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Controllable optical bistability based on photons and phonons in a two-mode optomechanical system

Cheng Jiang,1,* Hongxiang Liu,1,2 Yuanshun Cui,1,† Xiaowei Li,1 Guibin Chen,1 and Xuemin Shuai3
1School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, 111 West Chang Jiang Road, Huai’an 223001, China

2School of Physics, Northeast Normal University, Changchun 130024, China
3Department of Physics, Chang’an University, Nan Er Huan, Xi’an 710064, China

(Received 29 April 2013; published 12 November 2013)

We explore theoretically the bistable behavior of the intracavity photon number in a two-mode cavity
optomechanical system, where two cavity modes are coupled to a common mechanical resonator. When the
two cavity modes are driven by two pump laser beams, respectively, we find that the optical bistability can be
controlled by tuning the power and the frequency of the pump beams. The common interaction with a mechanical
mode enables one to control the bistable behavior in one cavity by adjusting the pump laser beam driving another
cavity. We also show theoretically that both branches of optical bistability at photon numbers below unity can
exist in this two-mode optomechanical system. This phenomenon can find potential applications in a controllable
optical switch.
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I. INTRODUCTION

Cavity optomechanics [1–3] explores the interaction be-
tween a mechanical resonator and photons in a driven electro-
magnetic cavity via radiation pressure force. In the past decade,
remarkable progress has been made in this emerging field,
including quantum ground state cooling of the nanomechan-
ical resonators [4,5], optomechanically induced transparency
(OMIT) [6–8], and coherent photon-phonon conversion [9–11]
and quantum-state transfer [12–15]. The force exerted by
a single photon on a macroscopic mechanical resonator is
typically weak and intrinsically nonlinear. Experiments to
date have focused on the regime of strong optical driving,
where the optomechanical coupling can by enhanced by a
factor

√
n, where n is the mean photon number in the cavity

[16,17]. But such enhancement comes at the cost of losing the
nonlinear character of the photon-photon interaction. Recently,
several theoretical studies of the single-photon strong-coupling
regime, where the single-photon optomechanical coupling rate
g exceeds the cavity decay rate κ , have been reported in single-
mode [18–24] or two-mode optomechanical systems [25–27].
In this regime, the inherently nonlinear optomechanical inter-
action is significant at the level of single photons and phonons.

Among all the nonlinear phenomena in a cavity optome-
chanical system, optical bistability is one of the focuses
of research interest. Recently, the bistable behavior of the
mean intracavity photon number in optomechanical systems
with a Bose-Einstein condensate (BEC) [28–30], ultracold
atoms [31–33], and a quantum well [34] has been extensively
studied. The photon number in the optical cavity with a BEC
or ultracold atoms to allow bistable behavior is usually low
and even below unity due to the collective atomic motion.
However, in the generic optomechanical system consisting
of an empty optical cavity with one movable end mirror,
optical bistability typically occurs at high photon numbers.
In this Brief Report, we theoretically investigate the bistable
behavior of the intracavity photon number in a two-mode
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optomechanical system in the simultaneous presence of two
strong pump laser beams and a weak probe laser beam. This
Brief Report is organized as follows. Section II gives the
theoretical model and method. Results and discussion are given
in Sec. III. A summary is presented in Sec. IV.

II. MODEL AND THEORY

The system under consideration is shown in Fig. 1. Two op-
tical cavity modes are coupled to a common mechanical mode
via an interaction Hamiltonian HI = ∑

k=1,2 h̄gka
†
kak(b† + b),

where ak and b are the annihilation operators of the cavity and
mechanical mode, respectively, and gk is the single-photon
coupling rate between the mechanical mode and the kth
cavity mode. Physically, gk represents the frequency shift of
cavity mode k due to the zero-point motion of the mechanical
resonator. The left cavity is driven by a strong pump laser
beam EL of frequency ωL and a weak probe laser beam
Ep of frequency ωp simultaneously, and the right cavity is
only driven by a strong pump laser beam ER of frequency
ωR . In a rotating frame at the pump frequency ωL and ωR ,
the Hamiltonian of the two-mode optomechanical system
reads [11]

H =
∑
k=1,2

h̄�ka
†
kak + h̄ωmb†b −

∑
k=1,2

h̄gka
†
kak(b† + b)

+ ih̄
√

κe,1EL(a†
1 − a1) + ih̄

√
κe,2ER(a†

2 − a2)

+ ih̄
√

κe,1Ep(a†
1e

−iδt − a1e
iδt ). (1)

The first term represents the energy of the two optical
cavity modes with resonance frequency ωk(k = 1,2), where
�1 = ω1 − ωL and �2 = ω2 − ωR are the corresponding
cavity-pump field detunings. The second term gives the energy
of the mechanical mode with resonance frequency ωm and
effective mass m. The last three terms describe the interaction
between the input fields and the cavity fields, where EL,
ER , and Ep are related to the power of the applied laser
fields by |EL| = √

2PLκ1/h̄ωL, |ER| = √
2PRκ2/h̄ωR , and∣∣Ep

∣∣ = √
2Ppκ1/h̄ωp (κk is the linewidth of the kth cavity

mode), respectively. Each optical cavity is coupled not only to
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FIG. 1. (Color online) Schematic of a two-mode optomechanical
system where two optical cavity modes, a1 and a2, are coupled to the
same mechanical mode b. The left cavity is driven by a strong pump
beam EL in the simultaneous presence of a weak probe beam Ep ,
while the right cavity is only driven by a pump beam ER .

a shared mechanical mode but also to an optical bath at rate κi,k

and to an external photonic waveguide at rate κe,k . Therefore,
the total cavity linewidth κk = κi,k + κe,k . Here, δ = ωp − ωL

is the detuning between the probe laser beam and the left pump
laser beam.

According to the Heisenberg equations of motion and the
commutation relation [ak,a

†
k] = 1 and [b,b†] = 1, the temporal

evolutions of operators a1, a2, and Q [which is defined as
Q = b† + b] can be obtained. Introducing the corresponding
damping and noise terms for the mechanical and cavity modes,
we derive the quantum Langevin equations as follows:

ȧ1 = −i(�1 − g1Q)a1 − κ1a1 + √
κe,1(EL + Epe−iδt )

+
√

2κ1ain,1, (2)

ȧ2 = −i(�2 − g2Q)a2 − κ2a2 + √
κe,2ER +

√
2κ2ain,2, (3)

Q̈ + γmQ̇ + ω2
mQ = 2g1ωma

†
1a1 + 2g2ωma

†
2a2 + ξ. (4)

The cavity modes decay at the rate κk (k = 1,2) and are
affected by the input vacuum noise operator ain,k with zero
mean value, and the mechanical mode is affected by a viscous
force with damping rate γm and by a Brownian stochastic force
with zero mean value ξ [35].

Setting all the time derivatives to zero, we derive the steady-
state solution to Eqs. (2)–(4):

as,1 =
√

κe,1EL

κ1 + i�′
1

, as,2 =
√

κe,2ER

κ2 + i�′
2

,

(5)

Qs = 2

ωm

(g1|as,1|2 + g2|as,2|2),

where �′
1 = �1 − g1Qs and �′

2 = �2 − g2Qs are the effec-
tive cavity detunings including radiation pressure effects. The
stability condition for the coupled system can be derived by
means of the Routh-Hurwitz criterion [36], whose general
form is somewhat cumbersome. However, in the large cooper-
ativity limit [i.e., Ck ≡ G2

k/(κkγm) � 0, where Gk = gkas,k],
the explicit expression can be approximated as [37]

G̃2 > C̄γm max

[
κ1 − κ2,

κ2
2 − κ2

1

2γm + κ1 + κ2

]
, (6)

where G̃ ≡
√

G2
1 − G2

2 and C̄ ≡ (G2
1 + G2

2)/[γm(κ1 + κ2)].
The mean intracavity photon numbers npk = |as,k|2 can be

determined by the following coupled equations:

np1 = κe,1E
2
L

κ2
1 + [

�1 − 2g1/ωm(g1np1 + g2np2)
]2 , (7)

np2 = κe,2E
2
R

κ2
2 + [

�2 − 2g2/ωm(g1np1 + g2np2)
]2 . (8)

This form of coupled cubic equation is characteristic of
the optical multistability [31,32]. It is clearly seen from
Eqs. (7) and (8) that intracavity photon numbers np1 and
np2 are interconnected, which can be tuned by the power and
frequency of the pump laser beams via changing parameters
EL, ER , �1, and �2. This enables us to control the intracavity
photon numbers in a more diverse way. For example, the
photon number in the right cavity np2 can be controlled by the
right pump beam directly or by the left pump beam indirectly,
which will be discussed in the following.

III. NUMERICAL RESULTS AND DISCUSSION

We consider for illustration an experimentally realized two-
mode optomechanical system. The parameters used are [11]
ω1 = 2π × 205.3 THz, ω2 = 2π × 194.1 THz, κ1 = 2π ×
520 MHz, κ2 = 1.73 GHz, κe,1 = 0.2κ1, κe,2 = 0.42κ2, g1 =
2π × 960 kHz, g2 = 2π × 430 kHz, ωm = 2π × 4 GHz,
Qm = 87 × 103, where Qm is the quality factor of the
nanomechanical resonator and the damping rate γm is given by
ωm

Qm
. Substituting the numerical value of κ1,κ2, and γm into the

stability condition (6), we find that G1 > 1.36G2 is required
for the system to be stable. The stability condition is always
satisfied in the following chosen parameter regime.

The two-mode optomechanical system we consider here
enables more controllability in the bistable behavior of
the intracavity photon number. Figure 2(a) plots the mean
intracavity photon number in the left cavity as a function
of the left cavity-pump detuning �1 = ω1 − ωL for various
pump powers. When the power of the left pump beam is
PL = 0.1 μW, the curve is nearly Lorentzian. However, when
the power increases above a critical value, the system exhibits

FIG. 2. (Color online) Mean intracavity photon number of the left
cavity as a function of (a) the cavity-pump detuning �1 = ω1 − ωL

for left pump power PL equal to 0.1, 2, and 3 μW (from bottom to
top) and (b) the left pump power PL for �1 = �2 = ωm. The right
pump power is kept equal to 0.1 μW.
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bistable behavior, as shown in the curves for PL = 2 μW and
PL = 3 μW, where the initially Lorentzian resonance curve
becomes asymmetric. In this case, the coupled cubic equations
(7) and (8) for the mean intracavity photon number yield three
real roots. The largest and smallest roots are stable, and the
middle one is unstable, which is represented by the dashed
lines in Fig. 2(a). Furthermore, we can see that larger cavity-
pump detuning is necessary to observe the optical bistable
behavior with the increasing pump beam power. The bistable
behavior can also be seen from the hysteresis loop for the
mean intracavity photon number versus the pump-power curve
shown in Fig. 2(b). Here, both the cavities are pumped on their
respective red sidebands, i.e., �1 = �2 = ωm. Consider that
the left pump power increases from zero gradually; the mean
intracavity photon number np1 initially lies in the lower stable
branch (corresponding to the smallest root). When the pump
power PL increases to a critical value, about 27 μW in our
case, np1 approaches the end of this branch. The hysteresis then
follows the arrow and jumps to the upper branch. If the PL is
increased further, np1 remains on the upper branch. If PL is de-
creased, np1 gradually approaches the beginning of the second
stable branch. If PL is decreased even further, the hysteresis
follows the arrow and switches back to the lower stable branch.

In the following, we mainly investigate the optical bista-
bility in the right cavity by controlling the frequency and
power of the left pump beam. Mean intracavity photon number
np2 in the right cavity as a function of the left cavity-pump
beam detuning �1 is plotted in Fig. 3. When the coupling
between the left cavity and the mechanical resonator turns off,
i.e., g1 = 0, the two-mode optomechanical system becomes
the generic single-mode optomechanics, and the pump beam
driving the left cavity cannot have an impact on the photon
numbers in the right cavity via the mechanical mode. In this
case, if the right cavity is pumped on its red sideband, it can
be seen clearly from the middle straight line in Fig. 3 that
the mean intracavity photon number np2 remains constant
when the left cavity-pump detuning �1 changes. However,
if the coupling between the left cavity and the mechanical
resonator turns on, bistable behavior of the mean intracavity
photon number in the right cavity will appear. When �2 = ωm,

FIG. 3. (Color online) Mean intracavity photon number of the
right cavity vs the left cavity-pump detuning �1 with �2 = ωm and
�2 = −ωm, respectively. The left pump power PL equals 2 μW , and
the right pump power PR equals 0.1 μW .

the average photon number is larger than the constant value
obtained before. However, if the right cavity is pumped on its
blue sideband, i.e., �2 = −ωm, the average photon number
is smaller than the above constant value. The underling
physical mechanism for this phenomenon can be explained
as follows. When g1 = 0 and �2 = ωm, the hybrid system
turns to the typical single-mode optomechanical system, and
the intracavity photon number is directly related to the pump
power PR and the square of the cavity-pump detuning �2

2 [17].
Therefore, the photon number remains constant when g1 =
0,PR = 0.1 μW, and �2 = ±ωm. However, when g1 �= 0, the
intracavity photons in the left cavity will have an effect on the
common mechanical resonator and, subsequently, the photon
number in the right cavity. The simultaneous presence of the
left pump and probe beam induces a radiation pressure force at
the beat frequency δ = ωp − ωL, which drives the mechanical
mode to oscillate coherently. When �2 = ωm, the highly
off-resonant Stokes scattering at the frequency ωR − ωm is
strongly suppressed and only the anti-Stokes scattering at the
frequency ωR + ωm builds up within the right cavity, leading
to the up-conversion of the pump photons to the cavity photons
at the frequency ω2. Therefore, the average photon number in
the right cavity is larger than the constant value without the
effect of the left cavity. Consequently, by adjusting the left
cavity-pump beam detuning �1, one can observe the bistable
behavior of the intracavity photon number in the right cavity.
Optical bistability in the right cavity can also be seen from
the hysteresis loop for the mean intracavity photon number
versus the left pump power when �2 = ωm and �2 = −ωm,
as shown in Fig. 4. Here we have taken left cavity-pump beam
detuning to be �1 = ωm and PR = 0.1 μW. Similarly, the
mean intracavity photon number when �2 = ωm is larger than
the situation when �2 = −ωm.

In our previous discussions, we have demonstrated optical
bistability in both cavities, and the mean intracavity photon
number is usually very large, at least thousands of photons
in the right cavity (see Figs. 3 and 4). The single-mode
optomechanical system (g2 = 0) would need many more
photons in the cavity in order to reach the bistable regime

FIG. 4. (Color online) Mean intracavity photon number of the
right cavity as a function of the left pump power for PR = 0.1 μW
with (a) �2 = ωm and (b) �2 = −ωm. The left cavity-pump detuning
�1 is kept equal to ωm.
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FIG. 5. (Color online) Mean intracavity photon number of the
right cavity vs (a) the left cavity-pump detuning �1 for PL = 2 μW
and (b) the left pump power PL for �1 = ωm. The other parameters
used are PR = 1 pW and �2 = ωm.

(see Fig. 2 for an illustration) [34]. In what follows, we will
show that the two-mode optomechanical system allows for
optical bistability at extremely low cavity photon numbers.
Figures 5(a) and 5(b) plot the mean photon number in the
right cavity as a function of left cavity-pump beam detuning
�1 for PL = 2 μW and left pump power PL for �1 = ωm,
respectively. The parameters of the right pump beam are
PR = 1 pW and �2 = ωm. Due to the low pump power, the
intracavity photon number in the right cavity is very small, i.e.,
np2 � 1. Generally, such low photon numbers cannot exhibit
bistable behavior in empty cavity optomechanical systems.
However, in the two-mode optomechanics we consider here,
when the left cavity is driven by a strong pump power, because
the two cavities are coupled to a common nanomechanical
resonator, optical bistability can still exist in the right cavity at
the extremely low intracavity photon numbers. This behavior
can be understood as follows. The radiation pressure force
exerted by the left cavity field induces the vibration of the
mechanical resonator, which in turn modifies the optical path
length of the two cavities, and thus, a position-dependent
phase shift on the cavity field is generated. The bistability

at low photon numbers results from this nonlinear feedback
between the photons and phonons. This phenomenon signifies
the strong nonlinear effects in the weak-coupling regime [31],
which is enabled by the long lifetime of the mechanical mode
and the strong pump on the left cavity. Recently, two related
works by Lü et al. [38] and Kuzyk et al. [39] have also shown
that the strong nonlinearities can be obtained in two-mode
optomechanical systems in the weak-coupling regime. In
addition, the bistable behavior of intracavity photon numbers
in the two-mode optomechanical system under consideration
also provides a candidate for realizing a controllable optical
switch. For this, the two stable branches of photon numbers in
the right cavity act as the optical switch. When the frequency
and power of the left pump beam are fixed, the switch between
the lower stable branch and the upper stable branch can easily
be realized by controlling the frequency and power of the right
pump beam. Furthermore, the left pump beam can be used as
a control parameter to enable or disable this switch.

IV. CONCLUSION

In conclusion, we have investigated the optical bistability
in a two-mode optomechanical system. Compared with the
generic single-mode cavity optomechanics, such a two-mode
optomechanical system allows one to control the optical bista-
bility in a much more flexible way. The bistable behavior of
the mean intracavity photon number in one cavity can be tuned
by the power and frequency of the pump laser beam driving
another cavity. Furthermore, bistability at low photon numbers
below unity should be possible in such a coupled system.
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[27] P. Kómár, S. D. Bennett, K. Stannigel, S. J. M. Habraken, P. Rabl,
P. Zoller, and M. D. Lukin, Phys. Rev. A 87, 013839 (2013).

[28] F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Science
322, 235 (2008).

[29] J. M. Zhang, F. C. Cui, D. L. Zhou, and W. M. Liu, Phys. Rev.
A 79, 033401 (2009).

[30] S. Yang, M. Al-Amri, and M. S. Zubairy, Phys. Rev. A 87,
033836 (2013).

[31] S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn,
Phys. Rev. Lett. 99, 213601 (2007).

[32] R. Kanamoto and P. Meystre, Phys. Rev. Lett. 104, 063601
(2010).

[33] T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y.
Ma, and D. M. Stamper-Kurn, Phys. Rev. Lett. 105, 133602
(2010).

[34] E. A. Sete and H. Eleuch, Phys. Rev. A 85, 043824 (2012).
[35] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer,

Phys. Rev. A 77, 033804 (2008).
[36] E. X. DeJesus and C. Kaufman, Phys. Rev. A 35, 5288

(1987).
[37] Y. D. Wang and A. A. Clerk, Phys. Rev. Lett. 110, 253601

(2013).
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