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Validity of the rotating-wave approximation in nonadiabatic holonomic quantum computation
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We examine the validity of the rotating-wave approximation (RWA) in nonadiabatic holonomic single-qubit
gates [New J. Phys. 14, 103035 (2012)]. We demonstrate that the adoption of RWA may lead to a sharp decline
in fidelity for rapid gate implementation and small energy separation between the excited and computational
states. The validity of the RWA in the recent experimental realization [Nature (London) 496, 482 (2013)] of
nonadiabatic holonomic quantum computation for a superconducting qubit is examined.
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Holonomic quantum computation (HQC) is the idea of
using non-Abelian geometric phases to implement robust
quantum gates [1]. By using adiabatic holonomies, HQC
becomes tolerant to errors caused by fluctuations of the slowly
changing control parameters. On the other hand, dissipation
may have detrimental effects on the gates, leading to the
need to perform the gate operations as fast as possible by
using nonadiabatic holonomies. Nonadiabatic strategies have
been shown [2] to be effective to minimize this error source.
However, a shortening of the run time may in turn lead to
other errors that can lower the gate fidelity and therefore put a
limitation on the speed of holonomic gate operations. Here, we
examine how the validity of the rotating-wave approximation
(RWA) depends on the run time and energy structure of
the three-level � setting used to implement nonadiabatic
non-Abelian geometric gates first proposed in Ref. [3] and
experimentally demonstrated in Refs. [4,5].

The speed of quantum gate operations is generally limited
by unwanted effects that become more pronounced when
the run time is decreased. One such effect is related to the
quasimonochromatic approximation [6] that breaks down for
short pulses, causing population of energy levels outside
the computational subspace [7,8]. Another speed-limiting
feature is the RWA, which is expected to break down when the
run time of the gate becomes too short. This leads to a situation
where the Rabi flopping is accompanied by faster fidelity-
reducing oscillations [9], an effect that can be suppressed by
embedding the qubit in an off-resonant � system [10]. We
quantify the validity of the RWA by computing the fidelity
of the ideal RWA-based nonadiabatic holonomic single-qubit
gate operations with respect to numerical solutions of the exact
Schrödinger equation.

The � system consists of states |0〉 and |1〉 coupled to
the auxiliary excited state |e〉 via a pair of oscillating electric
field pulses Ej (t) = εj gj (t) cos(ωj t), j = 0,1, gj (t) being
envelope functions describing the pulse shape and duration.
The polarization εj (t) is chosen so as to allow for the
j ↔ e transition only. The Hamiltonian of the system reads
Ĥ (t) = Ĥ0 + μ̂ · [E0(t) + E1(t)], where Ĥ0 = −fe0 |0〉 〈0| −
fe1 |1〉 〈1| is the bare Hamiltonian (by putting the energy of
the excited state to zero) and μ̂ is the electric dipole operator.
By tuning the oscillation frequencies ωj on resonance with
the bare transition frequencies fej , the Hamiltonian in the

interaction picture reads

ĤI (t) = �0(t)(1 + e−2ife0t ) |e〉 〈0|
+�1(t)(1 + e−2ife1t ) |e〉 〈1| + H.c., (1)

where �j (t) = 〈e| μ̂ · εj |j 〉 gj (t)/(2h̄). The RWA means that
the e±2ifej t terms oscillate rapidly enough so that they can be
neglected in ĤI (t).

Provided the RWA applies, a nonadiabatic holonomic gate
Û (C) acting on the computational subspace spanned by |0〉 and
|1〉 is implemented by choosing electric field pulses such that
�0(t)/�1(t) is time independent and the π pulse criterion∫ τ

0

√
|�0(t)|2 + |�1(t)|2dt = π is satisfied. Here, the latter

condition assures that the computational subspace undergoes
a cyclic evolution around the path C in the Grassmannian
G(3; 2) [11]; the former guarantees that the dynamical phases
vanish for the full pulse duration, which implies that the gate
is fully determined by C [3]. Explicitly,

Û (C) = sin θ cos φσ̂x + sin θ sin φσ̂y + cos θσ̂z, (2)

where �0(t)/�1(t) = − tan(θ/2)eiφ and σ̂k , k = x,y,z are
the standard Pauli operators acting on the computational
subspace. Here, we examine the gate fidelity by comparing the
ideal holonomic RWA-based transformation |ψ〉 �→ Û (C) |ψ〉
with the transformation |ψ〉 �→ Te−(i/h̄)

∫ τ

0 ĤI (t)dt |ψ〉 obtained
by numerically solving the exact Schrödinger equation for
ĤI (t), in order to determine the range of validity of the
RWA. The gate fidelity for an input state |ψ〉 is given by
|〈ψ | U †(C)Te−(i/h̄)

∫ τ

0 ĤI (t)dt |ψ〉|, i.e., the overlap between the
exact and the ideal RWA-based outputs. T denotes time
ordering.

In order to test the validity of the RWA, the dependence
of the fidelity on transition frequencies, pulse shape, and
pulse duration is examined. As holonomic test gates, we
choose the NOT gate |x〉 �→ |x ⊕ 1〉, where x = 0,1 and ⊕
is addition modulo 2, which is achieved in the RWA regime
by setting �0(t)/�1(t) = 1, and the Hadamard gate |x〉 �→

1√
2
[(−1)x |x〉 + |x ⊕ 1〉], where �0(t)/�1(t) = − tan(π

8 ).
In Table I, fidelities for a range of transition frequencies

f ≡ fe0 = fe1 are displayed for the two gate operations acting
on the input state |0〉. In both cases, three different regions can
be identified: For large fej , the RWA is valid and the exact
and ideal output states nearly coincide, leading to a fidelity
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TABLE I. Fidelity of holonomic NOT and Hadamard gates for
different transition frequencies f ≡ fe0 = fe1. We use a truncated
Gaussian-shaped pulse with full width at half maximum (FWHM) =
10 ns, a total duration of 40 ns, and input state |0〉.

f [s−1] NOT Hadamard

106 0.0037 0.7071
107 0.0394 0.7004
108 0.8543 0.7903
5 × 108 0.9750 0.9712
109 0.9990 0.9994
1010 1.0000 1.0000

close to unity. For small energy separations, the additional
exponential term leads to a factor of 2 since 1 + e2ifej t ≈ 2.
The quantum system runs the cyclic evolution twice. One
property of the matrices representing Hadamard and NOT gate
is that their product with themselves is the identity matrix;
the new transformation resembles the identity operation that
preserves the input state. In the case of the NOT gate, the
overlap between the input state |0〉 and the output state
after running through a NOT gate vanishes per definition. For
the Hadamard gate, the overlap between input state |0〉 and
Hadamard transformed state is 1/

√
2 ≈ 0.7071. In the third

region, between these extremes, the RWA leads to oscillations
of the overlap. The impact on the system would be highly
dependent upon the precise timing of the laser pulses and
the corresponding operation would therefore not represent a
simple quantum gate in this region. These findings still hold
for a situation where the transition frequencies are not equal,
i.e., fe0 �= fe1.

Next, five different pulse shapes are tested for the +1
eigenstates |0〉 , 1√

2
(|0〉 + |1〉), 1√

2
(|0〉 + i |1〉) of the three Pauli

operators σ̂x,σ̂y,σ̂z as input. A truncated Gaussian pulse with
the full width at half maximum (FWHM) as one fourth of
the full pulse duration, a secant pulse, a parabolic pulse,
a sin2 pulse, and a square pulse. The fidelities for the
respective cases are enlisted in Table II. There are only
small differences in the fidelity for different pulse shapes.
However, the truncated Gaussian pulse leads to comparably
low fidelities. An explanation for this deviation can be found
in Table III. Since the FWHM of the truncated Gaussian pulse
is chosen as one fourth of the absolute pulse duration, the
region where the envelope is significantly different from zero
is in the same order of magnitude as the FWHM. We suspect
that only these regions contribute significantly to the system

TABLE II. Fidelity of holonomic NOT gate for different envelope
functions and the +1 eigenstates of σ̂x ,σ̂y,σ̂z, respectively, as input
states. All other system parameters are taken from Ref. [4].

Envelope 1√
2
(|0〉 + |1〉) 1√

2
(|0〉 + i |1〉) |0〉

Truncated Gaussian 0.9999 0.9853 0.9861
sech 0.9956 0.9953 0.9947
Parabola 0.9991 0.9988 0.9988
sin2 0.9975 0.9962 0.9959
Square 0.9991 0.9989 0.9980

TABLE III. Fidelity of the input state |0〉 after a NOT transforma-
tion for a selection of total durations of the pulses. All other system
parameters are taken from Ref. [4].

Envelope 100 ns 40 ns 10 ns 2.5 ns

Truncated Gaussian 0.9987 0.9861 0.8072 0.1790
sech 0.9995 0.9947 0.9792 0.6703
Parabola 0.9997 0.9988 0.9987 0.8573
sin2 0.9996 0.9959 0.9857 0.4424
Square 0.9998 0.9980 0.9991 0.7952

dynamics. Hence, the truncated Gaussian pulse for 40 ns is
comparable to a 10-ns pulse of the other shapes.

Very short laser pulses have the advantage that dissipation
can be neglected. However, the RWA leads to instabilities in the
quantum gate, if the time scale becomes too short. The fidelity
achieved with a truncated Gaussian laser pulse as a function of
the total pulse duration is shown in Fig. 1. The calculation is
based on averaging the output state overlap over the input states
|0〉 , 1√

2
(|0〉 + |1〉), 1√

2
(|0〉 + i |1〉). For both gates examined,

the fidelity is stable over a wide range. Upon some threshold,
the fidelity begins to fluctuate heavily and deteriorates quickly,
in this case at approximately 20 ns.

Abdumalikov et al. [4] experimentally realized gate op-
erations on a � system implemented in a transmon su-
perconducting qubit, following the proposal in Ref. [3].
Their transition frequencies were fe0 ≈ 5.0806 × 1010 s−1

and fe1 ≈ 4.8580 × 1010 s−1; their truncated Gaussian shaped
pulse had a FWHM of 10 ns and a full duration of 40 ns. This
choice of parameters lies relatively close to the edge of the zone
with stable fidelity. If a further speedup of the computation
should be achieved, a larger separation of the energy levels
has to be aimed for.

In holonomic quantum computing, noncommuting gates
can be implemented. Here, we studied the influence of the
RWA on the fidelity after application of the two possible
combinations of NOT and Hadamard gate and compared these
with the fidelity obtained by multiplying the fidelities for
separate NOT and Hadamard gate, i.e., the fidelity as if the two

FIG. 1. Dependence of the fidelity on the pulse duration for the
NOT gate (continuous line) and the Hadamard gate (dashed line). A
truncated Gaussian pulse is used. All other system parameters are
taken from Ref. [4].
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FIG. 2. Dependence of the fidelity on the pulse duration for the
combinations of Hadamard and NOT gate (continuous line), NOT and
Hadamard gate (dashed line), and the product of the fidelities of
the NOT and Hadamard gates separately (dotted line). The duration
plotted here equals the duration of each of the pulses and thereby half
of the combined gate’s duration. A truncated Gaussian pulse is used.
All other system parameters are taken from Ref. [4].

gates were commuting. In our model, the two pulses followed
each other without any separation in time.

As can be seen in Fig. 2, the fidelity achieved with the
noncommuting gates is typically lower than the product of their
fidelities. Furthermore, the fidelity decreases at pulse durations
around 40 ns. This decline appears earlier than expected, taking
the multiplied gate fidelities of the separate gates as reference.
We conclude that this effect occurs due to the non-Abelian
nature of the gates. The fluctuations, which were previously
only significant in the short duration regime, are now visible
throughout the entire range of durations studied. The noncom-
mutivity of Hadamard and NOT gate can be clearly seen by
comparison of the H-NOT and NOT-H combinations in Fig. 2.

To conclude, the rotating-wave approximation (RWA) has
been proven to be valid in the three-level setup designed for
nonadiabatic holonomic quantum computation proposed in
Ref. [3] over a wide range system parameters. Only at small
transition frequencies and very fast pulses does the RWA have
an impact on the quantum systems evolution. The order of
magnitude of state energy separation in atomic or molecular
systems lies typically above this problematic region, already
a separation of several meV is sufficient. Possible problems
arising through the RWA can thus be avoided.
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