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High-threshold topological quantum error correction against biased noise
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Quantum information can be protected from decoherence and other errors, but only if these errors are sufficiently
rare. For quantum computation to become a scalable technology, practical schemes for quantum error correction
that can tolerate realistically high error rates will be necessary. In some physical systems, errors may exhibit a
characteristic structure that can be carefully exploited to improve the efficacy of error correction. Here we describe
a scheme for topological quantum error correction to protect quantum information from a dephasing-biased error
model, where we combine a repetition code with a topological cluster state. We find that the scheme tolerates
error rates of up to 1.37%–1.83% per gate, requiring only short-range interactions in a two-dimensional array.
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Many physical systems have been identified as candidates
for the qubits in a quantum computer [1], and each of these
systems will suffer from noise with distinct structure. Quantum
error correction [2] can suppress a remarkably wide range of
noise, including long-range correlated noise, Gaussian noise,
and qubit loss [3–6]. One particularly interesting noise model
is so-called biased noise, where the characteristic time for
dephasing (loss of phase coherence) is much shorter than the
equivalent time for population relaxation (exchange of energy
with the environment) [7–9]. This may be the case in several of
the most promising physical systems, including qubits based
on superconducting circuits, semiconductor spins, trapped
ions, and negatively charged nitrogen vacancy centers in
diamond [10–15]. Aliferis and Preskill among others have pro-
posed schemes for quantum error correction using a restricted
set of quantum gates for which biased noise is a reasonable
assumption [16–19]. In particular, the fundamental physical
operation in these schemes is the two-qubit controlled-phase
gate—derived from the two-qubit Ising Hamiltonian—which
commutes with noise due to dephasing, thereby preserving
the bias. These schemes indicate that biased noise can be
successfully exploited. Their drawback is that they require
long-range interactions to achieve arbitrarily low logical error
rates, which may be difficult to achieve with sufficient fidelity.

A promising alternative may involve topological quantum
error correction [20–23]. Assuming that only short-range
interactions are available, some topological codes tolerate
error rates more than two orders of magnitude higher than
concatenated codes [23–30]. However, existing schemes for
topological error correction do not exploit biased noise,
leaving room for significant improvement [31]. In this Rapid
Communication we describe a scheme for topological error
correction against biased noise, where a repetition code is
used to suppress errors due to dephasing and a topological
code is used to suppress the errors that remain. For highly
biased noise we find that the scheme tolerates error rates of up
to 1.37%–1.83% per gate. In practice, the scheme may operate
with error rates approaching one percent per gate, at which
other schemes cannot effectively suppress errors. By reducing
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the requirements for scalable quantum computing in systems
where dephasing is the dominant error, our scheme illustrates
the importance of tailoring quantum error correction to the
wide variety of systems and architectures under consideration.

Repetition code in the dual basis. Our scheme is based on a
concatenation of two stabilizer quantum codes [32]. Following
Aliferis and Preskill, the base-level code in our scheme is a
length-n quantum repetition code in the dual basis, denoted by
C1 [16]. The generators of the stabilizer group of C1 are

I⊗i ⊗ Xi+1 ⊗ Xi+2 ⊗ I⊗n−i−2, i = {0,1, . . . ,n − 2}, (1)

and the encoded Pauli operators are

X̄ = X1 ⊗ I⊗n−1, Z̄ = Z1 ⊗ Z2 ⊗ · · · ⊗ Zn, (2)

where X and Z are the usual single-qubit Pauli operators.
Because |+̄〉 = |+〉⊗n, preparation of |+̄〉 involves preparing
|+〉 for all n qubits. Similarly, measurement of X̄ involves
measurement of X for all n qubits and taking a majority vote
of the n outcomes. The last basic ingredient is the encoded
controlled-phase gate (or, controlled-Z) between two C1 code
blocks, which involves n2 physical controlled-Z gates, as
shown in Fig. 1(a). As Z errors are not spread among the
qubits in a code block (they commute with the controlled-Z
gates), C1 protects against �(n − 1)/2� Z errors per block but
offers no protection against X errors.

Topological cluster-state error correction. The top-level
code in our scheme is the topological code associated with a
three-dimensional topological cluster state, denoted by C2 [22].
The elementary cell of the topological cluster state is shown
in Fig. 1(b). The topological cluster state is divided into three
distinct regions: V , D, and S. To enact computation, qubits in
V are measured in the X basis, qubits in D are measured in the
Z basis (or are simply absent from the cluster state), and qubits
in S are measured in either the Y or (X + Y )/

√
2 basis [22].

Measurements in D are used to define tubular structures known
as defects, which encode logical qubits. Defects are braided
with each other to enact a set of Clifford gates. Measurements
in S are used to prepare magic states [33], which can be distilled
using Clifford gates, enabling a universal set of logical gates.
For further details, the reader is referred to [22]. Here we will
focus on error correction in V . Error correction occurs on the
primal lattice and its dual. However, for simplicity, and without
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FIG. 1. (Color online) Generating the topological cluster state. (a) Set of physical controlled-Z gates to execute the encoded controlled-Z
gate between C1 code blocks for various values of the repetition code length n. The gates in each gray block can be performed in parallel in one
time step, so that no qubit is ever idle in between gates. (b) Elementary cell of the topological cluster state, with qubits on the faces and edges
of a three-dimensional lattice. The generators of the stabilizer group of the topological cluster state are Xi ⊗j∈N(qi ) Zj∀i, where qi is a qubit
and N (qi) is the set of its four nearest neighbors. The qubits on the six faces of the cell are measured in the X basis to determine the parity of a
cell. (c) Chains of Z errors, such as E, are revealed by cells with odd parity at the endpoints, which combine to give an error syndrome. In this
case, C is a candidate correction consistent with the syndrome. (d) Order of encoded controlled-Z gates to prepare the topological cluster state
from encoded C1 qubits in the state |+̄〉.

loss of generality, we will consider error correction on only
the primal lattice.

After qubits in V are measured in the X basis, error correc-
tion in C2 proceeds by computing the parity of elementary
cells—the parity of a cell is equal to the product of the
measurement results of the qubits on its six faces. In the
absence of errors, the parity of each cell is +1. The endpoints
of chains of Z errors are revealed by cells with parity −1
[see Fig. 1(c)], called the syndrome. Error correction involves
identifying a set of errors consistent with the syndrome using
an appropriate algorithm [34], then applying the corresponding
correction [21,23]. Logical errors occur when errors and
corrections combine to connect or encircle defects in D. This
can be made less likely by increasing the separation and
circumference of defects, parametrized by distance d. For a
standard (unbiased) error model, the threshold of topological
cluster-state error correction is approximately 6.3 × 10−3 per
gate [6]. For error rates lower than this value, increasing d will
always reduce the logical error rate.

Concatenated scheme. We arrive at our scheme by con-
catenating C1 with C2—that is, the topological cluster state is
prepared from qubits encoded in a repetition code. Specifically,
the topological cluster state is prepared by preparing encoded
qubits in the state |+̄〉 and then applying encoded controlled-Z
gates in the order indicated in Fig. 1(d). Error correction of
C1 code blocks is performed only at measurement by majority
voting, not between the encoded controlled-Z gates. Errors can
spread between nearby C1 code blocks, but the local nature of
the circuit to prepare the topological cluster state ensures that
errors do not spread beyond a small neighborhood, regardless
of the distance of C2. This leaves us with C1 code blocks with
some encoded error rate. Then, error correction in C2 proceeds
in the usual way. Topological cluster-state error correction can
be mapped to the random plaquette Z2-gauge model in three
dimensions [21], which can tolerate noise of approximately

2.9 × 10−2 per qubit [35,36]. Therefore, C2 will be effective if
the encoded error rate is below this value. The optimal length
of the repetition code will minimize the encoded error rate
and will be a function of the physical error rate and the bias.
Lastly, whenever a C1 code block is measured, the conditional
probability of an encoded error is approximated and used to
more accurately identify residual errors in C2 [16,37,38].

Monte Carlo simulations. To estimate the performance of
our scheme at high physical error rates, we perform Monte
Carlo simulations of topological cluster states. The set of
physical operations required in our concatenated scheme is
preparation of the state |+〉 = (|0〉 + |1〉)/√2, measurement
of X, and the controlled-Z gate. We simulate all circuits under
a stochastic error model parametrized by the physical error
rate p and the dephasing bias β. Our error model is motivated
by physical systems in which the computational basis states
correspond to the energy eigenstates of an unperturbed qubit.
In this case we may expect that noise due to fluctuations in
energy levels—which will be manifested as dephasing—will
be much stronger than noise due to transitions between energy
eigenstates [16,17]. Specifically, in our error model, erroneous
controlled-Z gates are modeled by perfect controlled-Z gates
followed by dephasing-biased noise, where we treat X and
Z errors independently—with probability p/β an error is
chosen randomly from the set {I ⊗ X,X ⊗ I,X ⊗ X} and
with probability p an error is chosen randomly from the
set {I ⊗ Z,Z ⊗ I,Z ⊗ Z}. Erroneous state preparation occurs
with probability p and is modeled by perfect state prepa-
ration followed by a Pauli error chosen randomly from the
set {X,Y,Z}. Similarly, erroneous measurement occurs with
probability p and is modeled by perfect measurement preceded
by a Pauli error chosen randomly from the set {X,Y,Z}.

In our simulations we keep track of Pauli errors as they
propagate through the full concatenated circuit as the topo-
logical cluster state is prepared from encoded C1 qubits. For
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FIG. 2. (Color online) Logical error rate of the concatenated scheme as a function of the physical error rate p for various values of the
topological code distance d , where n = 3. The curves are best fits accounting for finite-size effects [35]. The threshold is the value of p

for which the logical error rate is independent of d . For physical error rates below the threshold, increasing d will always result in a lower
logical error rate. (a) For β = 102, the threshold is 1.443 ± 0.001 × 10−2. The corresponding threshold for n = 2 is 1.370 ± 0.003 × 10−2.
(b) For β = 103, the threshold is 1.560 ± 0.001 × 10−2. The corresponding threshold for n = 2 is 1.421 ± 0.003 × 10−2. Recall that, in our
concatenated scheme, error correction in C2 is assisted by information about the reliability of the C1 code blocks. Even the smallest nontrivial
repetition code (n = 2) is useful, as it can detect and locate encoded errors. The threshold for located errors in C2 is determined by the
bond-percolation threshold in three dimensions [6], which is equal to 24.9% [40], indicating that located errors are much easier to correct than
than unlocated errors. This fact, combined with the fact that encoded controlled-Z gate requires fewer physical gates for n = 2 than for n = 3,
may explain why the thresholds for n = 2 approach those for n = 3.

each instance of errors, upon measurement of the topological
cluster state, the error syndrome is calculated and converted
to a weighted graph, where cells with parity −1 are joined by
edges with weight related to the distance between them. We
infer a correction operation by performing minimum-weight
matching on the graph. This is done with the Blossom V im-
plementation of Edmonds’ minimum-weight perfect matching
algorithm [34,39]. Error correction fails if the initial errors
combined with any corrections form a logical operator. Logical
error rates for fixed parameters are averaged over no fewer than
105 independent trials and, for simplicity, we assume periodic
boundary conditions. Thresholds are calculated by fitting data
to a universal scaling function, following Wang et al. [35].

We are interested in the threshold error rate of the
concatenated scheme, below which the logical error rate can
be suppressed arbitrarily by increasing the distance of C2.
The threshold is a function of the bias β and the length of
the repetition code n. In the case where n = 3 and β = 102

(β = 103), we find that the threshold of the concatenated
scheme is 1.443 ± 0.001 × 10−2 (1.560 ± 0.001 × 10−2), as
shown in Fig. 2. If the bias is greater, or if the physical
error rate is lower, a larger repetition code may be more
effective. These thresholds are significantly higher than the
threshold of topological cluster-state error correction without
the underlying repetition code (n = 1), which, for an identical
dephasing-biased error model (β = 103), we find to be 7.423 ±
0.001 × 10−3. This indicates that there is a range of physical
error rates for which suppression of the logical error rate is
weak or nonexistent without the underlying repetition code, as
shown in Fig. 3.

We also consider the case where the three-dimensional
arrangement of qubits is projected to a two-dimensional
plane, noting that it is sufficient to prepare only two adjacent
slices of the cluster at a time with a fixed number of qubits
[28]. In this case, initialization and measurement may be
performed using the same (nondestructive) physical operation,
decreasing the number of error prone operations in the
circuit. In the case where n = 3 and β = 103, we find that
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FIG. 3. (Color online) Logical error rate with (n = 3) and without
(n = 1) the underlying repetition code as a function of the topological
code distance d for β = 103 and p = {1.25,1.00,0.75,0.50} × 10−2

(n = 3) and p = {0.75,0.50} × 10−2 (n = 1), in order from top to
bottom. All cases are below their respective thresholds, except the n =
1, p = 0.75 × 10−2 case, which is marginally above the threshold of
∼0.742 × 10−2. We note that the corresponding curves for n = 2 (not
shown) are qualitatively the same as for n = 3, as these cases are both
below their respective thresholds in this regime.
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the threshold is increased to 1.693 ± 0.001 × 10−2. If the
probability of a measurement error is reduced to p/100, then
the threshold is again increased to 1.830 ± 0.001 × 10−2.
Further improvement in the threshold may be found by
considering a more sophisticated algorithm for interpreting
the combined syndrome of C1 and C2. On the other hand,
alternative decoding algorithms may have a lower threshold
but may be more practical for large codes due to their reduced
complexity [41,42].

Discussion. In summary, we have found that the threshold
for topological quantum error correction can be significantly
increased by exploiting biased noise, without compromising
the local nature of the scheme. The cost is a small constant
increase in the overhead and more extensive (yet still local)
interactions between nearby qubits. This tradeoff is a simple
one, but a full assessment of any scheme for fault-tolerant

quantum computing will involve a number of architectural
considerations and depend on a range of factors [43]. As such,
it will be instructive to develop and study specific architectures
to implement our scheme. As suggested by Aliferis et al., the
existence of effective schemes for quantum error correction
against biased noise has implications for the design of qubits
and gates [17]. For example, eliminating the need to implement
Hadamard gates at the physical level may allow for simpler and
more reliable implementations of other physical operations.
Lastly, as the efficacy of our scheme depends on the strength
of the bias, it will be useful to estimate physically realistic
values of β for various architectures. This has been done for
an architecture based on superconducting circuits [17], but not
in other physical systems. This is the subject of further work.
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