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Spin-reduced density matrices for relativistic particles
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We present an interpretation for reduced density matrices of secondary variables in relativistic systems via an
analysis of Wigner’s method to construct the irreducible unitary representations of the Poincaré group. We argue
that the usual partial trace method used to obtain spin-reduced matrices is not fully rigorous, however, employing
our interpretation, similar effective reduced density matrices can be constructed. In addition, we show that our
proposal is more useful than the usual one since we are not restricted only to the reduced density matrices that
could be obtained by the ordinary partial trace method.
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In the seminal work of Peres, Scudo, and Terno [1], the
authors showed that the reduced density matrices (RDMs) of
spin obtained by the partial trace of the momentum degrees
of freedom of massive particles do not have well-defined
transformation laws that connect their components in different
inertial frames. This occurs due to the introduction of the
relativistic symmetry in quantum mechanics that leads to the
emergence of a hierarchy of dynamic variables. Relativistic
transformation laws for primary variables (such as momentum)
depend only on the Lorentz transformation acting on the
system, while for secondary variables (such as spin and
polarization) there is also a dependence on the momentum
of the particle.

Since then, relativistic aspects of quantum information
theory have attracted much attention mainly because of issues
related to the behavior of entropy and quantum correlations
for secondary variables in different frames. A large number
of papers related to these subjects [2–14] deals with a regime
where the number of particles does not change, free particles
being described by irreducible unitary representations (IURs)
of the universal cover of the Poincaré group P̃↑

+ [15,16].
However, there are controversies about the validity and
interpretation of the RDMs obtained via the partial trace
over the momentum degrees of freedom, as can be found in
Ref. [17], and more recently in Refs. [18–20]. In this Rapid
Communication we intend to solve these controversies.

We argue that, although the usual partial trace applied
to secondary variables is not fully rigorous, effective RDMs
equivalent to those obtained by this method can be constructed
if a correct interpretation is introduced. Furthermore, our
approach also allows one to construct different RDMs that are
able to describe results that the ordinary ones are incapable of
describing, as we will discuss later. Although the procedure
and interpretation proposed here are valid for both massive and
massless particles, for simplicity we will restrict ourselves
to the case of massive particles. For the sake of clarity,
in the following we will reproduce some steps from the
literature [21–23] used to obtain the IURs of P̃↑

+ that will
be important for our argument. We will use � = 1 and c = 1.
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Consider a 4-momentum p and the homomorphism L from
SL(2,C) to the restricted Lorentz group L↑

+. The set

O(p) ≡ {L(A)p|A ∈ SL(2,C)} (1)

is called the orbit of L↑
+ through p and the 4-momenta in

O(p) are said to be equivalent. Each IUR of P̃↑
+ must have

support concentrated in a single orbit and their structure can
be determined by introducing an improper base {|p,α〉} of
eigenvectors of the 4-momentum operator P μ such that

〈p,α|q,β〉 = 2ωqδ(p − q)δαβ, (2)

where ωq = q0 =
√

‖q‖2 + m. The α labels in {|p,α〉} are the
secondary variables and still have to be specified.

Given q ∈ O(p), the subgroup Gq ⊂ SL(2,C) such that
L(Mq)q = q,∀Mq ∈ Gq , is called little group of q. This
definition implies that the infinite-dimensional IURs of P̃↑

+
are such that

U (Mq) |q,α〉 =
∑

β

Q
q

βα(Mq) |q,β〉 . (3)

The Qq(Mq) matrices form a finite IURs of the little group
Gq and the α labels in |q,α〉 are associated with base states of
this representation in a finite-dimensional Hilbert space Hq .
Hence, the full Hilbert space is a fiber bundle with a base space
given by the space of square integrable functions with respect
to the measure dμ(p) = dp/2ωp and fibersHq . For this reason
we will momentarily use the nonstandard notation |q,αq〉. The
little groups of equivalent 4-momenta are isomorphic and also
are the Hilbert spaces Hq .

To build the infinite-dimensional IURs of P̃↑
+ we need

to introduce a rule to connect the α labels for any q ∈
O(p). Hence we choose a fundamental vector k ∈ O(p) and
introduce a complementary set {C(p,k)} such that for any
q ∈ O(p) there is only one transformation C(q,k) ∈ {C(p,k)}
with L(C(q,k))k = q. For massive particles, k is usually
chosen to be the rest-frame 4-momentum (m,0) and the α

labels are set to satisfy

J |0,αk〉 =
∑

β

(g)βα |0,βk〉 , (4)

where J = (J1,J2,J3) stand for the generators of the infinite-
dimensional IURs of P̃↑

+ associated with the transformations
in the subgroup Gk = SU(2), and g the generators of the
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finite-dimensional IURs of Gk (as an example, for spin half
particles, g = 
σ/2).

Once a complementary set is chosen, we can define the base
states for other 4-momenta equivalent to k as

|p,αp〉C ≡ U [C(p,k)] |0,αk〉 , (5)

where U [C(p,k)] represents the unitary operator associated
with the transformation C(p,k). The C index is introduced
due to the arbitrariness of the complementary set since
any set {C ′(p,k)} composed of transformations of the form
C ′(q,k) = C(q,k)Mk(q), with Mk(q) ∈ Gk and C(q,k) ∈
{C(p,k)}, would serve as a complementary set. Therefore we
can fully define the IURs of P̃↑

+ by

U (A) |p,αp〉C =
∑

β

Qk
βα

(
MC

k (A,p)
) |L(A)p,βL(A)p〉C ,

where A ∈ SL(2,C) and the generalized Wigner rotation reads

MC
k (A,p) = C−1(L(A)p,k)AC(p,k). (6)

This also allows us to introduce the observables associated
with the secondary variables. For each p,

GC(p) |p,αp〉C =
∑

β

(g)βα |p,βp〉C , (7)

where GC(p) = U [C(p,k)]JU †[C(p,k)] is a set of three
generators for the infinite-dimensional IURs of P̃↑

+ associated
with the transformations in the subgroup Gp. Although the α

labels for different q ∈ O(p) are associated with different sets
of operators, we can always construct an operator

GC =
∑

α

∫
dp
2ωp

GC(p)|p,αp〉C C〈p,αp| (8)

such that

GC |q,αq〉C =
∑

β

(g)βα |q,βq〉C , ∀q ∈ O(p). (9)

It is worth noting that the arbitrary dependence on the
complementary set and the explicit dependence of the α labels
on the momentum degrees of freedom in Eqs. (7)–(9) make it
impossible to define any GC as being 1 ⊗ g, as it was assumed
explicitly or implicitly in several papers [1–5].

As an example we can choose the complementary set as
being formed only by boosts, C(p,k) ≡ B(p,k), leading to

GB(p) ≡ S(p) = 1

m

(
Jωp − (J · p)p

m + ωp
− (p × K)

)
, (10)

and the spin operators [24]

GB ≡ S = 1

m

(
JP 0 − (J · P)P

m + P 0
− (P × K)

)
, (11)

with K the boost generators. The base {|p,αp〉B} related to the
complementary set {B(p,k)} is called the spin base.

Now we can look at the spin RDMs obtained by the usual
partial trace over the momentum degrees of freedom. A general
density matrix for a one-particle state can be written in the spin
base as

ρ =
∑
α,β

∫∫
dp
2ωp

dq
2ωq

ρB
αβ(p,q)|p,αp〉B B〈q,βq |, (12)

where ρB
αβ(p,q) = B〈p,αp|ρ|q,βq〉B . Assuming that we can

trace the momentum degrees of freedom, we obtain the spin
RDMs

ρspin =
∑
α,β

∫
dp
2ωp

ρB
αβ (p,p)|αp〉B B〈βp|. (13)

If we compare two spin RDMs obtained in this way, “inner
products” of the form B〈αp|βq〉B will appear. These operations
are not well defined since the states belong to isomorphic
but different Hilbert spaces. However, in works where the
spin RDMs obtained by the partial trace method are used, the
momentum subindices are not explicit and the authors assume,
explicitly or implicitly, that B〈αp|βq〉B = δαβ [1–3,5,11,18,19].
For this reason the usual partial trace method over the
momentum degrees of freedom is not entirely stringent since
we need to impose an assumption about B〈αp|βq〉B , which is
equivalent to the unnatural statement that there is a privileged
complementary set. Observe that we are not contradicting (2)
because C〈αp|βp〉C = δαβ is well defined since the states are
in the same Hilbert space Hp.

Two questions arise naturally. First, can we introduce a way
to recover the results obtained by the partial trace method in a
consistent way? Second, if we answer the first question in the
affirmative, can the solution produce some kind of different
result? To answer the first question we analyze the mean value
of GC given by

Tr(ρGC) =
∑
α,β

∫
dp
2ωp

(g)βαρC
αβ(p,p). (14)

We can introduce a Hilbert space HC isomorphic to the Hp’s
and rewrite (14) as

Tr(ρGC) = TrHC

⎡
⎣g

⎛
⎝∑

αβ

∫
dp
2ωp

ρC
αβ(p,p) |α〉 〈β|

⎞
⎠

⎤
⎦ ,

where {|α〉} forms a base in HC . This allows us to define a
density matrix

τC =
∑
αβ

|α〉 〈β|
( ∫

dp
2ωp

ρC
αβ(p,p)

)
(15)

in the space of bounded linear operators B(HC). If we choose
{C(p,k)} = {B(p,k)}, the matrix τB will be equal to the spin
RDMs given by the customary partial trace method, but now
the inner product 〈α|β〉 = δαβ will be well defined since the
states are in the same Hilbert space HB . Of course, if we
change the complementary set associated with GC the effective
RDMs furnished by our approach will be different and, in
general, there will exist no well-defined transformation law
that connects these different matrices.

To finish answering the first question we have to give
an interpretation of the effective RDMs proposed. This is
achieved by observing that the mean value of any observable
of the form AC = a0I + a · GC , with a0 and a real, can be
written as

Tr(ρAC) = TrHC
(τCaC), (16)

where aC = a0g0 + a · g (g0 is the identity operator). There-
fore, for a given complementary set {C(p,k)}, the RDMs
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obtained by our proposition give the statistical predictions for
the results of measurements associated with observables that
can be written as a linear combination of the components of
GC and the identity operator I . Another way of introducing
the effective density matrices and the interpretation presented
above is to define τC as the solution of (16), which leads
to Eq. (15) due to the uniqueness property. This is the same
approach used to introduce the partial trace as the only way to
obtain consistent RDMs for subsystems of ordinary composite
systems [25]. Therefore this approach allows us to make
explicit the inconsistency of the usual partial trace method
in the context of secondary variables.

According to the presented interpretation, the RDMs that
were obtained describe the statistical predictions of a system
if we restrict the kind of measurements that we are able to
perform over it. Furthermore, our approach permits us to
construct RDMs for any choice of complementary set, as can
be seen in (15), so we are not restricted only to the usual
spin RDMs. The only question that arises when we construct
a RDM for an arbitrary complementary set is how to find an
experimental setup that allows us to measure the corresponding
observables.

Next we will address the second question. To do it we
analyze a model of spin measurement presented in Ref. [18]
for which the results could not be described by the spin RDMs
obtained by the usual partial trace method. The proposed model
consists of a neutral spin-1/2 particle that propagates with
velocity

v = v[cos(θ )x̂ + sin(θ )ŷ], (17)

and passes through two Stern-Gerlach (SG) apparatuses, the
first (second) one in the x̂ (ŷ) direction. The authors compute
the expectation value of the measurement of the second
apparatus after the first one has yielded an eigenvalue +1/2
for the spin component and show that, if they consider the
RDMs obtained by the partial trace of the momentum degrees
of freedom, they cannot predict the results of such a model of
spin measurement even when the particle is in a momentum
eigenstate. Here we are going to show that the authors arrived
at this conclusion only because the observable associated with
their measurement is not a linear combination, independent
of the momentum degrees of freedom, of the components
of the spin operator given by (11) and, if our interpretation
is used, correct effective RDMs can be constructed in such
a way that the results obtained by the authors are perfectly
reproduced, circumventing in some sense the assumption made
by them that “the definition of a reduced density matrix for the
particle spin is meaningless.” To this end we have to identify
the observable that is being measured by their model of the
SG apparatus and associate it with a complementary set.

Following the argument in Refs. [18,19] we consider that
the quantization axis for the spin of a particle passing in the
SG is given in the direction of the magnetic field in the rest
frame of the particle by

n̂(n̂0,p) = (γ + 1)n̂0 − γ (n̂0 · v)v
[1 − (n̂0 · v)2]1/2(γ + 1)

, (18)

where γ = (1 − v2)−
1
2 and n̂0 is the direction of the inhomo-

geneous magnetic field in the laboratory frame. Then we can

introduce two rotations R(n̂0,p) and R′(n̂0,p) such that

n̂(n̂0,p) = R(n̂0,p)n̂0 = R′(n̂0,p)ẑ. (19)

Note that there is some arbitrariness in the definition of these
rotations since (19) does not uniquely define them, however,
this arbitrariness will not be important for our main results. In
what follows we will misuse the notation and use R(n̂0,p) for
both the 3 × 3 rotation matrices and the correspondent SU(2)
matrices. Then the SG equipment will measure J · n̂(n̂0,p) in
the rest frame of the particle, i.e., for a given momentum p the
observable that will be measured is

U [B(p,k)]J · n̂(n̂0,p)U †[B(p,k)]

= U [C(n̂0; p,k)]J · n̂0U
†[C(n̂0; p,k)]

= S(p) · n̂(n̂0,p), (20)

where C(n̂0; p,k) = B(p,k)R(n̂0,p).
Henceforth the momentum subindices for base states will

be omitted. We define |p,α〉Cn0 as the eigenstate of the
operator (20) such that

S(p) · n̂(n̂0,p) |p,α〉Cn0 = α |p,α〉Cn0 . (21)

Thus

|p,α〉Cn0 = U [C(n̂0; p,k)] |0,α〉Cn0 , (22)

where |0,α〉Cn0 is such that J · n̂0 |0,α〉C = α |0,α〉C .
If we want to describe the observable associated with the

experiment for any momentum we use (8) to write the operator

G3
Cn0

=
∑

α

∫
dp
2ωp

S(p) · n̂(n̂0,p)|p,α〉Cn0 Cn0 〈p,α|,

which represents the observable measured by the SG apparatus
and is clearly not a linear combination of the components of
the spin operator in (11).

Now we suppose an eigenstate of momentum with eigen-
value +1/2 for an SG-x̂ measure, i.e., |ψ〉 = |p, + 1/2〉Cx ,
where Cx is related to the complementary set composed of
operators of the form C(x̂; p,k) = B(p,k)R(x̂,p), and p =
γmv, with v given by (17). We want to evaluate the expectation
value of a measure realized by an SG-ŷ apparatus over this
state. To do so we will need the following relations:

|p,α〉Cx =
∑

β

Qk
βα[R′(x̂,p)] |p,β〉B , (23)

|p,α〉Cy =
∑

β

Qk
βα[R′(ŷ,p)] |p,β〉B , (24)

where Cy is associated with the complementary set of the
second SG, formed by transformations of the form

C(ŷ; p,k) = B(p,k)R(ŷ,p). (25)

For the momenta we are considering the rotation matrices
R′(x̂,p) and R′(ŷ,p) are

R′(i,p) =
√

2

2

(
ei(χi+φi )/2 iei(χi−φi )/2

ie−i(χi−φi )/2 e−i(χi+φi )/2

)
, (26)

with i = x̂,ŷ and

cos(χi) = n̂(i,p) · ŷ, sin(χi) = n̂(i,p) · x̂. (27)
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The angle φi is associated with the degree of arbitrariness that was mentioned earlier. For spin half particles Qk[R′(n̂0,p)] =
R′(n̂0,p) and, using the approach presented here, we can construct the density matrix that describes the result of the measurements
of the SG-ŷ apparatus:

τCy = 1

2

(
1 + n̂(x̂,p) · n̂(ŷ,p) e−iφy [n̂(x̂,p) × n̂(ŷ,p)] · ẑ

eiφy [n̂(x̂,p) × n̂(ŷ,p)] · ẑ 1 − n̂(x̂,p) · n̂(ŷ,p)

)
.

It is important to note that the momentum only appears
explicitly in τCy because we are dealing with a momentum
eigenstate. Otherwise, integrals over the momentum degrees
of freedom would appear inside the matrix. We also emphasize
that the dependence on n̂(i,p), with i = x̂,ŷ, is due to the
effective feature of the RDMs.

The observable associated with the measurement of this SG
is GCy

3 and, therefore, for the correspondent effective reduced
density matrix, this observable will be described by g3 = σ3/2,
where σ3 is the usual Pauli matrix. Then the expectation value
for the given measurement is

TrHCy

(σ3

2
τCy

)
= −v2 cos θ sin θ

2
√

(1 − v2 cos2 θ )(1 − v2 sin2 θ )
,

in accordance with Ref. [18].
Finally, we need to analyze the importance of the present

formalism for relativistic quantum information theory. To
achieve this goal we have to answer a last question: Given an
apparatus described by observables GC and RDMs associated
with the corresponding complementary set, what kind of
Lorentz transformation can we perform over the apparatus
and still use the same RDMs to describe the system? Assuming
that we apply a transformation U (A) over the apparatus and
reminding that

GC = (
G1

C,G2
C,G3

C

) = (
G23

C ,G31
C ,G12

C

)
, (28)

the new observable associated with the measurement will be
given by

U (A)G l
CU †(A) = U (A)Gmn

C U †(A)

=
∑

α

∫
dp
2ωp

MC
k (A−1,p)mi MC

k (A−1,p)nj

×G
ij

C (p)|p,α〉C C〈p,α|, (29)

the sum over the latin indexes i,j being from 1 to 3. This new
observable will be a linear combination of the components of
GC only if MC

k (A−1,p) = MC
k (A−1), in which case

U (A)Gjk

C U †(A) = MC
k (A−1)mi MC

k (A−1)njG
ij

C . (30)

For quantum information theory the RDM formalism will
be particularly interesting when the set of transformations
that satisfy (30) for a given complementary set is the
group of rotations, since it will be possible to rotate the
equipment and still use the same RDMs to describe the
measurements. This will not be the case for every com-
plementary set, as we can see from the previous example.
An example of a complementary set for which the rotation
group satisfies (30) is the one composed only of boost
(spin base).

To summarize this Rapid Communication, we have ad-
dressed the issue of the adequacy of the partial trace for the
construction of RDMs of secondary variables, in particular,
spin. We showed that, despite being constructed by a not quite
stringent method, the RDMs obtained by the partial trace
over the momentum degrees of freedom can be recovered
by introducing an adequate interpretation and abandoning
the usual partial trace. This interpretation shows that there
is no unique definition for the RDMs of spin: Depending
on the set of observables associated with the measure ap-
paratus, the associated RDMs will be different. Thus we
have presented a way to unify, without inconsistencies,
the usual results in literature [1–5,7,11,12] with the recent
criticisms in Refs. [18,19]. Our result is interesting for quantum
information theory since, once a good spin measurement will
be defined, it will be important to know how to construct
RDMs associated with this measurement and if these RDMs
are going to be invariant by rotation of the equipment. As
a final remark we stress that the present formalism may be
useful to solve other issues related to relativistic quantum
information, such as the spin tomography of relativistic
massive particles, a problem that was recently raised in
Ref. [26].
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