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Orbital angular momentum from marginals of quadrature distributions
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We set forth a method to analyze the orbital angular momentum of a light field. Instead of using the canonical
formalism for the conjugate pair angle-angular momentum, we model this latter variable by the superposition
of two independent harmonic oscillators along two orthogonal axes. By describing each oscillator by a standard
Wigner function, we derive, via a consistent change of variables, a comprehensive picture of the orbital angular
momentum. We compare this with previous approaches and show how this method works in some relevant
examples.
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I. INTRODUCTION

The term vortex is commonly used to designate a region of
concentrated rotation in a flow, such as an eddy, a whirlpool, or
the depression at the center of a whirling body of air or water.
Naturally occurring vortices include hurricanes, tornadoes,
waterspouts, and dust devils [1]. Yet vortices can also be
created in many different media: they manifest in plasmas [2],
superfluids [3], ferromagnets [4], acoustical waves [5], quan-
tum Hall fluids [6], Bose-Einstein condensates [7], and
electron wave packets [8], to cite only a few relevant examples.
This points to the ubiquity of this phenomenon and reveals a
growing interest in these singularities.

The case of optical vortices deserves a special mention [9].
An optical vortex is a beam of light exhibiting a pure screw
phase dislocation along the propagation axis, i.e., an azimuthal
phase dependence exp(i�ϕ). The number � plays the role of a
topological charge: the phase changes its value in � cycles of
2π in any closed circuit about the axis, while the amplitude is
zero there.

One of the most interesting properties of vortices is that they
carry orbital angular momentum (OAM): the integer � can be
seen as the eigenvalue of the OAM operator and its sign defines
the helicity or direction of rotation. Indeed, the OAM of such
a field can be easily manipulated and transferred, which opens
many experimental perspectives, such as optical tweezers
and spanners [10], as well as potential astronomical [11]
and communication applications [12].

The fact that individual photons also carry OAM presents
the most exciting possibilities for using this variable in the
quantum domain, and a number of uses has already been
demonstrated [13–17].

In quantum theory, the operator representing the OAM has
an unbounded spectrum that includes positive and negative
integers. Accordingly, its conjugate variable, the azimuthal
angle, might be expected to be represented by a bona fide
operator. Periodicity, however, brings out subtleties that have
triggered long and heated discussions [18–20].

Here, we look at this issue from a phase-space perspective.
Such an approach was introduced in the very early days of
quantum theory to avoid some of the troubles arising in the

abstract Hilbert-space formulation. The pioneering works of
Weyl [21], Wigner [22], and Moyal [23] paved the way to
formally picturing the quantum world as a statistical theory on
phase space [24–26].

In a few words, the key idea is to look for a mapping
that relates operators (in Hilbert space) to functions (in phase
space). For the conjugate pair angle-OAM, the phase space
is the discrete cylinder S × Z (S denotes the unit circle
associated with the angle, while Z are the integers labeling
OAM). It seems natural to work out a Wigner function
(or any other quasiprobability) therein. A pioneer attempt
in that direction was made by Mukunda [27]; his work
was subsequently elaborated and developed in a variety of
directions by other authors [28–40].

However, one might properly argue that in such a (correct)
way of proceeding one is overlooking significant information
about the transverse distribution. This means, for example,
that using cylindrical coordinates all the states ��(r,ϕ) =
A�(r) exp(i�ϕ) represent eigenstates of the angular momen-
tum, irrespective of the form of the amplitudes A�(r). A similar
problem arises in the description of spinlike systems over the
Bloch sphere: one disregards in this way fluctuations in the
number of particles, because a sphere of fixed radius cannot
accommodate those fluctuations. To bypass this drawback one
needs to include the whole Bloch space that can be envisioned
as foliated in a set of nested spheres with radii proportional to
the different number of particules that contribute to the state.

Below, we propose an alternative road and derive phase-
space distributions via suitable marginals of distributions for
field quadratures, once we remove the degrees of freedom
irrelevant for the specification of the problem. The same
ideas have been used also to study quantum polarization
properties [41,42]. Perhaps this provides the most down-to-
earth approach to the problem at hand, since the quadrature
distributions can be determined by very simple experimental
procedures [43]. This widespread measurability does not hold
for the Wigner functions on the cylinder: the proposals for
their practical reconstruction are rather cumbersome [44] and
lack the simple and intuitive picture provided by schemes
measuring quadrature distributions.
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The plan of this paper is as follows. In Sec. II we
concisely sketch the phase-space fundamentals for a single
harmonic oscillator. In Sec. III we start from two kinematical
independent orthogonal oscillators and express the resulting
Wigner function in cylindrical coordinates. By eliminating
an inessential variable (the radial momentum), we get a
well-behaved distribution that gives complete information not
only on the pair angle-OAM but also on the radial distribution.
We apply the resulting Wigner function to some relevant states
in Sec. IV, and conclude that it constitutes a most suitable tool
to deal with this problem.

II. PHASE-SPACE PICTURE OF A ONE-DIMENSIONAL
HARMONIC OSCILLATOR

To keep the discussion as self-contained as possible, we
first boil down the rudiments of the phase-space formalism for
a harmonic oscillator that we shall need later on.

The relevant dynamical observables are the conjugate
coordinate and momentum operators x̂ and p̂, with canonical
commutation relation (with h̄ = 1 throughout)

[x̂,p̂] = i 1̂ , (2.1)

so that they are the generators of the Heisenberg-Weyl
algebra [45]. Ubiquitous and profound, this algebra has
become the hallmark of noncommutativity in quantum theory.
The classical phase space is here the plane R2.

Sometimes, it is advantageous to use instead complex am-
plitudes represented by the annihilation and creation operators

â = 1√
2

(x̂ + ip̂) , â† = 1√
2

(x̂ − ip̂) , (2.2)

in terms of which the commutation relation (2.1) turns out to
be [â,â†] = 1̂.

A pivotal role will be played in what follows by the unitary

D̂(x,p) = exp[i(px̂ − xp̂)] , (2.3)

which is called the displacement operator for it displaces
a localized state by (x,p) ∈ R2. The Fourier transform of
D̂(x,p),

ŵ(x,p) = 1

(2π )2

∫
R2

exp[−i(px ′ − xp′)] D̂(x ′,p′) dx ′dp′ ,

(2.4)

is an instance of a Stratonovich-Weyl quantizer [46]. One
can check that the operators ŵ(x,p) are a complete trace-
orthonormal set that transforms properly under displacements

ŵ(x,p) = D̂(x,p) ŵ(0,0) D̂†(x,p) , (2.5)

where ŵ(0,0) = ∫
R2 D̂(x,p) dxdp = 2P̂ , and

P̂ =
∫
R

|x〉〈−x| dx =
∫
R

|p〉〈−p| dp = (−1)â
†â (2.6)

is the parity operator.
Let Â be an arbitrary operator acting on the Hilbert space

of the system. Using the Stratonovich-Weyl quantizer we can
associate to Â a function a(x,p) representing the action of the
corresponding dynamical variable in phase space. In fact, this

is known as the Wigner-Weyl map and is given by [47]

a(x,p) = Tr[Â ŵ(x,p)] . (2.7)

The function a(x,p) is the symbol of the operator Â.
Conversely, we can reconstruct the operator from its symbol
through

Â = 1

(2π )2

∫
R2

a(x,p) ŵ(x,p) dxdp . (2.8)

In this context, the Wigner function is nothing but the
symbol of the density matrix ρ̂, and therefore

Wρ̂(x,p) = Tr[ρ̂ ŵ(x,p)] ,
(2.9)

ρ̂ = 1

(2π )2

∫
R2

ŵ(x,p)Wρ̂(x,p) dxdp .

For a pure state |�〉, it simplifies

W|�〉(x,p) = 1

4π

∫
R

�∗(x − x ′) �(x + x ′) exp(i2px ′) dx ′ ,

(2.10)

which is, perhaps, the most convenient form for actual
calculations.

The Wigner function defined in Eq. (2.9) fulfills all the
basic properties required for any good probabilistic descrip-
tion. First, due to the Hermiticity of ŵ(x,p), it is real for
Hermitian operators. Second, the probability distributions for
the canonical variables can be obtained as the marginals∫

R
Wρ̂(x,p) dp = 〈x|ρ̂|x〉 ,

∫
R

Wρ̂(x,p) dx = 〈p|ρ̂|p〉 .

(2.11)

Third, Wρ̂(x,p) is translationally covariant, which means that
for the displaced state ρ̂ ′ = D̂(x ′,p′) ρ̂ D̂†(x ′,p′), one has

Wρ̂ ′ (x,p) = Wρ̂(x − x ′,p − p′) , (2.12)

so that it follows displacements rigidly without changing its
form, reflecting the fact that physics should not depend on a
certain choice of the origin.

Finally, the overlap of two density operators is proportional
to the integral of the associated Wigner functions:

Tr(ρ̂ ρ̂ ′) ∝
∫
R2

Wρ̂(x,p)Wρ̂ ′ (x,p) dxdp . (2.13)

This property (known as traciality) offers practical advantages,
since it allows one to predict the statistics of any outcome, once
the Wigner function of the measured state is known.

The displacements constitute also a basic ingredient in the
concept of coherent states. If we choose a fixed normalized
reference state |�0〉, we have [48]

|x,p〉 = D̂(x,p) |�0〉 , (2.14)

so they are parametrized by phase-space points. These states
have a number of remarkable properties inherited from those
of D̂(x,p). In particular, D̂(x,p) transforms any coherent state
in another coherent state:

D̂(x ′,p′) |x,p〉 = exp[i(x ′p − p′x)/2] |x + x ′,p + p′〉 .

(2.15)
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The standard choice for the fiducial vector |�0〉 is the vacuum
|0〉, which has quite a number of relevant properties.

III. PHASE-SPACE PICTURE OF A TWO-DIMENSIONAL
HARMONIC OSCILLATOR

Next, we analyze the superposition of two oscillators in
orthogonal directions, say x and y, with momenta p̂x and p̂y ,
respectively. The corresponding complex amplitudes âx and
ây fulfill [âj ,â

†
k] = δjk 1̂ (j,k ∈ {x,y}). Since these oscillators

are kinematically independent (i.e., they play the role of modes
for the problem), the total system is represented by the product
of the corresponding kernels

ŵ(x,px ; y,py) = ŵ(x,px) ŵ(y,py) . (3.1)

The information is thus encoded in the four real vari-
ables (x,px) and (y,py). The resulting Wigner function
W (x,px ; y,py) is informationally complete, but it is hard
to grasp any physical flavor from it. In particular, it cannot
be plotted (which is always a major advantage when de-
picting complex phenomena) and one must content oneself
with sections of W (x,px ; y,py), which illustrate only partial
aspects [49].

Because we are interested in elaborating on the behavior
of OAM, which mostly appears when cylindrical symmetry
is present, we make the change from Cartesian (x,y) to polar
(r,ϕ) coordinates:

r =
√

x2 + y2 , ϕ = arctan(y/x) . (3.2)

Simultaneously, we change from (px,py) to

pr = 1

r
(xpx + ypy) , � = xpy − ypx , (3.3)

where pr is the radial momentum and � is the OAM. This
transition from Cartesian to polar coordinates is not smooth at
the origin and needs qualification because it takes from a con-
tractible space to one which is not contractible. This lies at the
root of the problems appearing when dealing with angle vari-
ables [50–57]. In quantum optics there are, however, a number
of ways to bypass this drawback [58–65]. In the same vein, the
radial momentum pr is singular at the origin, which reflects a
classical symptom of quantum illness [66], for such an operator
is not self-adjoint (nor has self-adjoint extensions) [67–69].
Precisely, the use of Wigner-Weyl kernels alleviates these
problems arising in a direct quantization. However, we brush
aside these mathematical subtleties and move on to find a
suitable solution for our problem.

Using the explicit form (2.5) for each orthogonal oscillator
and after disentangling the exponentials, we can rewrite (3.1)
in the equivalent way,

ŵ(r,pr ; ϕ,�) = 4(−1)N̂ exp[−2 cos ϕ(αr â
†
x − α∗

r âx)]

× exp[2iλr sin ϕ(â†
x + âx)]

× exp[−2 sin ϕ(αr â
†
y − α∗

r ây)]

× exp[−2iλr cos ϕ(â†
y + ây)] , (3.4)

where

N̂ = â†
x âx + â†

y ây (3.5)

is the total number of excitations and we have denoted αr =
(r + ipr )/

√
2 and λr = �/(

√
2r).

The structure of this kernel suggests the use of the rotated
operators

â+ = 1√
2

(âx − iây) , â− = 1√
2

(âx + iây) , (3.6)

in terms of which the OAM operator reads as

L̂ = â
†
+â+ − â

†
−â− . (3.7)

In this way, we can interpret � as the difference of quanta with
opposite chirality. Note that the form of N̂ and L̂ suggests
that the boson operators âx and ây furnish a Jordan-Schwinger
representation for the problem at hand [much in the same way
as the original oscillator construction for SU(2)], which can
be justified on very general grounds [70]. On the other hand,
such a representation should not come as a surprise, for it is
well known that any three-dimensional Lie algebra (as the one
we are dealing with here) can be realized in terms of creation
and annihilation operators of two orthogonal oscillators [71].

By noticing that e−iϕL̂ â± eiϕL̂ = â±e±iϕ , we can recast the
Wigner kernel (3.4) as the displaced version

ŵ(r,pr ; ϕ,�) = e−iϕL̂ ŵ(r,pr ; �) eiϕL̂ , (3.8)

with

ŵ(r,pr,�) = 4(−1)N̂ exp[2iλr (p̂+ − p̂−)]

× exp[−
√

2ipr (x̂+ + x̂−)]

× exp[
√

2ir(p̂+ + p̂−)]e−2ipr r , (3.9)

and we have introduced the corresponding quadratures for the
rotated amplitudes

x̂± = 1√
2

(â± + â
†
±) , p̂± = 1√

2i
(â± − â

†
±) . (3.10)

The radial momentum pr plays no relevant role in the
dynamics, so it seems entirely reasonable to integrate over
this variable. To evaluate the resulting kernel we use an
entangled state basis |ξ 〉 (the properties of these states are
briefly reviewed in Appendix A), such that

(â+ + â
†
−)|ξ 〉 = ξ |ξ 〉 , (â†

+ + â−)|ξ 〉 = ξ ∗|ξ 〉 . (3.11)

The calculations are lengthy and the details are sketched in
Appendix B. The final result for the Wigner function for a
pure state |�〉 turns out to be remarkably simple:

W|�〉(r,ϕ,�) = 4
∫
R

�∗(r − ir ′,ϕ) �(r + ir ′,ϕ)

× exp(i2�r ′/r) dr ′ , (3.12)

which is the central result of this work. Here �(r,ϕ) denotes
the wave function of |�〉 in the entangled representation; i.e.,

�(r,ϕ) = 〈ξ |eiϕL̂|�〉 = 〈ξe−iϕ|�〉 . (3.13)

Notice that the similarity with the single-mode Wigner
function (2.10) is manifest. Obviously, the marginal over the
radial variable

W (ϕ,�) =
∫ ∞

0
W (r,ϕ,�) dr (3.14)
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contains complete information about the pair angle-OAM and
can be constructed from first principles [39].

IV. EXAMPLES

To gain further insight into this formalism, we work out
Eq. (3.12) for several states of interest. First, we look for the
case of a simultaneous eigenstate of both the total number of
particles and the orbital angular momenta |N,�0〉, viz.,

N̂ |N,�0〉 = N |N,�0〉 , L̂|N,�0〉 = �0|N,�0〉 . (4.1)

Using the entangled representation, it is easy to check that

�|N,�0〉(r,ϕ) = e−|ξ |2/2√(
N−�0

2

)
!
(

N+�0
2

)
!

×HN−�0
2 ,

N+�0
2

(ξe−iϕ,ξ ∗eiϕ), (4.2)

where Hm,n(λ,λ∗) stands for the two-variable Hermite polyno-
mial. In terms of the generalized Laguerre polynomials L�

p(x),
this reduces to

�|N,�0〉(r,ϕ) = CN,�0e
− 1

2 r2
r |�0|L|�0|

N−|�0 |
2

(r2)e−i�0ϕ , (4.3)

where CN,�0 is a normalization constant. This wave func-
tion is very reminiscent of the standard Laguerre-Gauss
modes employed in classical optics. The associated Wigner
function is

W|N,�0〉(r,ϕ,�) = 4|CN,�0 |2
∫
R

(r + ir ′)2|�0|
[
L

�0
N−|�0 |

2

(r2 + r ′2)
]2

× exp[−(r2 + r ′2 + 2i�r ′/r)] dr ′ . (4.4)

This integral can be computed in a closed way, although the
expression is involved enough to be of practical use. If we sum
over N , we get the state

|�0〉 =
∑
N

1√
N + 1

|N,�0〉 . (4.5)

In Fig. 1 we have plotted an isocontour surface corresponding
to W|�0〉(r,�,φ) = constant, for �0 = 0. We clearly appreciate
quite a rich radial structure. At the top of the surface, we
also include a density plot of a section by the plane � = 0,
displaying the characteristic rings of the Laguerre modes. We
recall that the standard Wigner function for the pair angle-
OAM simplifies in this case to

W|�0〉(�,ϕ) = 1

2π
δ�,�0 , (4.6)

which is flat in ϕ and the integral over the whole phase space
gives the unity, reflecting the normalization of |�0〉. We can
recognize the amount of information lost in this approach
when compared with W (r,ϕ,�). A similar procedure can be
used for the case of the eigenstates of the angle |ϕ0〉.

As our second example, we address the superposition

|�〉 = 1√
2

(|�1〉 + eiφ0 |�2〉) (4.7)

of two angular-momentum eigenstates with a relative phase
eiφ0 . The resulting features are nicely illustrated in Fig. 2. The
state |�〉 is plotted for �2 = −3 and �1 = 3. Changing the
relative phase φ0 results in a global rotation of the cylinder.

FIG. 1. (Color online) Isocontour surface of the level 1/e from
the maximum of the Wigner function W (r,ϕ,�) for an eigenstate of
the OAM |�0〉. At the top, we show a density plot of a section of that
surface by the plane � = 0.

Again a rich radial structure can be appreciated. The “holes”
in the isosurface correspond to points for which the Wigner
function takes on negative values [72], as can be appreciated
in the inset, where we draft the corresponding Wigner function
W (�,ϕ) for this state.

FIG. 2. (Color online) Isocontour surface of the level 1/e from
the maximum of the Wigner function W (r,ϕ,�) for the superposition
state in Eq. (4.7), with �2 = −3 and �1 = 3. At the top, we show a
density plot of a section of that surface by the plane � = 0. In the
inset we show the standard Wigner function W (�,ϕ) for this state, as
well as the associated marginals.
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V. CONCLUDING REMARKS

In summary, we have shown how to extend in a consistent
way all the techniques developed for a continuous-variable
phase space to the case of angle and angular momentum,
including significant information about the radial variable.
While we have not left aside the mathematical details, our
main emphasis has been on presenting a simple and useful
toolkit that any practitioner in the field should master. In our
view, far from being an academic curiosity, the ideas expressed
here have a wide range of potential applications in numerous
hot topics in which OAM plays a key role.
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APPENDIX A: ENTANGLED-STATE REPRESENTATION

For the two modes ± defined in Eq. (3.6), the Fock space
is spanned by

|n+,n−〉 = (â†
+)n+(â†

−)n−
√

n+!n−!
|0,0〉 , (A1)

where |0,0〉 is the two-mode vacuum. Then one can immedi-
ately check that the vectors [73,74]

|ξ 〉 = exp

[
−1

2
|ξ |2 + ξ â

†
+ + ξ ∗â†

− − â
†
+â

†
−

]
|0,0〉 ,

(A2)

|η〉 = exp

[
−1

2
|η|2 + ηâ

†
+ − η∗â†

− + â
†
+â

†
−

]
|0,0〉

are indeed eigenstates of the following operators:

x̂+ − x̂−|η〉 =
√

2 Re(η)|η〉 , p̂+ + p̂−|η〉 =
√

2 Im(η)|η〉 ,

x̂+ + x̂−|ξ 〉 =
√

2 Re(ξ )|ξ 〉 , p̂+ − p̂−|ξ 〉 =
√

2 Im(ξ )|ξ 〉 ,

(A3)

where x̂± and p̂± are the quadrature operators associated to
the modes ±. This shows that these states are the continuous-
variable versions of the original Einstein-Podolsky-Rosen
states [75].

Using the technique of integration within an ordered
product of operators [76], we can prove the orthogonal
property and completeness relation

〈η′|η〉 = πδ(2)(η − η′) ,
1

π

∫
d2η |η〉〈η| = 1̂ , (A4)

and an analogous one for ξ . In fact, one can also check that

〈ξ |η〉 = 1
2 exp[(ξη∗ − ξ ∗η)/2] . (A5)

We observe also that if we use the Shapiro-Wagner angle
operator [60]

Ê =
√√√√ â+ + â

†
−

â
†
+ + â−

, (A6)

then

Ê|ξ 〉 =
√√√√ â+ + â

†
−

â
†
+ + â−

|ξ 〉 =
√

ξ

ξ ∗ |ξ 〉 = eiϕ|ξ 〉 , (A7)

so these states have a well-defined angle.
If we recall that the two-variable Hermite polynomials,

defined as [77]

Hm,n(λ,λ∗) =
min(m,n)∑

�=0

m!n!

�!(m − �)!(n − �)!
(−1)�λm−�λ∗n−�

,

(A8)

have the generating function

∞∑
m,n

tmt ′n

m!n!
Hm,n(λ,λ∗) = exp(−t t ′ + tλ + t ′λ∗) , (A9)

by simple inspection we note that

|η〉 = exp(−|η|2/2)
∑
n+,n−

(−1)n−
√

n+!n−!
Hn+,n− (η,η∗)|n+,n−〉 ,

|ξ 〉 = exp(−|ξ |2/2)
∑
n+,n−

1√
n+!n−!

Hn+,n− (ξ,ξ ∗)|n+,n−〉 ,

(A10)

which constitute a compact expression of these entangled
vectors in the Fock basis.

APPENDIX B: EVALUATING THE
WIGNER-WEYL KERNEL

Our task here is to evaluate the kernel [Eq. (3.8)] and then
integrate over the variable pr . Using the properties of the
entangled states in the previous appendix, we can write

ŵ(r,�) =
∫

dpr ŵ(r,pr,�)

= 1

π
(−1)N̂

∫
d2ηd2ξ |η〉〈ξ | exp[(ξη∗ − ξ ∗η)/2]

× exp[
√

2λr (ξ − ξ ∗)] exp[r(η − η∗)]δ[r − Re(ξ )] .

(B1)

To simplify as much as possible what follows, we assume pure
states, for which

W (r,ϕ,�) = 〈�|ŵ(r,ϕ,�)|�〉 = 〈�|e−iϕL̂ŵ(r,�)eiϕL̂|�〉 .

(B2)

This is in fact a marginal of the Wigner function of the problem.
Next, we choose to expand eiϕL̂|�〉 in the |ξ 〉 basis. Taking
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into account the properties of these states, we have

�(ξ,ϕ) = 〈ξ |eiϕL̂|�〉 = 〈ξe−iϕ|�〉 . (B3)

Therefore, we get

W (r,ϕ,�) = 1

π2

∫
d2ξ ′d2ηd2ξ 〈ξ ′|(−1)N̂ |η〉 δ[r − Re(ξ )]

×�∗(ξ ′,ϕ)�(ξ,ϕ) exp[(ξη∗ − ξ ∗η)/2]

× exp[
√

2λr (ξ − ξ ∗)] exp[r(η − η∗)] . (B4)

If we use the decomposition of these entangled states in
terms of double-variable Hermite polynomials in Eq. (A10),
and we recall that Hm,n(ξ,ξ ∗) = H ∗

n,m(ξ,ξ ∗), then it is

easy to check that 〈ξ ′|(−1)N̂ |η〉 = 〈η|ξ ′〉. Consequently,

we have ∫
d2η〈η|ξ ′〉 exp[(ξη∗ − ξ ∗η)/2 + r(η − η∗)]

= 4π2δ(2)(ξ + ξ ′ − 2r) . (B5)

Finally, if we perform the integral over ξ ′ using this result we
get

W (r,ϕ,�) = 4
∫

d2ξ �∗(2r − ξ,ϕ)�(ξ,ϕ)

× exp[
√

2λr (ξ − ξ ∗)] δ[r − Re(ξ )] . (B6)

By separating the differential d2ξ in real and imaginary
parts, after integrating over the real part Re(ξ ) we get the
result (3.12).
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Z. Bouchal, A. B. Klimov, I. Rigas, and L. L. Sánchez-Soto, Opt.
Lett. 35, 2064 (2010).

053839-6

http://dx.doi.org/10.1088/0741-3335/29/1/001
http://dx.doi.org/10.1103/RevModPhys.59.533
http://dx.doi.org/10.1103/RevModPhys.59.533
http://dx.doi.org/10.1121/1.428184
http://dx.doi.org/10.1121/1.428184
http://dx.doi.org/10.1103/PhysRevLett.99.190404
http://dx.doi.org/10.1103/PhysRevLett.99.190404
http://dx.doi.org/10.1051/0004-6361:200809791
http://dx.doi.org/10.1038/nphoton.2012.138
http://dx.doi.org/10.1038/nphoton.2012.138
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1103/PhysRevLett.92.167903
http://dx.doi.org/10.1103/PhysRevLett.92.217901
http://dx.doi.org/10.1103/PhysRevLett.96.163905
http://dx.doi.org/10.1103/PhysRevLett.96.163905
http://dx.doi.org/10.2971/jeos.2007.07014
http://dx.doi.org/10.1016/0370-1573(94)00095-K
http://dx.doi.org/10.1016/S0079-6638(00)80021-9
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1017/S0305004100000487
http://dx.doi.org/10.1119/1.11869
http://dx.doi.org/10.1063/1.1825078
http://dx.doi.org/10.1063/1.1825078
http://dx.doi.org/10.1103/PhysRevA.49.3255
http://dx.doi.org/10.1088/0305-4470/29/14/043
http://dx.doi.org/10.1088/0305-4470/31/16/015
http://dx.doi.org/10.1088/0305-4470/35/21/311
http://dx.doi.org/10.1063/1.1616997
http://dx.doi.org/10.1143/PTP.115.1027
http://dx.doi.org/10.1088/0305-4470/29/14/034
http://dx.doi.org/10.1088/0305-4470/29/14/034
http://dx.doi.org/10.1088/0305-4470/31/44/012
http://dx.doi.org/10.1063/1.530099
http://dx.doi.org/10.1063/1.1446664
http://dx.doi.org/10.1088/0305-4470/39/31/016
http://dx.doi.org/10.1088/0305-4470/39/31/016
http://dx.doi.org/10.1134/S0030400X10020086
http://dx.doi.org/10.1016/j.aop.2010.11.016
http://dx.doi.org/10.1103/PhysRevA.71.053801
http://dx.doi.org/10.1016/j.optcom.2005.08.002
http://dx.doi.org/10.1016/j.optcom.2005.08.002
http://dx.doi.org/10.1103/RevModPhys.81.299
http://dx.doi.org/10.1103/RevModPhys.81.299
http://dx.doi.org/10.1103/PhysRevA.78.060101
http://dx.doi.org/10.1364/OL.35.002064
http://dx.doi.org/10.1364/OL.35.002064


ORBITAL ANGULAR MOMENTUM FROM MARGINALS OF . . . PHYSICAL REVIEW A 88, 053839 (2013)

[45] E. Binz and S. Pods, The Geometry of Heisenberg Groups
(American Mathematical Society, Providence, 2008).

[46] R. L. Stratonovich, JETP 31, 1012 (1956) [Sov. Phys. JETP 4,
891 (1957)].

[47] C. Brif and A. Mann, J. Phys. A 31, L9 (1998).
[48] A. Perelomov, Generalized Coherent States and their

Applications (Springer, Berlin, 1986).
[49] R. P. Singh, S. Roychowdhury, and V. K. Jaiswal, Opt. Commun.

274, 281 (2007).
[50] P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968).
[51] J. C. Garrison and J. Wong, J. Math. Phys. 11, 2242 (1970).
[52] E. C. Lerner, H. W. Huang, and G. E. Walters, J. Math. Phys.

11, 1679 (1970).
[53] R. G. Newton, Ann. Phys. 124, 327 (1980).
[54] R. A. Leacock, Found. Phys. 17, 799 (1987).
[55] D. Ellinas, J. Math. Phys. 32, 135 (1991).
[56] X. Ma and W. Rhodes, Phys. Rev. A 43, 2576 (1991).
[57] A. Luis and L. L. Sánchez-Soto, Phys. Rev. A 48, 752 (1993).
[58] L. Susskind and J. Glogower, Physics 1, 49 (1964).
[59] H. Paul, Fortschr. Phys. 22, 657 (1974).
[60] J. H. Shapiro and S. S. Wagner, IEEE J. Quantum Electron.

QE-20, 803 (1984).
[61] S. M. Barnett and D. T. Pegg, J. Mod. Opt. 36, 7 (1989).
[62] V. N. Popov, Theor. Math. Phys. 89, 1292 (1991).

[63] J. W. Noh, A. Fougères, and L. Mandel, Phys. Rev. A 45, 424
(1992).

[64] Z. Hradil, Quantum Opt. 4, 93 (1992).
[65] M. Freyberger, K. Vogel, and W. Schleich, Quantum Opt. 5, 65

(1993).
[66] C. Zhu and J. R. Klauder, Am. J. Phys. 61, 605 (1993).
[67] R. L. Liboff, Introductory Quantum Mechanics, 3rd ed.

(Addison, Reading, 1998).
[68] A. Galindo and P. Pascual, Quantum Mechanics (Springer,

Berlin, 1991).
[69] G. Paz, Eur. J. Phys. 22, 337 (2001).
[70] S. Chaturvedi, G. Marmo, N. Mukunda, R. Simon, and

A. Zampini, Rev. Math. Phys. 18, 887 (2006).
[71] J. M. Gracia-Bondı́a, F. Lizzi, G. Marmo, and P. Vitale, J. High

Energy Phys. 04 (2002) 026.
[72] I. Rigas, L. L. Sánchez-Soto, A. B. Klimov, J. Řeháček, and
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