t) grows with a
−7/3 power law, well describing ST. These behaviors should
be accessible experimentally. Some unsolved problems of ST
are described in SM [19].

We thank Shin-ichi Sasa for useful discussions.
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