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Optical control of backward and forward microwave generation

Sankar Davuluri and Yuri Rostovtsev*

Department of Physics, University of North Texas, 1155 Union Circle, No. 311427, Denton, Texas 76203, USA
(Received 21 January 2013; revised manuscript received 16 July 2013; published 27 November 2013)

We propose an experiment to demonstrate a strong coherent backward and forward microwave generation using
forward-propagating optical fields only. This is achieved by applying laser fields to an ultradispersive medium
with properly chosen detunings and/or Rabi frequencies to excite a spin coherence that generates a forward- or
backward-propagating microwave. Applications to coherent scattering and remote sensing are discussed.
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I. INTRODUCTION

Alkali-metal atoms [1] provide perfect opportunities for
simultaneous coupling with optical and microwave fields. The
optical fields can create quantum coherence at the hyperfine
transitions and a microwave field can couple the transitions
between the hyperfine structures (see Fig. 1).

Quantum coherence [2–4] has been shown to result in many
counterintuitive phenomena. Scattering via a gradient force in
gases [5], forward Brillouin scattering in ultradispersive res-
onant media [6,7], electromagnetically induced transparency
[8–14], Fano and enhanced Kerr effects [12,15], slow light
[16–19], enhancement of the Fizeau effect [20], Doppler
broadening elimination [21], buffer-gas-induced narrow ab-
sorption resonances [22], light-induced chirality in nonchiral
medium [23], a new class of entanglement amplifier [24] based
on correlated spontaneous emission lasers [25,26], lasing
without population inversion [27] and also without hidden
inversion in the reservoir [28], coherent-enhanced lasing [29],
improvement of the efficiency of thermal engines [30] and
solar cells [31], and coherent Raman scattering enhancement
via maximal coherence in atoms [32] and biomolecules
[33–35] are a few examples that demonstrate the importance
of quantum coherence. The possibility of control of four-wave
mixing has been discussed [36], and plasma-assisted coherent
backscattering for standoff spectroscopy was proposed in [37].

The phenomenon of coherent microwave-stimulated emis-
sion [38–41] in a cavity was analyzed for the case of alkali-
metal atoms such as Cs and Rb under coherent population
trapping in a � scheme. Microwave emission has been
observed at the ground-state hyperfine transition frequency
of a cesium atomic vapor driven into a nonabsorbing state by
means of coherent population trapping. The coherent emission
observed is due to the oscillating magnetic dipoles generated
by the coherence which is induced between the ground-state
hyperfine levels when they are coupled to an excited state by
means of two laser radiations as shown in Fig. 1. In this paper,
we analyze the possibilities of optical control of nonlinear
microwave generation.

II. MODEL

The geometry and configuration of the fields are shown in
Fig. 1. The Rb levels have the fine structure resulting from
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the L-S coupling, where L is the orbital motion of the atomic
electron and S = 1/2 is the spin of the electron. The fine
structure is determined by the total electron angular moment
J = L + S. The states are

|J,mJ 〉 =
∑

C
JmJ

LmL,ImI
|LmL,SmS〉, (1)

where C
JmJ

LmL,ImI
are the Clebsch-Gordon coefficients. The

hyperfine structure occurs due to the spin of the nucleus
(I = 3/2), which should be added to form the total angular
momentum F = J + I :

|F,mF 〉 =
∑

C
FmF

JmJ ,ImI
|JmJ ,ImI 〉, (2)

where C
FmF

Jmj ;ImI
are the corresponding Clebsch-Gordon

coefficients.
At this point, we assume that all populations have been

prepared in the state |F = 1,1〉 using optical pumping [42].
More details about a particular pumping scheme are provided
below. Let us consider the levels shown in Fig. 1. To form a
three-level system, the upper levels can be

|a〉 = |F ′ = 1,m〉
= 1

2
[−√

2 − m|P1/2,m = 1/2〉|I = 3/2,m − 1/2〉
+√

2 + m|P1/2,m = −1/2〉|I = 3/2,m + 1/2〉],
|a〉 = |F ′ = 2,m〉

= 1

2
[
√

2 + m|P1/2,m = 1/2〉|I = 3/2,m − 1/2〉
+√

2 − m|P1/2,m = −1/2〉|I = 3/2,m + 1/2〉],
where

|P1/2,m〉 = 1√
3

[−
√

3/2 − m|P,m − 1/2〉|ms = 1/2〉

+
√

3/2 + m|P,m + 1/2〉|ms = −1/2〉].
In particular, for level |a〉 we can choose

|a〉 = |F ′ = 1,1〉
= 1

2
[−|P1/2,m = 1/2〉|I = 3/2,1/2〉

+
√

3|P1/2,m = −1/2〉|I = 3/2,3/2〉] (3)

or

|a〉 = |F ′ = 2,1〉 = 1

2
[
√

3|P1/2,m = 1/2〉|I = 3/2,1/2〉
+ |P1/2,m = −1/2〉|I = 3/2,3/2〉],
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FIG. 1. (Color online) (a) Configuration of the electric fields of
optical beams and magnetic field of microwave radiation. (b) Atomic
Rb level scheme for implementation of coherent backscattering.

and for the ground states, we choose

|b〉 = |F = 1,m = 1〉 = |S〉
2

[−|I,1/2〉|ms = 1/2〉
+

√
3|I,3/2〉|ms = −1/2〉], (4)

|c〉 = |F = 2,m = 1〉 = |S〉
2

[
√

3|I,1/2〉|ms = 1/2〉
+ |I,3/2〉|ms = −1/2〉]. (5)

The interaction Hamiltonian of the system can be written
as

VI = −h̄[�̃1e
−iωabt |a〉〈b| + �̃2e

−iωact |a〉〈c| + H.c.] (6)

− h̄[�̃3e
−iωcbt |c〉〈b| + H.c.], (7)

where ωab, ωac, and ωcb are the frequency differences be-
tween the corresponding atomic energy levels, �̃1 = ℘abEp/h̄

and �̃2 = ℘acEd/h̄ are the Rabi frequencies corresponding
to the optical fields (see Fig. 1), ℘ab and ℘ac are the
electric dipole moments of corresponding transitions,
Ep = E1 cos(ν1t − k1x) and Ed = E2 cos(ν2t − k2x) are the
electric field that have only z components, ν1 and ν2 are the
frequencies and k1 and k2 are the wave vectors of the optical
fields, �̃3 = ℘acBμ/h̄ is the Rabi frequency corresponding
to the magnetic field of the microwave that has only z

components, ℘cb is the magnetic dipole moment, Bμ =
B3 cos(ν3t ± k3x) is the magnetic field of the microwave, plus
and minus correspond to the direction of wave propagation, ν3

and k3 are the frequency and the wave number of the microwave
field, and all E1, E2, and B3 are the slowly varying amplitudes.

The time-dependent density matrix equations are given by

∂ρ̃

∂t
= − i

h̄
[VI ,ρ̃] − 1

2
(	ρ̃ + ρ̃	), (8)

where 	 is the relaxation matrix. We write ρ̃ab =
ρab exp[ik1x − iν1t], ρ̃ca = ρca exp[−ik2x + iν2t], and ρ̃cb =
ρcb exp[i(k1 − k2)x − i(ν1 − ν2)t] for the off-diagonal ele-
ments and ρ̃ii = ρii for the diagonal elements. Then, by using
the rotating-wave approximation, the equations of motion for
the off-diagonal density matrix elements are

ρ̇ab = −	abρab + i�1(ρaa − ρbb) − iρcb�
∗
2 + iρac�3e

iφ,

ρ̇ca = −	caρca + i�2(ρcc − ρaa) + iρcb�
∗
1 − iρba�3e

iφ,

ρ̇cb = −	cbρcb + iρca�1 − iρab�2 + i�3e
iφ(ρcc − ρbb),

where 	ab = γab + i(ωab − ν1), 	ca = γca − i(ωac − ν2), and
	cb = γcb + i(ωcb − ν1 + ν2); γαβ are the relaxation rates at
the corresponding transitions; and φ = �νt − �kx, �ν =
ν1 − ν2 − ν3, �k = k1 − k2 − k3, �1 = ℘abE1/2h̄, �2 =
℘acE2/2h̄, and �3 = ℘cbB3/2h̄ are the Rabi frequencies.

To describe the propagation, a self-consistent system also
includes the Maxwell equations for all optical and microwave
fields,

∂2Ep

∂x2
− 1

c2

∂2Ep

∂t2
= 1

ε0c2

∂2Pab

∂t2
,

∂2Ed

∂x2
− 1

c2

∂2Ed

∂t2
= 1

ε0c2

∂2Pac

∂t2
,

∂2B3

∂x2
− 1

c2

∂2B3

∂t2
= 1

c2

∂2Mcb

∂t2
,

where Pab = N (℘abρ̃ab + c.c.) and Pac = N (℘acρ̃ac + c.c.)
are the optical polarizations, Mcb = N (℘cbρ̃cb + c.c.) is the
magnetization of the medium, N is the particle density of the
medium, and ε0 is the permittivity in vacuum. Using slowly
varying amplitude approximation, the propagation equations
for the optical and the microwave fields are given by

∂�1

∂x
+ i

(
k1 − ν1

c

)
�1 = −iη1ρab, (9)

∂�2

∂x
+ i

(
k2 − ν2

c

)
�2 = iη2ρca, (10)

∂�3

∂x
± i

(
k3 ∓ ν3

c

)
�3 = −iη3ρcbe

i�kx, (11)

where ηj = νjN |℘j |2/(2ε0ch̄) are the coupling constants
(j = 1,2,3), ℘1 = ℘ab, ℘2 = ℘ac, and ℘3 = ℘cb, and the
signs plus and minus correspond to forward and backward
propagation of the microwave field. The general relation
between changes of the optical fields and the generated
microwave field can be established using Eqs. (9)–(11) with
the density matrix equations (see Appendix).

The generated microwave field has a Rabi frequency �3

that is much lower than the Rabi frequencies �1 and �2 for
optical fields, because the magnetic coupling is much weaker
than the optical coupling at the electric dipole transition. Thus,
assuming that |�3| � |�1|,|�2|, we can write the solution of
the density matrix equations for the coherences at the optical
transitions as

ρab = i
(	ca	cb + |�1|2)nab + |�2|2nca

	ab	ca	cb + 	ab|�1|2 + 	ca|�2|2 �1, (12)

ρca = i
(	ab	cb + |�2|2)nca + |�1|2nab

	ab	ca	cb + 	ab|�1|2 + 	ca|�2|2 �2, (13)
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where nαβ = nα − nβ , and nα = ραα is the population of level
|α〉, and write that for the coherence at the microwave transition
as

ρcb = i
	canab + 	abnac

	ab	ca	cb + 	ab|�1|2 + 	ca|�2|2 �1�2. (14)

The optical coherences are related to the atomic populations
in the levels as

ρab = i(Z11nab + Z12nac)�1, (15)

ρca = i(Z21nab + Z22nac)�2, (16)

where

Z11 = 	ca	cb + |�1|2
	ab	ca	cb + 	ab|�1|2 + 	ca|�2|2 , (17)

Z12 = |�2|2
	ab	ca	cb + 	ab|�1|2 + 	ca|�2|2 , (18)

Z21 = |�1|2
	ab	ca	cb + 	ab|�1|2 + 	ca|�2|2 , (19)

Z22 = 	ab	cb + |�2|2
	ab	ca	cb + 	ab|�1|2 + 	ca|�2|2 . (20)

Then the equations for the atomic populations are given by

γbna + 2|�1|2[Re(Z11)nab + Re(Z12)nac] = 0,

γcna + 2|�2|2[Re(Z21)nab + Re(Z22)nac] = 0.

The analytical solutions of the above equations are too
complicated to be analyzed. Nevertheless, for the small
detuning from the two-photon resonance, |	cb| � 	 and
δν � 	, we can find that the optical coherence is given by

ρab = i
nc|�2|2 − nb|�1|2 + na(|�1|2 − |�2|2)

|�1|2 + |�2|2
�1

	

− i	cb

(1 − 3na)|�2|2
(|�1|2 + |�2|2)2

�1 − i
(1 − 3na)		2

cb|�2|2
(|�1|2 + |�2|2)3

�1.

The populations in levels |b〉 and |c〉 are given by

nb = |�2|2
|�1|2 + |�2|2 , nc = |�1|2

|�1|2 + |�2|2 , (21)

and the population in the excited state is negligible na 	 0.
The susceptibilities for optical fields are given by

χab = ηabδν|�2|2
(|�1|2 + |�2|2)2

− i
ηab|�2|2	δν2

(|�1|2 + |�2|2)3
,

χac = − ηacδν|�1|2
(|�1|2 + |�2|2)2

− i
ηac|�1|2	δν2

(|�1|2 + |�2|2)3
,

where δν = ν1 − ν2 − ωcb. The dispersion for the optical field
�1 is given by

k1 = ωab

c
+ ν1 − ωab

Vab

, (22)

and that for the second optical field, by

k2 = ωac

c
+ ν2 − ωac

Vac

, (23)

where the steep dispersion is defined by

Vab = (|�1|2 + |�2|2)2

ηab|�2|2 , Vac = (|�1|2 + |�2|2)2

ηac|�1|2 , (24)

which coincide with the group velocities for the corresponding
optical fields when Vab,Vac � c. Indeed, for the group veloci-
ties, we have Vg,ab =cVab/(c +Vab) 	 Vab and Vg,ac = cVac/

(c + Vac) 	 Vac.
The coherence at the microwave transition [2,3] is

ρcb = − �1�2

|�1|2 + |�2|2 , (25)

and the microwave field generated in the cell [see Eq. (11)] is
given by

�3 = −iη3

∫ L

0
dx ei(k1−k2±k3)xρcb, (26)

where L is the length of the cell.

III. SIMULATIONS AND OBTAINED RESULTS

A. The optical pumping scheme

In Fig. 1, we chose the linear polarizations of optical
fields 1 and 2. Then the Rb level structure can be seen
as a collection of the three-level atoms interacting with
the optical fields, and the results obtained using the model
considered in the previous section are applicable for the Rb
vapor. The magnetic polarization P is generated due to the
coherence between |F = 2,m = −1〉 and |F = 1,m = −1〉
levels, between |F = 2,m = 0〉 and |F = 1,m = 0〉 levels,
and also between |F = 2,m = +1〉 and |F = 1,m = +1〉
levels as

P = μ−Nρ−− + μ+Nρ++ + μ0Nρ00, (27)

where ρ−−, ρ00 and ρ++ are the corresponding coherences
between different pairs of magnetic sublevels for levels with
F = 2 and F = 1 (see Fig. 1). The matrix elements of the z

component of the magnetic dipole moment μ̂B = e

2mc
(L̂z +

2Ŝz) calculated using Eqs. (3)–(5) are

μ− = 〈F = 2,m = −1|μ̂B |F = 1,m = −1〉,
μ0 = 〈F = 2,m = 0|μ̂B |F = 1,m = 0〉, (28)

μ+ = 〈F = 2,m = +1|μ̂B |F = 1,m = +1〉.
Here μ0 = μB , and μ+ = μ− = √

3/2μB [43]. It is important
to note that the moments with opposite signs of magnetic
numbers have the same magnetic moments μ+ = μ−.

The coherences ρ−−, ρ00, and ρ++ are induced via interac-
tion with optical fields 1 and 2,

ρ−− ∼ �1−,2′−�2′−,2−, ρ++ ∼ �1+,2′+�2′+,2+, (29)

where the corresponding Rabi frequencies are �1±,2′± =
1.495 ea0E1/h̄, �2′±,2± = ±0.863 ea0E2/h̄, and then ρ−− =
−ρ++;

ρ00 ∼ �10,2′0�2′0,20 = 0 (30)

because �2′0,20 = 0 (�10,2′0 = 1.726 ea0E1/h̄). Thus, the
magnetic polarization given by Eq. (27) is 0, and no microwave
radiation can be generated. To overcome this difficulty, we
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FIG. 2. (Color online) Level schemes in a weak longitudinal
magnetic field that causes splitting of the ground levels (F = 1 and
F = 2). The magnitude of the magnetic field is just enough to have
splitting of the magnetic sublevels larger than the width of the levels
due to broadening of spin transitions γcb. (We do not show the splitting
of excited levels, because it is much smaller than the width of the
excited states determined by the spontaneous emission rate.)

should use the optical pumping into the levels with m = +1
and we should have no population in levels m = −1.

As one can see in Fig. 2, the introduction of a weak
longitudinal magnetic field along the optical beams can
provide the required pumping scheme (the magnitude of the
magnetic field is just enough to have splitting of magnetic
sublevels larger than the width of the levels due to broadening
of spin transitions γcb). Indeed, due to the the magnetic field,
the two-photon resonance is going to be only for levels with
m = +1 where the frequency difference is equal to the splitting
of |F = 2,m = −1〉 and |F = 1,m = −1〉 levels, while for
the other levels the optical fields are off the two-photon
resonance, i.e., no coherence is generated. Moreover, the
optical fields pump populations out of levels and distribute
atomic populations among levels |F = 2,m = 0〉 (60% of
the total population), |F = 2,m = −1〉, and |F = 1,m = −1〉
(40% of the total population) (see Fig. 2), creating the quantum
coherence ρcb between the latter two levels.

The power of the generated microwave radiation can be
estimated using the relation

|�3| 	 ωcbNl|℘μ|2
2cε0h̄

|ρcb|, (31)

where l is the length of the cell. The estimate performed for
atomic density N 	 1013−15 cm−3 gives us a generated mi-
crowave power of as much as 30 nW/cm2 to 3 μW/cm2. These
conditions are realistic and well suited for an experimental
implementation.

We present the numerical solutions for the case of Rb vapor.
The imaginary part of the susceptibility is shown in Fig. 3 as
a function of the two-photon detuning δν = ν1 − ν2 − ωcb.
The parameters are as follows: the density of Rb atoms
N = 1013 cm−3, γb 	 γc = γr = 2 × 107 s−1, the Doppler
broadening [44–46] �D = 48.5γr , the relaxation rate for
microwave transition γcb = 104 s−1, and the length of the
cell L = 10 cm. The Rabi frequencies �1 and �2 are of
the order of (0.1–10)γr , which corresponds to a power of
optical beams of about 0.1–10 mW (with a beam diameter
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FIG. 3. (Color online) (a) Electromagnetically induced trans-
parency for field 1 and for field 2. (b) Real part of susceptibility
for field 1 and field 2.

of the order of 2–3 mm). These are the typical experimental
conditions [19,39,41,42].

We can see by the manifestation of electromagnetically
induced transparencyat the two-photon resonance (δν = 0
or ωcb = ν1 − ν2) that the absorption is the lowest for both
fields. Correspondingly, we see a strong dispersion of the
real-part susceptibility shown in Fig. 3. The important feature
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FIG. 4. (Color online) Square of the Rabi frequency |�3|2 of the
generated microwave field in the forward (solid line) and backward
(dashed line) directions as a function of δν. The simulation was
performed for Rabi frequencies �1 = 1γr and �2 = 3.4γr of the
optical fields at the entrance of the cell. Other parameters are given
in the text.
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FIG. 5. (Color online) Square of the Rabi frequency |�3|2 of
the generated microwave field in the forward (solid line) and
backward (dashed line) directions as a function of �2. The simulation
was performed for the Rabi frequencies �1 = 1γr and two-photon
detunuing δν = 0.01γr .

is that the dispersion for each of the two fields is different,
and it depends on the detuning of both fields as well as
the Rabi frequency difference. Using Eqs. (22), (23), and
(24), we analytically calculate the phase mismatch between
the two optical fields and the propagation of the microwave
field as

�k = k1 − k2 − k3 = 3λ2Nγr

8π

|�2|2 − |�1|2
(|�1|2 + |�2|2)2

δν, (32)

where δν = ν1 − ν2 − ωcb. We can see that in the forward
direction we always have the phase matching if the fields are
at the resonance δν = δν1,2 = 0. Meanwhile, in the backward
direction, the phase matching can be reached by proper
adjustment of the detuning or the Rabi frequencies of the
optical fields so as to fulfill the condition

�k = 3λ2Nγr

8π

|�2|2 − |�1|2
(|�1|2 + |�2|2)2

δν = −2k3. (33)
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FIG. 6. (Color online) Square of the Rabi frequency |�3|2 of
the generated microwave field in the forward (solid line) and
backward (dashed line) directions as a function of �2. The simulation
was performed for the Rabi frequencies �1 = 1γr and two-photon
detunuing δν = 0.02γr .
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FIG. 7. (Color online) Square of the Rabi frequency |�3|2 of the
generated microwave field in the forward (solid line) and backward
(dashed line) directions as a function of �1. The simulation was
performed for the Rabi frequencies �2 = 5.4γr and two-photon
detuning δν = 0.01γr .

B. Phase matching via frequency detuning

The Rabi frequency of the microwave fields generated in
the cell for different parameters of the optical fields is shown
in Fig. 4. For zero detuning, we see efficient generation of
microwave radiation in the forward direction. And for the
detuning δν = 0.013γr and the parameters listed in the caption
to Fig. 4, we see efficient generation of the microwave field in
the backward (opposite the propagation of the optical fields)
direction.

C. Phase matching by changing the driving intensities

As follows from Eq. (33), the frequency detuning is not
the only parameter that can control efficient generation of
microwave radiation. By changing the Rabi frequencies of op-
tical fields even without changing the frequency detunings, we
can still control the phase-matching conditions for generation
of microwave radiation. In Fig. 5, the simulation for fixed
two-photon detuning is shown. Upon a change in the Rabi
frequency of �2 we see the generation of a microwave field in
the forward and backward directions. In Fig. 6, we show similar
simulations with a different optical detuning δν = 0.2γr , and
in Fig. 7 the simulations were performed by changing the Rabi
frequency of �1 and the two-photon detuning δν = 0.01γr .
Again, we can state that in all demonstrated cases, we achieve
efficient generation of microwave radiation in the forward and
backward directions by changing the Rabi frequencies of both
fields.

IV. CONCLUSION

In conclusion, we theoretically predict efficient coherent
generation in the backward and forward directions while
using only forward-propagating fields. This is achieved by
exciting atomic coherence between hyperfine levels with
properly detuned fields, in such a way that the resulting
coherence creates magnetic polarization and has a spatial phase
corresponding to a backward counter-propagating microwave
beam.
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The technique developed can be used for detection of opti-
cal as well as microwave fields [47], and it has applications to
microwave modulators and optical frequency comb generation
[48] that are able to control the electric and optical properties
of semiconductors with microwave fields, which is important
for information processing and optical communications [49].
The method also holds promise for coherent scattering and
remote sensing [33], as well as for microwave-field imaging
using alkali-metal atoms in a vapor cell, where the microwave
field to be measured drives coherent oscillations of atomic
hyperfine transitions that are detected in a spatially resolved
way using a laser beam and a camera [50].
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APPENDIX: CONSERVATION LAWS FOR PROPAGATION
IN ELECTROMAGNETICALLY INDUCED

TRANSPARENCY MEDIA

The set of density matrix equations for the diagonal
elements is given by

ρ̇aa = −γρaa + i(�∗
1ρab − �1ρba) + i(ρac�2 − ρca�

∗
2),

ρ̇bb = γbρaa + i(�1ρba − �∗
1ρab) + i(ρbc�3 − ρcb�

∗
3),

ρ̇cc = γcρaa + i(�∗
2ρca − �2ρac) + i(ρcb�

∗
3 − ρbc�3).

Using the equations above together with the propagation
equations (9)–(11), allows us to obtain

∂

∂x

( |�1|2
η1

+ |�2|2
η2

)
= γρaa, (A1)

∂

∂x

( |�1|2
η1

+ |�3|2
η3

)
= −γbρaa, (A2)

∂

∂x

( |�2|2
η2

− |�3|2
η3

)
= −γcρaa. (A3)

We assume that (a) the relaxation of spin coherence is negligi-
ble and, for the current situation, (b) there is no incoherent
pumping and (c) there are no frequency or wave-number
detunings �ν = ν1 − ν2 − ν3 = 0 or �k = k1 − k2 − k3 = 0.
Then the population in the excited state is negligible, ρaa 	 0.
Taking the coupling constantηj = νjN |℘j |2/(2ε0ch̄) explic-
itly into account, we can write

|�1|2
η1

∼ |E1|2
ν1

∼ N1, (A4)

where N1 is the photon flux in the optical beam. Thus, we
obtain the conservation laws for the photon fluxes in the optical
and microwave beams as

∂

∂x
(N1 + N2) = 0, (A5)

∂

∂x
(N1 + N3) = 0, (A6)

∂

∂x
(N2 − N3) = 0. (A7)
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