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Third-order nonlinear plasmonic materials: Enhancement and limitations
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We develop a rigorous and physically transparent theory of enhancement of third-order nonlinear optical
processes achievable in plasmonic structures. The results show that the effective nonlinear index can be enhanced
by many orders of magnitude, but, due to high metal losses the most relevant figure of merit, the amount of
phase shift per one absorption length, remains very low. This makes nonlinear plasmonic materials a poor match
for applications requiring high efficiency, such as all-optical switching and wavelength conversion, but does not
preclude the applications where overall high efficiency is not required, such as sensing.

DOI: 10.1103/PhysRevA.88.053838 PACS number(s): 42.70.Nq, 42.65.Pc, 78.67.Pt, 42.65.Ky

I. INTRODUCTION

Various nonlinear optical phenomena have been attracting
the interest of the scientific community ever since scientists
gained access to intense optical fields with the invention of the
laser in 1960 [1]. Very shortly after this invention practically
all the major nonlinear optical phenomena of second and third
order were successfully demonstrated [2–4]. Simultaneously
the theory of nonlinear optics was developed by Bloembergen
and many others [5–7]. Today a clear understanding of the
nonlinear optical effects in various media exists and can be
found in a number of excellent textbooks and monographs
[8,9]. The fascinating promise of nonlinear optics has always
been based on the fact that nonlinear optical phenomena allow
one in principle to manipulate photons with other photons
without relying on electronics. Hence a large number of
all-optical devices that allow light manipulation based on either
second- or third-order nonlinear effects, such as frequency
conversion, switching, phase conjugation, and others, have
been proposed and demonstrated in different materials and
configurations [9]. However, while there have been some
spectacular success stories that lead to practical products
(such as frequency converters, optical parametric oscillators,
frequency combs for measurements, and a few others), thus far
the majority of nonlinear optical phenomena have not become
competitive for practical applications, and not for the lack of
trying.

The reason for this seeming incongruity is quite simple—all
nonlinear optical phenomena can be divided into two broad
classes: slow and ultrafast. The slow nonlinear phenomena are
generally classified as such by the fact that optical fields do
not interact directly, but through the various “intermediaries,”
such as electrons excited when the photons get absorbed,
or through the temperature rise caused by the release of
energy of the absorbed photons. For as long as these in-
termediaries exist, i.e., while electrons stay in the excited
state or until the heat dissipates, their effect on the optical
fields accumulates, hence these phenomena, such as saturable
absorption, photorefractive effect, or thermal nonlinearity,
can be quite strong, but this very fact makes them slow,
as their temporal response is limited by the time constant
associated with relaxation, recombination, or heat diffusion

process. Furthermore, the slow nonlinearity always involves
the so-called “real” process of photon absorption, and, once
absorbed, these photons are never recovered, which means that
“slow” nonlinearities are always associated with a significant
loss. While there exists a legitimate niche for these slow
nonlinearities (which may not be all that slow after all, as
some saturable absorbers do show picosecond response), it is
the other hand, the so-called virtual or ultrafast nonlinearities
that have been the object of interest as they carry the promise
of transforming the fields of information processing and
communications.

The term “virtual,” that is commonly associated with the
ultrafast nonlinearity, implies that the nonlinear phenomenon
does not involve excitation of the matter to the real excited
states as there exist no transitions between the states that
are resonant with the photon energy. When the non-energy-
conserving virtual excitation does take place its duration is
determined by the uncertainty principle, and thus can be
as short as a few femtoseconds or even a fraction of a
femtosecond which explicates the term “ultrafast.” But it is
precisely the fact that the excitation lasts such a short time
interval that makes the ultrafast nonlinearities relatively weak.
On a microscopic level one can explain this by the fact
that for small electric fields the atoms and molecules always
behave as essentially harmonic oscillators and only when the
applied fields become appreciable relative to the intrinsic field
Ei holding the electrons confined within the atom or the
bond between the atoms does anharmonicity arise causing
the nonlinear response. Overall, it can be loosely stated that
the order of magnitude of the nonlinearity of the nth order can
be determined as

χ (n) ∼ χ (1)En−1
i , (1)

where χ (1) = n2
d − 1 is the linear susceptibility and nd is

the index of refraction, typically anywhere between 1.5 and
3.5 for most solids in the visible to near-IR range. The
typical value of the intrinsic field is on the order of the
binding energy of a few eV divided by the bond length
of 1–2 Å, i.e., 1010–1011 V/m. Therefore, the second-order
susceptibility χ (2) in solids cannot exceed 1000 pm/V and
is usually far less than that due to crystal symmetry, while
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FIG. 1. (Color online) Comparison of cw (a) and mode-locked
(b) laser outputs with equal average power.

the third-order susceptibility χ (3) is expected to be less than
10−19 m2/V2. Through the relation between the third-order
susceptibility and nonlinear refractive index, n2 = χ (3)η0/n2

where the impedance of free space η0 = 377 �, one can see
that the latter is limited to a magnitude less than 10−13 cm2/W.
This is indeed the case, with a typical nonlinear index
being strongly dependent on the width of the transparency
region and ranging from n2 ∼ 5 × 10−16 cm2/W for fused
silica that is transparent all the way to UV, to perhaps
n2 ∼ 1 × 10−13 cm2/W for chalcogenide glasses transparent
only in the IR range [10].

Clearly, very strong optical power density is required in
order to produce appreciable ultrafast nonlinear optical phe-
nomena. The average optical power available from a compact
laser rarely exceeds a few hundred milliwatts; furthermore,
if one wants to envision all-optical integrated circuits, the
power dissipation requirements constrain the power to even
much lower levels than that, possibly less than a milliwatt.
Hence early on it was understood that to make nonlinear
optical phenomena practical one must concentrate the power
in both space and time. Concentration in space usually implies
coupling the light into a tightly confining optical waveguide or
a fiber. But the attainable concentration is limited to roughly
a wavelength in the medium due to the diffraction limit.
In addition, one may consider the resonant concentration of
optical energy in microcavities [11,12], ring resonators [13],
photonic band-gap structures [14], and slow-light devices
[15,16], but all these resonant effects inevitably limit the
bandwidth [17]. It is the concentration of optical power in
the time domain provided by pulsed sources, particularly
by the Q-switched [18] and mode-locked lasers [19,20],
that has proven to be the winning technique in nonlinear
optics.

The reasons for this can be easily grasped from the sketch
in Fig. 1. Consider the light of a cw source with the power Pcw

that propagates over a distance l in the medium with nonlinear
susceptibility χ (n). At the far end the nonlinear wave of power
P (n)

cw ∝ l2|χ (n)|2P n
cw will emerge [Fig. 1(a)]. If, on the other

hand, one could use a periodically pulsed source with duty
cycle � and the same average power 〈P�〉 = Pcw [Fig. 1(b)],
the peak power would obviously be Ppeak = �−1Pcw and
the peak output nonlinear power would increase to P

(n)
peak ∼

l2|χ (n)|2�−nP n
cw while the average nonlinear output would

amount to 〈P (n)
� 〉 ∼ �1−nP (n)

cw ; i.e., the efficiency is increased
by �1−n. For a typical mode-locked laser with a picosecond-
pulse duration and 100-MHz repetition rate � = 10−4, this
indicates that the efficiency of the second-order nonlinear
conversion can be boosted by 104 and for the third-order effect
it is even higher.

Use of ultrashort low-duty-cycle laser pulses has become
the ubiquitous method of obtaining excellent practical results
for both the second-order (frequency conversion, parametric
oscillation, and amplification) and the third-order (optical
frequency comb and continuum generation) phenomena. And
yet if one is thinking of applications in information processing,
the switches are expected to operate at the same symbol
rate and duty cycle as the data stream. In other words, if
the signal itself is, say, a typical “no return to zero” (NRZ)
stream of 5-ps FWHM pulses in 10-ps bit intervals, using
1-ps pulses at low duty cycle will not allow one to be able
to fully switch each individual symbol. Then one should
look at other methods of concentrating the energy and the
attention is inevitably drawn back to the space domain and the
question arises: Can one transfer the mode-locking techniques
from time to space, i.e., to create a low-duty-cycle high-peak-
power distribution of optical energy in space, rather than in
time, and to use it to effectively enhance nonlinear optical
effects.

Extending the time-space analogy, let us look at what limits
the degree of energy concentration in time and space. In the
time domain it is obviously the dispersion of group velocity,
while in the space domain it is the diffraction. While there
is obvious equivalence between the mathematical description
of dispersion and diffraction, there is a stark difference—the
group velocity dispersion can be minimized by a number
of techniques because it can be either positive or negative,
while the diffraction is always positive and there exists a
hard diffraction limit to the optical confinement in an all-
dielectric medium. Therefore, the closest space-domain analog
to the mode-locking technique is a one-dimensional array
of coupled resonators with either ring or photonic band-gap
implementation, which does provide some enhancement of
nonlinearity, but, as mentioned above, always at the expense
of bandwidth [21,22].

It is important to realize, though, that the diffraction limit
is applicable only to the all-dielectric structures with positive
real parts of dielectric constants. In all-dielectric structures the
energy oscillates between electric and magnetic fields, and if
the volume in which one tries to confine the optical energy
is much less than a wavelength the magnetic field essentially
vanishes (so-called quasistatic limit) and without this energy
“reservoir” for storage every alternative quarter cycle the
energy simply radiates away. But if the structure contains a
medium with negative real part of dielectric constant, i.e., free
electrons, an alternative reservoir for energy opens up—the
kinetic motion of these free carriers in metal or semiconductor,
and the diffraction limit ceases being applicable. The optical
energy can be then contained in the tightly confined sub-
wavelength modes surrounding or filling the gap between the
tiny metallic particles. These modes, combining electric field
with charge oscillations, are called localized surface plasmons
(LSPs), and in the last decade the entirely new closely related
fields of plasmonics and metamaterials have arisen with
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the ultimate goal of taking advantage of the unprecedented
degree of optical energy concentration on the subwavelength
scale [23].

Following these arguments, the researchers have observed
enhancement of both linear (absorption, luminescence) [24,25]
and nonlinear (Raman) phenomena [26–28] in the vicin-
ity of small metal nanoparticles and their combinations.
Enhancement of many orders of magnitude has been ob-
served experimentally for surface-enhanced Raman scattering
(SERS) [26–28], while the enhancement for luminescence
and absorption was more modest. To address this issue we
have developed a rigorous yet physically transparent theory
explaining this enhancement provided by single [29] or
coupled [30,31] nanoparticles in which we have traced the
relatively weak enhancement of luminescence to the large
absorption in the metal, which cannot be reduced in truly
subwavelength mode in which the field is concentrated [32,33].
In that work [32] we have shown that the decay rate of the
electric field in the subwavelength mode is always on the order
of the scattering time in metal, i.e., 10–20 fs in noble metals.
This is the natural consequence of the aforementioned fact that
half of the time all the energy is contained in the kinetic motion
of electrons in the metal where it dissipates with the scattering
rate. As a result, a significant fraction of the LSP energy simply
dissipates inside the metal rather than radiating away. The
net result is that only very inefficient emitters [34] and also
absorbers [35] can be enhanced by plasmonic effects such as,
of course, the Raman process that is extremely inefficient [36],
while the relatively efficient devices such as light-emitting
diodes (LEDs) [37], solar cells [38], and detectors [39] do
not exhibit any significant plasmonic enhancement relative to
what can be obtained without the metal by purely dielectric
means [40].

Therefore, it would only be natural to look into what
plasmonic enhancement can do for the inherently weak
nonlinear processes, and, although the first works along this
direction are over 30 years old [41–46] the interest has peaked
significantly in the last decade [47]. There are a number
of ways where nonlinear optical effects can be enhanced
by the surface plasmons (SPs). One is the coupling of the
excitation field to form the much stronger localized field near
the surface of the metal structure that leads to the enhancement
of optical processes [48]. Such a strong near-field effect is
responsible for the experimental observations of significant
Raman enhancement that has resulted in single-molecule
detection [26–28,49] and SP-enhanced wave mixing such
as second-harmonic generation (SHG) on random [50–52]
and defined plasmonic structures [53–59], as well as the
enhancement of linear processes such as optical absorption and
luminescence [24,25]. Another is the fact that SP resonance is
ultrasensitive to the dielectric properties of the metal and its
surrounding medium—a minor modification in the refractive
index around the metal surface can lead to a large shift of
plasmonic resonance [60]. Such a phenomenon brings about
the prospect of controlling light with another light where
the latter induces optical property change in the plasmonic
structure which in turn modifies the propagation of the original
light. Motivated by this promise, researchers around the world
have been pursuing the goal of practical all-optical modulation

or switching based on Kerr nonlinearities in either unconfined
plasmonic materials [61–64] or waveguides [65–69], which
has remained elusive up to this date.

At this point it is important to differentiate between
the sources of nonlinearity in these works, because both
metals and dielectrics possess nonlinearity. The nonlinear
susceptibility of metal can be due to either free carriers or
to band-to-band transitions. The nonlinearity of band-to-band
transition (typically involving d bands in noble metals) is no
different from the interband nonlinearity of dielectrics and
semiconductors, except it always occurs in the region of large
absorption due to free carriers, and in addition, the nonlinearity
is strongest in the blue region of the spectrum, while we
prefer to concentrate on the telecommunication region of
1300–1500 nm. As far as nonlinearity of free electrons is
concerned, it is extremely weak because LSPs (at least when
there are only a few of them per nanoparticle) are nearly perfect
harmonic oscillators. That can be easily understood from the
following back-of-the envelope calculation. To maintain just a
single LSP with, say, h̄ω0 = 1.25 eV in a subwavelength mode
that, as we mentioned above, decays with a time constant of
10−14 fs, it would mean power dissipation of 20 μW in a
small volume on the order of, say, 2 × 10−17 cm−3, i.e., very
high power density of 1012 W/cm3 and temperature rise on the
order of about 10 K per picosecond. Clearly, one cannot expect
to find more than a few SPs per mode before the catastrophic
meltdown. But then, as we have mentioned before, the energy
of SP for half the time is contained in the form of kinetic
energy of electrons, hence one can write

NeV m0ω
2
0x

2
0

/
2 = h̄ω0, (2)

where Ne ∼ 8 × 1022 cm−3 is the electron density, V is the
metal volume, and x0 is the classical amplitude of each
individual electron. From Eq. (2) we immediately find x0 �
0.002 Å and with such a tiny amplitude of motion the free
electron cannot “see” any anharmonicity of the potential.

Therefore, we shall consider the structure in which the
metal nanoparticles are embedded into the nonlinear material
with large nonlinearity and low loss. We shall limit our
consideration to the third-order nonlinearity because it leads
to optical switching and other interesting phenomena without
phase matching, and furthermore, we shall limit ourselves to
the nonlinear modulation of the refractive index (real part
of susceptibility) rather than absorption (imaginary part).
One reason for it is that for the amplitude modulation it is
desirable to maintain the “zero” bit level as close to real
zero as possible, which can only be done by the interference
(as in, for instance, Mach Zehnder interferometer). Another
reason is that by modulating the index one can take advantage
of advanced phase-modulation formats, such as quadrature
phase-shift keying (QPSK), quadrature amplitude modulation
(QAM), etc. Index modulation is typically broadband and,
in addition to simple modulation and switching, can be
used for frequency conversion, while absorption modulation
is an inherently resonant phenomenon. Finally, changes in
absorption are usually associated with real excitations; hence
they are not truly ultrafast.

In Sec. III E we shall briefly consider the implications
of using metal nonlinearity as well as modulation of the
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FIG. 2. (Color online) (a) Gold spherical nanoparticle (a =
20 nm) with the electric field distribution. (b) Gold elliptical
nanoparticle [long (short) axes: 25 nm (5 nm)] with resonance at
1550 nm and associated electric field distribution. (c) Extinction
spectrum of the elliptical nanoparticle.

absorption coefficient and show that essentially the same
figures of merit will apply to those plasmonically enhanced
nonlinear schemes as to the one which we shall consider
at length—the structure shown in Figs. 2(a) and 2(b) in
which metal nanoparticles are surrounded by a nonlinear
dielectric medium. The goal of our treatment is to evaluate
the enhancement of the third-order nonlinear polarizability
of this metamaterial, or one can use the term “artificial
dielectric” consisting of metal nanoparticles that enhance
local field. In the course of this work we shall introduce
figures of merit relevant to practical applications and see
how the plasmonically enhanced nonlinear materials stack
up against the conventional ones. To make our treatment
both general and physically transparent we shall fully rely
on analytical derivations which, of course, would require
certain simplifications that are justified for as long as one
is looking just for the order of magnitude of enhancement.
For instance, we shall consider spherical and elliptical (or
spheroidal) nanoparticles, single and coupled, but we shall
indicate how the treatment can be expanded to other shapes of
nanoparticles, including nanoshells [70], that can be defined
by just three parameters: resonant SP frequency ω0, quality
factor Q, and effective SP mode volume Veff . For this
purpose, in Fig. 2(a) we show spherical nanoparticles and in
Fig. 2(b) we show elliptical nanoparticles with resonance at the
telecommunication wavelength of 1550 nm with actual field
distribution calculated numerically. Also shown in Fig. 2(c)

FIG. 3. (Color online) Fields and polarizations in the plasmoni-
cally enhanced nonlinear metamaterial: (a) average Ēω and local Eω

electric fields and dipole pω at the pump frequency; (b) local nonlinear

field Eω′ , dipole moment pω′
nl , and average nonlinear polarization P̄ω′

nl .

is the extinction spectrum of the elliptical particle obtained
numerically where the resonance can be observed.

II. LINEAR OPTICAL PROPERTIES OF METAL
NANOPARTICLES EMBEDDED IN A DIELECTRIC

A. Polarizability and local field enhancement

Consider a rather general scheme for plasmoncially
enhanced nonlinearity shown in Fig. 3(a) consisting of
nanospheres of radius a surrounded by the nonlinear dielectric
with relative permittivity εd and nonlinear susceptibility tensor
χ (3). The density of these spheres is Ns . In the most general
case χ (3) implies four wave interactions, with some of the
waves being the pumps (of switching signals) and some being
the nonlinear output signals. In many practical cases, such
as cross- and self-phase modulation, degeneracy reduces the
number of interacting waves. In Fig. 3(a) we show just one
pump (or switching) wave of frequency ω and one signal wave
of frequency ω′.

As the pump wave propagates through the material with the
average electric field of Ēω, the nanospheres become polarized
by this field, and acquire the dipole moment [71]

pω = εm − εd

εm + 2εd

4πε0εda
3 Ēω = 3ε0V

εm − εd

εm + 2εd

εd Ēω, (3)

as shown in Fig. 3(a). Using the Drude model for the
dielectric constant of metal εm = 1 − ω2

p/(ω2 + jωγ ) with
plasma frequency ωp and scattering rate γ we can write

εm − εd

εm + 2εd

=
1 − ω2

p

ω2+iωγ
− εd

1 − ω2
p

ω2+iωγ
+ 2εd

= (1 − εd ) ω2 − ω2
p + iωγ (1 − εd )

(1 + 2εd ) ω2 − ω2
p + iωγ (1 + 2εd )

≈
ω2

0 + ω2 εd−1
2εd+1

ω2
0 − ω2 − iωγ

, (4)

where ω0 = ωp/
√

1 + 2εd is the LSP resonant frequency [34].
Not far from the resonance we obtain

pω = αω2
0 Ēω

ω2
0 − ω2 − iωγ

≈ α
Q

L(ω)
Ēω, (5)
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FIG. 4. (Color online) Dispersions of Q factors for gold and silver
nanoparticles.

where we have introduced the Q factor of the mode as

Q = ω0/γ, (6)

resonant Lorentzian denominator,

L(ω) = Q
(
1 − ω2/ω2

0

) − i, (7)

and polarizability of the nanoparticle as

α ≈ 3ε0εdV

(
1 + εd − 1

2εd + 1

)
= 3ε0εdV

3εd

2εd + 1
= 3ε0εdVβ.

(8)

Here, for the spherical nanoparticle, the factor β =
3εd/(2εd + 1), and for particles of different shapes it will be
somewhat different and polarization dependent, yet still within
the same order of magnitude. Similarly, the value of resonant
frequency will change; however, since we are interested only in
the order of magnitude results in this work, all the conclusions
obtained here for spherical particles and their combinations
will hold for the particles of different shapes. It should be
noted that the Q factor for a particular shape depends only
on its resonant frequency ω0 since the decay rate γ does not
depend on the shape (or exact dimensions) as long as particles
are much smaller than the wavelength (which is of course
required to avoid scattering and diffraction effects).

The Q factor for the gold and silver, the two least-lossy
plasmonic materials are shown in Fig. 4 as functions of
frequency. Near 1550 nm the Q factor of bulk gold is about 12
and for bulk silver it is closer to 30, according to Johnson and
Christy [72], although for silver nanoparticles the interface
scattering usually decreases the Q factor by a factor of a few.
Also, gold is easier to work with than silver, as it does not
get oxidized, so in the subsequent discussion we use gold as
the material of choice, although in the end changing Q by a
factor of a few will not affect any of our conclusions, since, we
stress once again, our results are all just an order of magnitude
estimates.

Equation (5) can be construed as the solution of the
equation of motion of the harmonic oscillator, or the LSP
mode characterized by the dipole moment p,

d2 p
dt2

+ γ
d p
dt

= −ω2
0 p + ω2

0α Ē, (9)

and consisting of coupled oscillations of the free electron
current inside the nanoparticle, and the electric field inside
and outside the spherical nanoparticle [34],

Eω(r) =
{− p

4πε0εda3 r < a

1
4πε0εd r3 [3( p · r̂)r̂ − p] r > a

, (10)

with the maximum field near the surface of the nanoparticle
equal to

Emax ,ω(a) = 1

4πε0εd

2 pω

a3
= 2 pω

3ε0εdV
, (11)

where V = 4πa3/3 is the volume of the nanosphere.
The total maximum field near the surface is then a sum of

a dipole field and the original average field,

Emax,ω = Ēω + 2

3ε0εdV
α

Q

L(ω)
Ēω

= Ēω

[
1 + 2βQ

L(ω)

]
≈ 2βQ

L(ω)
Ēω. (12)

Hence near the resonance the local field is enhanced roughly
by a factor of 2Q relative to the average field.

The dipole LSP mode equation (10) is the lowest order
(l = 1) among the many orthogonal modes defined by the
angular momentum number l. The electric field of the lth
mode can be written as

El (r) = Emax ,l Fl(r), (13)

where the normalized mode shape function Fl(r) has a
maximum value of unity and one can introduce the effective
volume Veff,l in such a way,∫

Fl(r)
∂[ωε′

r (r)]

∂ω
Fl(r)d3r = εdVeff,l , (14)

that the total mode energy can be found as

Ul = 1
2εdE

2
max ,lVeff,l . (15)

The effective volume of the lth-order mode [30],

Veff1 = πa3

εd

= 3

4εd

V, (16)

is commensurate with the volume of the nanoparticle itself.

B. Effective index and absorption

If the nanoparticles are much smaller than the wavelength
of light in the dielectric, one can apply a classical polarizability
theory in which each nanoparticle is treated as a polarizable
atom. The effective dielectric constant of the composite
medium (or a metamaterial if one wants to use a more modern,
de rigueur terminology) can be found as the sum of the original
dielectric constant and the susceptibility of the nanoparticles
with a density Ns ,

εeff = εd + Nsα

ε0

Q

L(ω)
= εd + Ns3ε0εdVβ

ε0

Q

L(ω)

= εd

[
1 + 3fβ

Q

L(ω)

]
, (17)

where we have introduced the effective filling factor,

f = NsV 
 Q−1. (18)
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The latter condition is practically always satisfied in the
medium with Q ∼ 10 and is required to avoid taking into
account local field (collective) effects that would change
the LSP resonant frequency according to the Lorentz-Lorenz
formula. But, once again, even for a very dense medium the
frequency renormalization is not going to change the main
conclusions of this work.

In this approximation we can find the effective index of
refraction as

neff = ε
1/2
eff ≈ nd

[
1 + 3fβ

2

Q2
(
1 − ω2/ω2

0

)
|L(ω)|2 + 3fβ

2

iQ

|L(ω)|2
]
,

(19)

where nd = √
εd . Obviously, the effective absorption coeffi-

cient,

αa = 2πnd

λ

3fβQ

|L(ω)|2 , (20)

also gets resonantly enhanced by the Q factor.
Next we shall mention what happens to energy propagation

described by the Poynting vector given as

S̄ω = Ē2
ω

2η0
neff,r = Ē2

ωnd

2η0

[
1 + 3fβ

2

Q2
(
1 − ω2/ω2

0

)
|L(ω)|2

]
. (21)

At the same time the average energy density inside is

Uω = ε0εdĒ
2
ω

2
+ Nsε0εdE

2
max ,ωVeff

2

= ε0εdĒ
2
ω

2

[
1 + Ns

3

4εd

V
4β2Q2

|L(ω)|2
]

= ε0εdĒ
2
ω

2

[
1 + 3fβ2

εd

Q2

|L(ω)|2
]

. (22)

Now we can define the energy velocity as

vE,ω = S̄ω

Uω

= c

f nd

1 + 3fβ

2
Q2(1−ω2/ω2

0)
|L(ω)|2

1 + 3fβ

εd

Q2

|L(ω)|2
. (23)

Note that away from resonance the energy propagation velocity
is identical to the group velocity, but at resonance we prefer to
use energy propagation velocity since the group velocity loses
physical meaning (for instance, by becoming negative). The
slowing down factor, or relative group index, at resonance is

ng = c

ndvE

= 1 + 3fβ2Q2

εd

, (24)

which is the consequence of the fact that a large fraction
of energy being “stored” in the nonpropagating LSP modes.
This result is important because if we now compare Eq. (24)
with Eq. (12) we can see that local intensity enhancement
at resonance, 4β2Q2, can be written roughly as (ng − 1)/f .
This indicates the connection between the plasmonics and
slow-light structures [73] in which local intensity also gets
enhanced, but note that for Q ∼ 10 and f < 0.01 most of
the enhancement for plasmonic structures comes not from the
slowing down of light but rather redistribution of energy on
the subwavelength scale.

III. NONLINEAR PROPERTIES OF METAMATERIAL
WITH ISOLATED NANOPARTCLES

A. Nonlinear polarizability

Let us now turn our attention to Fig. 3(b) where the local
nonlinear microscopic polarization at the frequency ω′,

Pnl(r,t) = P ω′
max ,nl G(r)e−iω′t , (25)

is established near the nanoparticle due to the presence of a
strong local pump field. As mentioned above ω′ could be the
same as or different from the pump frequency ω that drives the
nonlinear polarization. The maximum nonlinear polarization is
|Pnl(rmax)| = P ω′

max ,nl , occurring usually at the same location
where the local pump field reaches maximum, and G(r) is
the normalized shape of nonlinear polarization. The nonlinear
polarization can now drive the LSP oscillations at the same
frequency ω′ according to the wave equation for the electric
field of the LSP mode,

∇2 E(r,t) − εr (r)

c2

∂2

∂t2
E(r,t) = 1

ε0c2

∂2

∂t2
Pnl(r,t) (26)

where the relative dielectric constant can be written inside of
the metal as

εr (r) = ε′
r (r) + iε′′

r (r) ≈ ε′
r (r) [1 + iγ (r)/ω] . (27)

We look for the solution of the form

E(r,t) =
∑

l

Eω′
max ,l Fl(r)e−iω′t , (28)

where Fl(r) is the normalized electric field of the lth LSP
eigenmode with l = 1 being the dipole mode described by
Eq. (10), whose amplitude Emax ,1 we are trying to determine.
Each eigenmode is a solution of the homogeneous wave
equation

∇2 Fl(r) = −ω2
0,l

ε′
r (r)

c2
Fl(r), (29)

and the modes are orthogonal and normalized to the effective
volume Veff,l of the lth mode as defined in Eq. (14),∫

Fm(r)
∂[ωε′

r (r)]

∂ω
Fl(r)d3r = εdVeff,lδlm. (30)

Substituting Eq. (28) into Eq. (26) and using Eq. (29), we
obtain ∑

l

{[−ω2
0,l + ω′2 + iω′γ (r)

]
Emax ,l(t)

+ 2iω′ ∂Emax ,l(t)

∂t

}
Fl(r)

= − ω′2

ε0ε′
r (r)

P ω′
max ,nl G(r). (31)

If we now multiply Eq. (31) by ∂(ε′
rω)

∂ω
F1(r), integrate over

the volume, and take advantage of the orthogonality condition
equation (30) to obtain the steady-state amplitude of the l = 1
dipole mode driven by the nonlinear polarization at frequency
ω′,

Eω′
max = P ω

max ,nlκ

ε0εd

Q

L(ω′)
, (32)
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where the overlap coefficient, assuming that the dielectric is
nondispersive and nonlossy, is

κ = εd

∫
F1(r) · G(r)dV∫ ∂(ε′

rω)
∂ω

F 2
1 (r)dV

= εd

∫
F1(r) · G(r)dV

Veff,1
. (33)

Now, according to Eq. (11) we can find the amplitude of the
dipole mode,

pω′
nl = 3

2
V ε0εdE

ω′
max ,nl = 3

2
V κ

Q

L(ω)
P ω′

max ,nl . (34)

And overall effective nonlinear polarization of the metama-
terial is

P̄ω′
nl = 3

2
f κ

Q

L(ω)
Pω′

max ,nl, (35)

shown in Fig. 3(b). As one can see, local nonlinear polarization
gets enhanced by being at resonance with the nanoparticle
dipole mode and enhancement is once again proportional to
the Q factor of the resonance.

Before continuing we shall recap the chain of events that
leads to the establishment of enhanced nonlinear polarization
as shown in Fig. 3:

(i) The average pumping field Ēω polarizes nanoparticles
engendering linear dipole moment pω in each of them;

(ii) Dipole oscillations are coupled with the linear local
field Eω(r) in the vicinity of each nanoparticle. This field is
resonantly enhanced by a factor of the order of Q relative to
Ēω;

(iii) A local nonlinear polarization Pω′
nl (r) is established

in the vicinity of each nanoparticle. Since this polarization
is proportional to the third order of the electric field, it is
enhanced roughly by a factor of Q3;

(iv) This polarization resonantly couples into the dipole LSP
mode of the nanoparticle thus establishing the local nonlinear
field Eω′(r) and the dipole moment pω′

nl . Resonance causes
enhancement by another Q factor;

(v) Finally the localized dipoles pω′
nl combine to establish

the average nonlinear polarization P̄ω′
nl .

Of course all the steps outlined above occur simultaneously
and instantly, but in our view tracing the process step by step
provides the clarity of a physical picture. Let us now turn our
attention to specific third-order processes.

B. Effective third-order nonlinearity

Consider now the third-order nonlinearity in which inter-
action of electromagnetic waves at three different frequencies
is described by the general local third-order susceptibility,

Pω1−ω2+ω3
nl (r) = ε0χ

(3)(ω3, − ω2,ω1)Eω1 (r)E∗
ω2

(r)Eω3 (r).

(36)

In general, when all four frequencies, ω1, ω2, ω3, and
ω4 = ω1 − ω2 + ω3 are different (but typically close to each
other) the nonlinear process described by Eq. (36) is four-
wave mixing (FWM), when ω3 = ω1 ω4 = 2ω1 − ω2 Eq. (36)
describes optical parametric generation (OPG), when ω1 = ω2

and ω3 = ω4 it describes cross-phase modulation (XPM), and
for the case when all frequencies are equal Eq. (36) describes
self-phase modulation (SPM). FWM and OPG are both of

great interest in wavelength conversion while both XPM and
SPM are important for optical switching.

In a composite medium (metamaterial) the local fields
Eωk

(r) in Eq. (36) in the vicinity of the nanoparticle are all
locally enhanced relative to the mean fields Ēωk

according to
Eq. (12), i.e.,

Eωk
(r) = 2βQ

L(ωk)
Ēωk

F1(r). (37)

Hence the local third-order nonlinear polarization is

Pω1−ω2+ω3
nl (r) = ε0χ

(3)(ω3,−ω2,ω1)
(2βQ)3

L(ω1)L∗(ω2)L(ω3)

× F1(r)F1(r)F1(r)Ēω1Ē
∗
ω2

Ēω3

= P
ω1−ω2+ω3
max ,nl G(r), (38)

where its amplitude is

P
ω1−ω2+ω3
max ,nl = ε0|χ (3)(ω3,−ω2,ω1)| (2βQ)3

L(ω1)L∗(ω2)L(ω3)

× Ēω1Ē
∗
ω2

Ēω3 , (39)

the shape function is

G(r) = χ (3)

|χ (3)| F1(r)F1(r)F1(r), (40)

and χ (3)

|χ (3)| is the normalized fourth-order nonlinear susceptibil-

ity tensor. Substituting Eq. (40) into Eq. (35) we obtain

P̄ω4

nl = 3

2
f κ3

(2β)3 Q4

L(ω1)L∗(ω2)L(ω3)L(ω4)
ε0χ

(3)(ω3,−ω2,ω1)

× Ēω1 Ē∗
ω2

Ēω3

≡ ε0χ
(3)
eff (ω3,−ω2,ω1)Ēω1 Ē∗

ω2
Ēω3 , (41)

where the coupling coefficient for the third-order nonlinearity,
according to Eq. (33), is

κ3 = εd

Veff,1

∫
r>a

F1(r) · χ (3)

|χ (3)| F1(r)F1(r)F1(r)d3r. (42)

Since typically all the frequencies are close to each other, we
can see that the effective nonlinear susceptibility gets enhanced
as

χ
(3)
eff � 3

2
f κ3 (2β)3 Q4

L2(ω) |L(ω)|2 χ (3), (43)

i.e., by a factor proportional to Q4. This is an outstanding
result, exciting enough to attract the attention of both the plas-
monic and nonlinear optics communities to this topic, which
has witnessed a surge of research efforts and publications as
reviewed in Sec. I. Indeed, even with filling factor f ∼ 0.01
one can expect 100-fold enhancement of susceptibility. It
means 100-fold enhancement of the nonlinear refractive index
and indicates that one can achieve the same efficiency of
nonlinear phase modulation at about 1/100 of the length,
and, more dramatically, the same efficiency of the wavelength
conversion in only 1/10 000 of the length. These are precisely
the results that prompted many scientists to enter the race
for the largest enhancement. It would be nice if we could
end our discussion right here on this optimistic note, but
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one needs to maintain caution when it comes to reporting
these giant plasmonic enhancements. Our prior research
of plasmonic enhancement of various emission processes
including photoluminescence [29], electroluminescence [34],
and Raman scattering [36] has shown that large enhancements
are feasible only for the processes that have very low original
efficiencies (such as Raman scattering) but are far more
modest for those efficient processes such as fluorescence and
electroluminescence. It is therefore reasonable to expect that
there must exist an upper limit of the nonlinear plasmonic
enhancement.

C. Effective nonlinear index and maximum phase shift

To understand the limitations of the enhancement we shall
first consider XPM (or SPM) for which nonlinear polarization
in Eq. (36) can be written as

P
ω2
nl (r) = 2ε0ndn2Iω1 (r)Eω2 (r), (44)

where n2 = χ (3)(ω1,−ω1,ω2)η0/εd is the nonlinear index
of the dielectric, and Iω1 (r) = |Eω1 (r)|2nd/2η0 is the local
intensity (of course the energy in the near field does not
propagate and this definition of local intensity is just a
convenient way to relate the susceptibility with the nonlinear
index). The local change of refractive index is then

�n(r) = n2Iω1 (r) = n2Īω1 (2β)2 Q2

|L(ω1)|2 F 2
1 (r), (45)

where the average intensity Īω1 = nd |Eω1 |2/2η0.
Similarly, we now introduce the effective nonlinear index

as n2,eff = χ
(3)
eff (ω1,−ω1,ω2)η0/εd and rewrite Eq. (41) as

P̄
ω2
nl = 2ε0ndn2,eff Īω1Ēω2 . (46)

According to Eq. (43) the effective nonlinear index gets
enhanced by the same giant factor proportional to Q4,

n2,eff � 3

2
f κ3 (2β)3 Q4

L2(ω2) |L(ω1)|2 n2. (47)

Since the pump intensity decreases due to absorption, the
nonlinear phase shift can be found as

��(z) = 2π

λ
n2,eff

∫ z

0
Īω1 (z)dz = 2π

λαa

n2,eff Ī0(1 − e−αaz),

(48)

where Ī0 is the input pump intensity and αa is the absorption
coefficient defined in Eq. (20). This means that the maximum
phase shift obtained after about one absorption length is

��max = |L(ω1)|2
3fβQ

n2,eff

nd

Ī0 ≈ κ3 (2β)2 Q3

L2(ω2)

n2

nd

Ī0. (49)

Achieving the π -phase shift required to get pho-
tonic switching would then require at resonance Īπ ∼
πnd [κ3n2(2β)2Q3]−1. If we assume β ∼ 1.35 (estimated
numerically for the actual ellipsoid resonant at 1550 nm), Q ∼
12, and large nonlinear index characteristic of chalcogenide
glass n2 = 10−13 cm2/W, we obtain the required switching
intensity of the order of Īπ ∼ 6 × 109 W/cm2.

This result indicates that the giant nonlinear index enhance-
ment equation (47) can only be used to reduce the length

FIG. 5. (Color online) Change of dielectric constant εeff caused
by the shift of the resonance frequency of SP ω0.

of the device, while the switching intensity remains very
high—requiring peak powers of about 60 W into a 1-μm2

waveguide. But the situation is actually even less optimistic;
according to Eq. (12) the maximum local intensity near the
nanoparticle surface is

Imax = (2βQ)2Īπ ≈ 6 × 1012 W/cm2 (50)

(or maximum local field is of 5 × 107 V/cm), which is
significantly higher than the damage threshold of the material,
and besides as simple calculations may show, it leads to the
local temperature rise on the scale of 104 K/ps! In fact, if
one searches through all the nonlinear materials, it is difficult
to find one that is capable of achieving ultrafast refractive
index change larger than 0.1%. In addition to limitation
due to overheating and optical damage, at high power the
nonlinearities of higher than the third order, i.e., χ (5) and χ (7),
become important, and they often have their signs opposite to
χ (3) [74] which leads to actual decrease in the nonlinear index
change at high intensities.

Therefore, let us define the maximum local nonlinear index
change attainable in a given material as �nmax. Then from
Eqs. (45) and (47) we obtain

�neff, max ≈ 3f κ3β
Q2

L2(ω2)
�nmax. (51)

As we can see now the enhancement is only proportional
to Q2. This result makes perfect sense if we recognize
that local change of dielectric constant �εd, max = 2nd�nmax

simply causes the shift of the LSP resonant frequency ω0 =
ωp/

√
1 + 2εd , as shown in Fig. 5, which in turn changes

the effective dielectric constant of the metamaterial εeff, max

according to Eq. (17) as

�εeff, max ≈ ∂εeff

∂εd

�εd, max = ∂εeff

∂L(ω2)

∂L(ω2)

∂ω2
0

∂ω2
0

∂εd

�εd, max

∼ 6εdβf

1 + 2εd

Q2

L2(ω2)
�εd, max, (52)

where we have kept only the largest term proportional to Q2

and disregarded smaller terms proportional to Q.
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What is most important though is that the maximum
obtainable phase shift equation (49) becomes

��max = 2π

λαa

�neff, max = κ3Q
|L(ω1)|2
L2(ω2)

�nmax

nd

. (53)

The simple meaning of Eq. (53) is that, even if we assume
enormous local nonlinear index change of 1% (local intensity
of 1011 W/cm2), we cannot expect to get phase shift higher
than 0.1, almost two orders of magnitude less than what is
required for π -phase shift switching.

D. Frequency conversion using FWM

It is easy to see that small maximum phase shift for XPM or
SPM corresponds to even smaller efficiency of the frequency
conversion for FWM or OPG. Indeed the growth of the idler
Ēω3 (z) in the presence of pump Īω1 (z) = Ī0e

−αaz and signal
E∗

ω2
(z) = Ese

− αa
2 z can be described by

dĒω3 (z)

dz
= 2π

λ
n2,eff Īω1 (z)E∗

ω2
(z) − αa

2
Eω3 (z) (54)

with the solution

Ēω3 (z) = 2π

λαa

n2,eff Ī0Es[1 − e−αaz]e−αaz/2 (55)

that reaches a maximum near z = α−1
a ln 3 equal to

Ēi, max = 2π

λαa

2

33/2
n2,eff Ī0Es = 2

33/2
��maxEs. (56)

Therefore, maximum conversion efficiency from signal to idler
is

Ii

Is

= 1

3

(
2

3
��max

)2

, (57)

and under no conceivable conditions can it exceed −30 dB.

E. Absorption modulation

Although we have mentioned that absorption modulators
are not nearly as versatile as the phase modulators, we can
simply find the maximum change of the imaginary part of
the refractive index from Eq. (51) which will occur when
ω ≈ ω0(1 ± 2Q−2) and is equal to

(Im�neff)max ≈ 2f κ3β
Q2

L2(ω2)
�nmax, (58)

which upon comparison with Eq. (19) translates to the
maximum absorption coefficient modulation,

�αa

αa

∼ 4

3
κ3Q

�nmax

nd

. (59)

Thus the change in absorption per unit length does not appear
to increase far beyond a few percent. Since the absorption
process is exponential, one can, of course, achieve deeper
modulation than that of the total transmission by propagating
over many absorption lengths, but the insertion loss would be
overwhelming. Therefore, if we use the figure of merit, the
change of transmission per one absorption length, i.e., 1 −
exp(�αa/αa) ≈ �αa/αa , we can see that one cannot achieve
significant absorption modulation without incurring enormous
loss.

Here we should also briefly mention that one could use
modulation of the refractive index of the metal itself, but it is
difficult to see how one can change the index of metal by more
than 1% unless one operates near the interband transitions
where the Q factor is greatly reduced, which defeats the whole
purpose of plasmonic enhancement.

IV. METAMATERIALS WITH DIMERS OR NANOLENSES

A. Local field enhancement

Now we have concluded that while nonlinear susceptibility
and nonlinear index of refraction do get enhanced significantly
in the simple nanostructures, the strong absorption makes
maximum attainable phase shift less than desired. From the
previous work of ourselves [75,76] as well as others [77,78],
we have established that local fields can be enhanced even
further in more complicated nanoparticle structures. In the
gap between two identical nanoparticles (dimer) [75] or in
the vicinity of a smaller nanoparticle coupled to a larger
nanoparticle of the same shape (nanolens) [76], the maximum
field enhancement was proportional to Q2 rather than Q

for a single nanoparticle; hence much larger “cascaded”
enhancements of absorption, Raman scattering, and in some
cases photoluminescence could be achieved in these “hot
spots.” Therefore, it is tempting to evaluate the possibility
of using the hot spots to enhance nonlinearity. Since we have
shown that in either dimer or nanolens the field enhancement

FIG. 6. (Color online) (a) Gold spherical nanoparticle dimer
(a1 = 20 nm, a2 = 10 nm, gap g = 4 nm, r12 = a1 + a2 + d) with
the electric field distribution. (b) Gold elliptical nanoparticle dimer
[long (short) axes: 30 nm (6 nm) and 10 nm (2 nm); 5-nm gap]
with resonance at 1550 nm and associated electric field distribution.
(c) Extinction spectrum of the elliptical dimer.
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is similar, we shall limit our analysis to the case of nanolens
only, as it is easier to describe analytically.

Consider two spherical nanoparticles of radii a1 and a2

separated by a vector r12 as shown in Fig. 6(a). The dipole
oscillation equation (9) is augmented by the dipole-dipole
interaction between the two dipoles associated with the two
coupled nanoparticles,

d2 p1(2)

dt2
+ γ

d p1(2)

dt

= −ω2
0 p1(2) + ω2

0α1(2) Ēω + ω2
0α1(2)

2 p2(1)

4πε0εdr
3
12

. (60)

Using the definition of polarizability, Eq. (8), we obtain for
the harmonic field Ēω parallel to the direction of r12,

(
ω2

0 − ω2 − jωγ
)
pω

1 − 2ω2
0β

a3
1

r3
12

pω
2 = ω2

0α1Ēω,

(61)(
ω2

0 − ω2 − jωγ
)
pω

2 − 2ω2
0β

a3
2

r3
12

pω
1 = ω2

0α2Ēω,

or simply

L(ω)Q−1pω
1 − 2β

(
a1

r12

)3

pω
2 = α1Ēω

(62)

−2β

(
a2

r12

)3

pω
1 + L(ω)Q−1pω

2 = α2Ēω,

which leads to the solution

pω
1 = Q

L(ω)α1 + 2βQ
(

a1
r12

)3
α2

L2
(
ω

) − 4β2Q2
(

a1a2

r2
12

)3 Ēω

= 4πε0εdβ
L(ω)a3

1 + 2βQ
(

a1
r12

)3
a3

2

L2
(
ω

) − 4β2Q2
(

a1a2

r2
12

)3 Ēω,

pω
2 = Q

L(ω)α2 + 2βQ
(

a2
r12

)3
α1

L2
(
ω

) − 4β2Q2
(

a1a2

r2
12

)3 Ēω

= 4πε0εdβ
L(ω)a3

2 + 2βQ
(

a2
r12

)3
a3

1

L2
(
ω

) − 4β2Q2
(

a1a2

r2
12

)3 Ēω. (63)

For the maximum electric fields we obtain

Eω
max ,1 = 1

4πε0εd

2pω
1

a3
1

= 2Q
L(ω)β + 2β2Q

(
a2
r12

)3

L2
(
ω

) − 4β2Q2
(

a1a2

r2
12

)3 Ēω,

Eω
max ,2 = 1

4πε0εd

2pω
2

a3
2

= 2Q
L(ω)β + 2β2Q

(
a1
r12

)3

L2
(
ω

) − 4β2Q2
(

a1a2

r2
12

)3 Ēω.

(64)

Obviously the maximum enhancement will take place if one
can get this condition,

4β2

(
a1a2

r2
12

)3


 Q−2, 2β

(
a1

r12

)3

� Q−1. (65)

Essentially, we are going to the limit of a2 ≈ 0 a1 ≈ r12, which
brings us to

Eω
max ,1 ≈ 2βQ

L(ω)
Ēω, Eω

max ,2 ≈
[

2βQ

L(ω)

]2

Ēω. (66)

As one can see in Fig. 6(a) the field is greatly enhanced
in the vicinity of the smaller particle. In our prior work [76],
using more precise calculations we have shown that the simple
analytical results of Eq. (66) can be used as an upper bound on
the field enhancement in the nanolens, or as a matter of fact, in
the nanogap between two particles. In Fig. 6(b) we show the
dimer that resonates at the wavelength of choice of 1550 nm, as
well as its extinction spectrum in Fig. 6(c). These results have
been obtained using precise numerical calculations. Therefore
we can get the enhancement on the order of Q2 for the smaller
nanoparticle and the prospect seems to look bright.

B. Nonlinear polarizability

The high field in the vicinity of the smaller nanoparticle
will cause nonlinear polarization, Eq. (25),

Pω
nl,2(r,t) = P ω

max ,2G2(r)e−iωt , (67)

where G2(r) is the normalized distribution of nonlinear
polarization near the smaller particle. Then according to
Eqs. (31)–(34) this polarization will induce the nonlinear
dipoles of two particles via the new driving term on the
right-hand side of Eq. (62),

L(ω)Q−1pω
nl,1 − 2β

(
a1

r12

)3

pω
nl,2 = 0,

(68)

−2β

(
a2

r12

)3

pω
nl,1 + L(ω)Q−1pω

nl,2 = 3

2
V2κP ω

max ,2.

We then arrive at

pω
nl,1 = 2πa3

2Q
2

2β
(

a1
r12

)3
κP ω

max ,2

L2(ω) − 4β2Q2
(

a1a2

r2
12

)3 ,

(69)

pω
nl,2 = 2πa3

2Q
L(ω)κP ω

max ,2

L2(ω) − 4β2Q2
(

a1a2

r2
12

)3 .

As one can see from comparison to Eq. (34), the nonlinear
dipole of the larger nanoparticle 1 experiences additional
enhancement relative to the dipole of the smaller nanoparticle
2. But note that now the volume of the smaller nanoparticle is
present in the numerator of Eq. (69), hence the situation that
is optimum for the external field enhancement in the nanolens
equation (65), i.e., the limit of a2 ≈ 0 a1 ≈ r12, is far from
being optimal for the enhancement of nonlinear polarization.

C. Effective third-order nonlinearity of the nanolens medium

Let us now estimate the effective nonlinear susceptibility of
the nanolens. According to Eqs. (39) and (64) the maximum
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nonlinear polarization near the smaller nanoparticle is

P
ω1−ω2+ω3
max ,2 = ε0|χ (3)(ω3,−ω2,ω1)|(2Q)3

[
L(ω) + 2βQ

(
a1
r12

)3]∣∣L(ω) + 2βQ
(

a1
r12

)3∣∣2

[
L2

(
ω

) − 4β2Q2
(

a1a2

r2
12

)3]∣∣L2
(
ω

) − 4β2Q2
(

a1a2

r2
12

)3∣∣2 Ēω1Ē
∗
ω2

Ēω3 , (70)

and substituting it into Eq. (69) we obtain the nonlinear dipole of the larger particle 1 being equal to

pω
nl,1 = 16κ3ε0χ

(3)βQ5 3

2
V1

(
a2

r12

)3
[
L(ω) + 2βQ

(
a1
r12

)3]∣∣L(ω) + 2βQ
(

a1
r12

)3∣∣2

[
L2

(
ω

) − 4β2Q2
(

a1a2

r2
12

)3]2∣∣L2
(
ω

) − 4β2Q2
(

a1a2

r2
12

)3∣∣2 Ēω1Ē
∗
ω2

Ēω3 , (71)

and the effective susceptibility becomes

χ
(3)
eff = 24f χ (3)κ3βQ5

[
L(ω)

(
a2
r12

)3 + 2βQ
(

a1a2

r2
12

)3]∣∣L(ω) + 2βQ
(

a1
r12

)3∣∣2

[
L2

(
ω

) − 4β2Q2
(

a1a2

r2
12

)3]2∣∣L2
(
ω

) − 4β2Q2
(

a1a2

r2
12

)3∣∣2 . (72)

So what is the maximum attainable nonlinearity enhancement?
According to Eq. (66), the local field gets enhanced by a factor
proportional to Q2 instead of Q for a single nanoparticle.
For Raman scattering, which is also a third-order nonlinear
process, the enhancement with the nanolens system can be
Q8 instead of Q4 for a single nanoparticle, a tremendous
improvement. Can we expect similar improvement for the
FWM and other third-order nonlinear processes? The answer
is no, because according to Eq. (65) the largest enhancement of
local fields is always attained when the volume of the smaller
particle becomes negligibly small. But the key characteristic of
Eq. (72), already noted above, is the presence of the volume of
the smaller nanoparticle in the numerator; hence the optimum
condition for the maximum effective χ (3) will not coincide
with the condition for maximum local field enhancement and
overall enhancement will be less than Q8.

To find this condition we consider the resonant case
L2(ω ∼ ω0) = −1 and assume 2βQ(a1/r12) � 1; then we
need to optimize,

χ
(3)
eff ≈ 48f χ (3)κ3β

2Q6
( a1

r12

)6 4β2Q2
(

a1a2

r2
12

)3

[
1 + 4β2Q2

(
a1a2

r2
12

)3]4 . (73)

This enhancement reaches its maximum when

4β2Q2

(
a1a2

r2
12

)3

= 1

3
, (74)

and equals

χ
(3)
eff ≈ 5f χ (3)κ3β

2Q6. (75)

Well, as one can see, the enhancement of χ (3) and nonlinear
index n2 provided by the nanolens system is only proportional
to the Q6. This is rather easy to interpret. The local intensity
in the nanolens gets enhanced by a factor proportional to
Q4 and then, according to Eq. (52) the nonlinear refractive
index change gets enhanced by the same additional factor Q2,
whether it is a single particle, nanolens, dimer, or nanoantenna.
The additional enhancement provided by the coupled particles
composite equation (75), compared to the isolate nanoparticle

composite equation (43), is about

χ
(3)
eff,2

χ
(3)
eff,1

≈ 5

12

Q2

β
, (76)

i.e., a factor on the order of 100. Overall enhancement for
the previously considered case of β ∼ 1.35, Q ∼ 12, and f =
0.01 in chalcogenide glass can be as high as 1 × 105, but the
relevant question is what it means in terms of maximum phase
shift that can be obtained.

D. Maximum attainable phase shift in nanolens

This maximum shift can be obtained in a way similar to
Eq. (49),

��max ≈ 1.7κ3βQ5 n2

nd

Ī0. (77)

Therefore the pump optical intensity required to achieve
π -phase shift is Īπ ∼ 8 × 107 W/cm2, i.e., less than 1 W of
peak power into a 1-μm2 waveguide. This appears to be a
reasonable power, but, of course the problem is that the local
intensity is enhanced according to Eqs. (64) and (74) roughly
by

Imax

Īπ

=
∣∣∣∣E

ω
max ,2

Ēω

∣∣∣∣
2

≈ 9β4Q4 ≈ 6 × 105, (78)

where we have used L2 (ω) ≈ −1 near the resonance, indi-
cating that the local intensity is on the scale of Imax ≈ 5 ×
1013 W/cm2 which is way beyond the optical damage value.
If we introduce once again the maximum local nonlinear index
as �nmax = n2Īmax = 9β4Q4n2Ī0, Eq. (77) can be rewritten as

��max ≈ 0.2κ3
Q

β3

�nmax

nd

. (79)

This result for the nanolens is even worse (by a factor of
about 5) than the result in Eq. (53) for the isolated nanopar-
ticles. Clearly, the dependence κ4Q is common to any type
of nanostructure, monomer, dimer, trimer, or nanoantenna.
The maximum achievable index of refraction �nmax changes
the resonant frequency according to Eq. (52) which provides
enhancement by the factor of Q2, but then the absorption
coefficient also gets enhanced by the factor of Q so only a
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single factor of Q survives in the end. The factor in front of κ3Q

is reduced in dimers and more complicated structures relative
to the monomers simply because a smaller fraction of the mode
energy is contained in the region where the index change is
maximal. Hence one should not expect any improvement in
the maximum obtainable nonlinear phase shift ��max beyond
a single factor of Q in more complicated structures such as
trimers, bowtie antennae, and so on, even if the effective
nonlinear index can be enhanced beyond the already huge
enhancement in Eq. (75). Giant enhancement of nonlinearity
will only mean that the nonlinear phase shift will saturate
at much shorter distance but at essentially the same value of
Eq. (53) or less, indicating that, to the best of our knowledge
on existing materials, it is impossible to achieve true all-optical
switching using plasmonic enhancement.

V. DISCUSSION

Everything said above can be summarized in a simple figure
which tells it all (Fig. 7). We consider a 1-μm2 cross-section
waveguide made of chalcogenide glass with nonlinear index
n2 = 10−13 cm2/W. We consider the third-order nonlinear
process of XPM (although the case of SPM is no different).
The peak pump power is P0 = 1.6 mW so that the intensity
inside the waveguide free of metal nanoparticles is I0 = 1.6 ×
105 W/cm2 and the nonlinear index change is �n0 = 1.6 ×
10−8. If the waveguide is filled with solitary Au nanoparticles,
the local intensity is enhanced by a factor of (2βQ)2, to
Is = 1.8 × 108 W/cm2, and the local nonlinear index change
is �ns = 1.8 × 10−5. When the waveguide is filled with Au
dimers optimized according to Eq. (74), the local intensity is
enhanced by Eq. (78) to Id = 1.0 × 1011 W/cm2 which causes

FIG. 7. (Color online) Nonlinear phase shift in the 1-μm2

chalcogenide waveguide: (a) input power of 1.6 mW, no plasmonic
enhancement; (b) input power of 1.6 mW, nonlinearity enhanced by
the elliptical Au nanoparticles with the filling factor of 0.001; (c) input
power of 1.6 mW, nonlinearity enhanced by the dimers of elliptical Au
nanoparticles with the filling factor of 0.001; (d) input power of 0.8
W, no plasmonic enhancement; (e) input power of 0.8 W, nonlinearity
enhanced by the elliptical Au nanoparticles with the filling factor of
0.001; (f) input power of 8 W, no plasmonic enhancement.

local index shift �nd = 0.01—a rather nonrealistic value in
view of potential optical damage and saturation, but we shall
consider it to be an upper limit.

The nonlinear phase shift versus distance curves are shown
in Figs. 7(a)–7(c) for the three aforementioned cases. In the
waveguide without nanoparticles [curve (a)] the nonlinear
phase shift increases gradually and reaches 2 × 10−3 rad at
length z = 3 cm. For the waveguide impregnated with Au
monomers with the volume fraction f = 0.001 [curve (b)]
the nonlinear shift is much larger but at z ∼ 5 μm the phase
shift saturates at a rather small value of 2 × 10−5 rad. In the
waveguide impregnated with Au dimers with the same volume
fraction f = 0.001 [curve (c)] the enhancement is stronger and
it also saturates at 5 × 10−3 rad. In all three cases the required
180◦ shift is attainable at this low power.

If we increase the input power by a factor of 500 to
P0 = 800 mW the nonlinear shift in the waveguide without
nanoparticles [curve (d)] would now reach a value of 1 rad at
z = 3 cm. For the waveguide with Au monomers [curve (e)]
the phase shift will now saturate at 0.02 rad and this is the
maximum phase shift attainable because local intensity now
approaches the damage threshold of 1011 W/cm2. There is no
curve for the waveguide with dimers because the local intensity
there would be nearly 1014 W/cm2 which is way beyond
optical damage. Once again, no “full optical switching” can
be achieved over a reasonably small distance.

Finally we can further increase input power by another
factor of 10–8 W. Now one cannot use waveguides with
plasmonic enhancement because local intensities would be
beyond optical damage threshold for both monomers and
dimers. So the only curve (f) is that for the waveguide without
nanoparticles and as one can see the phase shift indeed achieves
π -phase shift at a length of about 9 mm.

VI. CONCLUSIONS

Thus we arrive at a rather dichotomous conclusion. On one
hand, using waveguides impregnated with metallic monomers,
dimers, and other constructions (one may call them plasmonic
metamaterials) allows one to achieve huge enhancement of
effective nonlinear index, up to the order of 105 and more
due to the high degree of field concentration in the hot spots
On the other hand, strong absorption in the metal causes
saturation of the nonlinear phase shift for SPM and XPM
or frequency conversion efficiency in the case of FWM and
OPG at very short distances. Given the fact that maximum
local index change is limited, generously, to about 1% due
to optical damage, the nonlinear phase shift saturates at a
very small value of a few tens of milliradians—which is
insufficient for any photonic switching operation. Similarly,
conversion efficiency saturates at values less than − 30 dB,
making use of plasmonic nonlinear metamaterials for this
purpose highly inefficient. It is also clear that changes in Q by
a factor of 2–3 that might be attainable in silver (although not
demonstrated to date due to oxidation and surface scattering)
will not change the results in any substantial way, and only
assure earlier saturation of the nonlinear conversion. The one
and only advantage of nonlinear plasmonic metamaterial is that
nonlinear effects may be observable at very small propagation
distances of a few micrometers with reasonable (but not low!)
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optical powers—but there is a giant chasm between being
observable and being practical, and at this point, with the
existing metals and nonlinear materials, one cannot see how
the nonlinear plasmonic metamaterials can bridge this chasm.

In retrospect, our rather unenthusiastic conclusion about
the prospects of using plasmonic resonances to enhance
nonlinearity does not appear to be surprising at all. Numerous
resonant schemes for enhancement nonlinearity have been
proposed and investigated at length [79,80]. Some of the
schemes rely upon intrinsic material resonances; others try
to take advantage of photonic resonant structures, such as
microresonators and photonic crystals. The Q factor of the
resonances ranges from a few hundreds to tens of thousands,
and yet in the end, none of the resonant schemes has found
practical applications to this day, due to the fact that resonance
is always associated with excessive absorption and dispersion.
To this day optical fiber remains the nonlinear medium of
choice in which low nonlinear coefficients are more than
compensated by the long propagation length and high degree of
confinement. All kinds of all-optical switching and frequency
conversion techniques have been successfully demonstrated in
fiber [81]. The only other media in which all-optical switching
has been consistently demonstrated is semiconductor optical
amplifier (SOA) in which the loss simply does not exist due to
optical gain. Neither fiber nor SOA relies upon any resonance

despite its apparent appeal—one always tries to avoid loss and
excessive dispersion.

So if the numerous relatively high-Q resonant schemes
for enhancing optical nonlinearity have failed to achieve
practicality, it would have been naive to expect plasmonic
resonance in metal nanoparticles with Q barely of the order of
10 to succeed where so many have failed. Thus in retrospect
this work only confirms the obvious. And yet this obvious fact
has not been universally accepted by the community, and we
hope that our effort has been useful as it has revealed the nature
and limitations of the plasmonic enhancement of χ (3) in great
detail and without reliance on excessive numerical modeling.

We emphasize that it has not been our purpose to make
broad predictions of where the research in nonlinear plas-
monics research may go in the future; our modest goal was
to provide a set of simple expressions and relevant numbers
for others so they can ascertain the prospects for using
nonlinear plasmonic metamaterials in their own applications.
Still we may attempt to make a very general statement, that
plasmonically enhanced structures in nonlinear optics might
not find too many applications requiring decent efficiency, such
as switching, wavelength conversion, etc., but may be of use
in such applications where efficiency is not much of an issue
such as sensing, as well as in fundamental studies of optical
properties of different materials under extremely high fields.
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