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Intensity interferometry for observation of dark objects
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We analyze an intensity interferometry measurement carried out with two pointlike detectors facing a distant
source (e.g., a star) that may be partially occluded by an absorptive object (e.g., a planet). Such a measurement,
based on the perturbation of the observed covariance function due to the object’s presence, can provide information
of the object complementary to a direct optical intensity measurement. In particular, one can infer the orientation
of the object’s transient trajectory. We identify the key parameters that impact this perturbation and show that
its magnitude is equal to the magnitude of the intensity variation caused by the same object. In astronomy
applications, this value may be very small, so a differential measurement may be necessary. Finally, we discuss
the signal-to-noise ratio that may be expected in this type of measurement.
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I. INTRODUCTION

Intensity interferometry has found application in astron-
omy, specifically in determining the angular diameter of
distant stars by measuring the light intensity correlation on
Earth. Following the initial wake of excitement caused by
the pioneering works by Hanbury Brown and Twiss [1], the
area has shown only limited progress in later years, chiefly
impeded by the stringent requirements that the intensity-
correlation measurement technique places on photodetectors
and supporting electronics, as well as by computationally
demanding image processing techniques involved. However,
with recent advancement in these technologies, the correlation
imaging now experiences an evident revival [2–8].

A typical observable in intensity interferometry measure-
ments is the Glauber intensity-correlation function [9], which
reflects the fourth-order coherence properties of the fields
incident on the photodetectors. From this measurement the
properties of the source can be learned. For instance, the
correlation function full width at half maximum (FWHM),
which is also frequently referred to as the speckle or
transverse coherence width, yields the angular size of the
light source. Moreover, the intensity distribution across a
spatially nonuniform source determines the shape of the
intensity-correlation function (van Cittert–Zernike theorem)
and can be extracted from it [10–13]. This approach has been
suggested, e.g., for imaging of solar spots [14], tidal and
rotational distortions, limb darkening [7,8], and other stellar
phenomena. Resolution of such intensity-correlation imaging
corresponds to that of a conventional telescope whose aperture
equals the size of the correlated detectors array, and can
span kilometers. Intensity interferometry imaging therefore
may be compared to a synthetic aperture telescope, however,
with one important advantage: while in the latter the required
timing accuracy of the combined signals is determined by
the electromagnetic wave (in our case, optical) period, in the
former it is determined by its coherence time. In particular,
this makes intensity interferometers insensitive to atmospheric
distortions. Admittedly, this advantage comes at a cost of both

*Presently at Google, Inc., 1600 Amphitheatre Parkway, Mountain
View, CA 94043, USA.

the signal-to-noise ratio [7,8] and ambiguity in the image
reconstruction [10,11].

In this work we will focus on a generalization of the
intensity interferometry approach, wherein our objective is
to characterize small changes to the coherence properties of
a source (e.g., a star), due to an absorbing object (e.g., a
planet) that may be present along the propagation path from the
source to the interferometer’s detectors [15]. The presence of
an object will change the measured intensity correlation, and
this information can be used to estimate some of its features.
The specific focus of this paper is on the case of a planet
partially occluding a star.

This paper is organized as follows. In Sec. II we introduce
a formal description of a distant source partially occluded by
a dark object and state the core assumptions and approxima-
tions. We will determine the phase-insensitive autocorrelation
function of the field incident on the measurement plane, and
identify the impact of the object on this autocorrelation, with
a few simplifying approximations. In Sec. III we discuss the
intensity covariance estimate obtained by correlating the pho-
tocurrents from the two detectors, as a function of their location
on the measurement plane. We show how this covariance is
modified by the object, and determine the key parameters that
impact this signature. We introduce a differential measurement
technique that eliminates the prominent coherence signature
of the source alone, and isolates the (weak) portion from the
object. We apply the results to two examples in two scenarios:
(1) a disk-shaped source and object, and (2) a Gaussian-shaped
source and object, both in a typical laboratory imaging scenario
(a), and in a typical stellar imaging scenario (b). Next, in
Sec. IV we analyze the signal-to-noise ratio (SNR) that may
be expected in the intensity-correlation measurements. Finally,
in Sec. V, we conclude this paper and discuss the results.

II. MODEL AND APPROXIMATIONS

Geometry of our model is shown in Fig. 1. We use paraxial
approximation with the propagation direction denoted as z, and
assume that the source and the object are two dimensional. We
also assume that the detectors are coplanar. A departure from
the latter assumption has been briefly discussed in [16] and
concluded disadvantageous. A spatially incoherent extended
source is located at the z = 0 plane. In this paper we will
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FIG. 1. (Color online) Geometry of the problem: z = 0 is the
source plane, z = Ls is the object plane, and z = Ls + L is the
detection plane.

assume a quasimonochromatic thermal light source with the
central wavelength λ. In practice, this implies that narrow
bandpass filters have to be used. We denote the scalar positive-
frequency component of the source field as Es( �ρ,t)e−iωs t ,
where ωs ≡ 2πc/λ is the center frequency, and c is the speed
of light in vacuum. The field amplitude is normalized to the
square root of the photon flux.

For spatially incoherent thermal radiation, Es( �ρ,t) is a zero-
mean Gaussian random function that has a nonzero phase-
insensitive correlation function [17,18]

〈E∗
s ( �ρ1,t1)Es( �ρ2,t2)〉 = R(�t)Is( �ρ1)λ2δ( �ρ2 − �ρ1), (1)

where �t = t2 − t1, but no phase-sensitive correlation:
〈Es( �ρ1,t1)Es( �ρ2,t2)〉 = 0. In Eq. (1) �ρ1,2 are two transverse
coordinates on the z = 0 plane, Is( �ρ) is the photon flux
density in photons/m2/s, R(�t) is the dimensionless temporal
correlation function of the source with R(0) = 1 and R(∞) =
0, and δ( �ρ) is a two-dimensional Dirac δ function. It arises from
a δ-function approximation of the spatially incoherent field’s
transverse correlation profile, which is appreciable only when
| �ρ2 − �ρ1| is on the order of a wavelength. We have assumed
in Eq. (1) that the correlation function is separable into the
product of the spatial and temporal parts, which is generally
true for quasimonochromatic thermal light.

Suppose that a dark object with a finite transverse extent is
located at z = Ls plane, a distance Ls away from the source.
The object modifies the incident field by its transmission
function T ( �ρo) which generally may be complex, i.e., may
affect both phase and amplitude of the incident light. Then,
the field emerging from the object plane is given by

Eo( �ρo,t) = T ( �ρo)
eikLs

iλLs

∫
d2ρ Es( �ρ,τs)e

ik
| �ρo−�ρ|2

2Ls , (2)

where τs = t − Ls/c and the integration is performed over
the source plane. Likewise, the field in the detection plane
z = Ls + L is given by

Ed ( �ρm,t) = eikL

iλL

∫
d2ρ Eo( �ρ,τ )eik

| �ρm−�ρ|2
2L , (3)

where τ = t − L/c, the integration is performed over the
object plane, and m = 1,2 represents a detector.

We assume that the detections are performed by two
pinhole photodetectors that have equal sensitive areas Ad

and quantum efficiencies η and are located at �ρ1 and �ρ2 of
the z = L + Ls plane. We also assume that the detectors are
small enough to neglect the field variation across Ad . The

stochastic photocurrents generated by these detectors as a
result of the incident field Ed ( �ρ,t) have the following first-
order conditional moments normalized to photoelectrons/s:

〈im(t)|Ed ( �ρm,t)〉 = ηAd

∫
dτ |Ed ( �ρm,τ )|2h(t − τ ). (4)

In Eq. (4) h(t) is the detectors baseband impulse response,
which includes any filtering that follows them prior to the
correlation measurement. In order to eliminate a featureless
background, it may be convenient to assume that a dc blocking
filter is included in h(t), such that

∫
dt h(t) = 0.

The blocked dc photocurrent component provides informa-
tion regarding the total photon flux blocked by the object,
which is at the heart of the photon flux based detection
methodology, such as used, e.g., in the Kepler planetary
detection mission [19]. Kepler tracks slow intensity variations
of a star, to detect Earth-sized exoplanets orbiting the star and
to estimate their orbital characteristics. In this work we focus
our analysis on the additional information that can be gathered
via the intensity-correlation technique. Note that utilization of
this technique does not preclude the observer from also using
the mean photon flux registered by each detector.

The correlation between the intensity fluctuations observed
by the two detectors located at �ρ1 and �ρ2 is estimated by
multiplying the two photocurrents and time averaging the
product:

C( �ρ1, �ρ2) ≡ T −1
∫ T/2

−T/2
dt i1(t)i2(t), (5)

where T is the multiplication circuit integration time, or
the “coincidence window” if photon counting technique is
used. The stationary photocurrents correlation measurement
converges to a time-independent ensemble average, given by

〈C( �ρ1, �ρ2)〉 = C|〈E∗
d ( �ρ1)Ed ( �ρ2)〉|2, (6)

where C ≡ η2A2
d [|R(t)|2 
 h(t) 
 h(−t)], and 
 denotes con-

volution. For a narrow-band source, such that R(t) is much
broader than h(t), the parameter C can be interpreted as a
detection volume. For a broadband source this value is reduced
proportionally to the square of the h(t) and R(t) widths ratio,
that is, to the number M of detected longitudinal modes. This is
consistent with a well-known result for the Glauber correlation
function for a multimode thermal light: g(2)(0) = 1 + 1/M .

Deriving (6) we took advantage of the Gaussian moment
factoring of the fourth-order moment of the detected fields
[17], combined with the assumption that hm(t) blocks dc. Thus
the correlation signature of interest depends on the phase-
insensitive correlation function of the detected fields.

We have previously considered the phase-insensitive co-
herence 〈E∗

d ( �ρ1)Ed ( �ρ2)〉 of the detected fields and have been
able to write it in an analytical form for a special case of
the source luminosity and object absorption both being real
Gaussian functions [16]. Even though this model was able to
roughly approximate the Kepler flux measurement results [19],
it is arguably too crude for many objects of interest. Here we
will derive a more general expression for the phase-insensitive
coherence.

Immediately after the object the coherence has a form

〈E∗
o ( �ρ1)Eo( �ρ2)〉 = T ∗( �ρ1)T ( �ρ2)eik

�ρs · �ρd
Ls KO( �ρd ; Ls), (7)

053837-2



INTENSITY INTERFEROMETRY FOR OBSERVATION OF . . . PHYSICAL REVIEW A 88, 053837 (2013)

where �ρs ≡ ( �ρ1 + �ρ2)/2, �ρd ≡ �ρ2 − �ρ1, and

KO( �ρ; L) ≡ 1

L2

∫
d2ρ ′ Is( �ρ ′)−ik �ρ· �ρ ′/L. (8)

To propagate coherence (7) further in the analytical form
we need to make approximations. We note that the Fourier-
transform relation (8) between Is and KO implies that the
latter’s width is of the order of λLs/Ds , where the source
size Ds is defined as the diameter over which the photon-
flux density is appreciably greater than zero. This width
corresponds to a size of the speckle cast by the source onto
the object. In many important cases this speckle size is much
smaller than the object features we wish to resolve. Then we
can write

T ∗( �ρ1)T ( �ρ2) ≈ |T ( �ρs − �ρo)|2 = 1 − A( �ρs − �ρo), (9)

where we have introduced a displacement �ρo of the ob-
ject’s center from the line of sight and converted the field
transmission T to intensity absorption A. Note that in this
approximation the phase part of T drops out, so a purely phase
object would not alter the coherence propagation within our
model.

Approximation (9) notably simplifies our analysis for
propagating the coherence to the detector plane. We derive

〈E∗
d ( �ρ1)Ed ( �ρ2)〉 = eik

�ρs · �ρd
L+Ls KO( �ρd ; L + Ls) − KD( �ρs, �ρd ),

(10)

where the first term is the source’s correlation signature in the
absence of any object (i.e., free propagation for L + Ls), and

KD( �ρs, �ρd ) ≡ eik
�ρs · �ρd

L
−ik

�ρd · �ρo
L

λ2L2

∫
d2ξ A(�ξ )e−ik

�ρd ·�ξ
L

×
∫

d2ζ KO(�ζ ; Ls)e
ik L+Ls

LLs
( �ρo+�ξ )·�ζ e−ik

�ρs ·�ζ
L

(11)

is the modification due to the object. This expression can be
simplified using the convolution theorem to

KD( �ρs, �ρd ) = L−2eik
( �ρs−�ρo )· �ρd

L

∫
d2ξ Is(β( �ρo + �ξ )

− (β − 1) �ρs)A(�ξ )e−ik
�ρd ·�ξ
L , (12)

where β ≡ 1 + Ls/L.
To continue evaluating the Eq. (12) integral we have to

make our second important approximation, assuming

Do

Ds

β 
 1. (13)

In (13) Do is the diameter over which the centered object’s
absorption is appreciable. Physically, this means that the
angular size of the object (as seen by the observer) is much
smaller than the angular size of the source. Let us point out
that ρoβ/Ds 
 1 is not required, so the approximation (13) is
applicable even to small objects that are far away from the line
of sight and to not obscure the source. The signal from such
objects is of course vanishingly small.

When (13) holds, we can extract the source intensity from
the integral Eq. (12), arriving at

KD( �ρs, �ρd ) ≈ L−2eik
( �ρs−�ρo )· �ρd

L

× Is (β �ρo − (β − 1) �ρs)A
(

k

L
�ρd

)
, (14)

where

A(�q) ≡
∫

d2ρ A( �ρ)e−i �q· �ρ. (15)

Substituting Eq. (14) into Eq. (10), and then substituting the
result into Eq. (6), we derive the main analytical result of this
work:

C(�rs,�qd ) ≈ C
L4β4

∣∣∣∣Ts

( �qd

β

)

− β2e
i

�rs ·�qd
β Is(β �ρo − �rs)A(�qd )e−i �qd · �ρo

∣∣∣∣
2

, (16)

where Ts(�q) ≡ ∫
d2ρ Is( �ρ)e−i �q· �ρ , �qd ≡ k �ρd/L, and �rs ≡

Ls �ρs/L.

III. OBJECT SIGNATURE IN THE
CORRELATION FUNCTION

Let us consider the case when �ρs = 0, i.e., when the two
detectors are always symmetrically opposite about the optical
axis. In this case, Eq. (16) simplifies to

C(�qd ) ≈ C
L4β4

∣∣∣∣Ts

( �qd

β

)
− β2Is (β �ρo)A (�qd ) e−i �qd · �ρo

∣∣∣∣
2

,

(17)

where the first term inside the absolute square is due to
the source alone. The second term is the object-induced
modification to the correlation function. To quantify the
relative magnitude of this object signature we note that
Ts(0)/Is(0) and A(0) are the source and the object effective
areas, respectively (or the actual areas, if Is = const for the
entire source and A = 1 for the entire object). Therefore, it is
easy to see that the ratio β2A(0)Is(0)/Ts(0) ≈ (βDo/Ds)2 is
the fraction of the optical power radiated by the source which
is absorbed by the object. This illustrates an important point:
the object signature in the correlation measurement has the
same magnitude as in the direct intensity measurement. Of
course, for practical purposes the SNRs in both measurements
also need to be compared.

However, the main purpose of this work is not to provide
a quantitative comparison of the two ways to detect a dark
object, but to show that the correlation measurement can yield
qualitatively new information, not available from the intensity
measurement. At the heart of this capability is the phase
between the terms of (17) which can mediate their constructive
or destructive interference. This phase depends on the object
displacement �ρo projected onto the detectors’ baseline �ρd , and
has no counterpart in the intensity measurements. However,
leveraging the synthetic aperture analogy discussed in the
Introduction we notice that this phase variation corresponds
to the object passing through Fresnel zones of our fictitious
telescope with aperture ρd . It also should be noted that this
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exponential arises from a Fourier transform of a shifted object
A( �ρ + �ρo) and can be absorbed into A(�qd ) without loss of
generality.

In the following subsections we will consider two ana-
lytically tractable examples of objects crossing the line of
sight of a thermal light source, in close simulation of the
Kepler measurement geometry. We will show that while the
intensity variation is obviously independent from the transient
direction (e.g., from the planet’s orbital plane), the correlation
measurement is critically sensitive to this parameter and may
serve for its determination.

A. Disk-shaped source and object

Suppose

Is( �ρ) = Is(0)circ(| �ρ|/rs) ≡
{
Is(0) for | �ρ| � rs,

0 otherwise, (18)

and

A( �ρ) =
{

1 for | �ρ| � ro,

0 otherwise, (19)

where ro 
 rs . Substituting these into Eq. (17), we can write

C(x,θ ) = 4CP 2

L4β4

∣∣∣∣J1(πx/β)

πx/β

−β2γ 2circ(βxo)
J1(πγ x)

πγ x
e−iπxxo cos(θ)

∣∣∣∣
2

, (20)

where x ≡ 2| �ρd |rs/(λL) is the normalized displacement of
the detectors, xo ≡ | �ρo|/rs is the fractional displacement of the
object relative to the source radius, θ ≡ � �ρd − � �ρO is the angle
between the vectors �ρd and �ρO , P ≡ Is(0)πr2

s is the mean
photon flux of the source, and γ ≡ ro/rs is the object-to-source
diameter ratio.

Let us consider the image signature from a differential
measurement between one with no object, and one with the
object present, while assuming that nothing else changes. We
will also assume that the object is much smaller than the source,
γ 2 
 1. Then a linearized differential observable is given by
the cross term of Eq. (20) as

�C(x,θ ) ≈ −2C γ

β

(
2P

πxL2

)2

circ(βxo)

× J1(πx/β)J1(πγ x) cos (πxxO cos(θ )) . (21)

To evaluate the magnitude of the object’s signature we
need to specify the parameters of Eq. (21). Typical values
of these parameters are given in Table I for two scenarios:
a tabletop laboratory demonstration, and a sun-size source
partially occluded by an Earth-size planet, being observed
from a distance equivalent to that of Kepler 20f. In Fig. 2 we
show the results for C(x,θ ) and �C(x,θ ) with a fixed object
displacement xo, for both laboratory and stellar cases.

From Fig. 2 we see that the object signature is mainly
manifested by the variation of the correlation function width.
We plot this width in Fig. 3 as a function of displacement
xo within the range of approximation (13) validity. This plot
corresponds to an observation of the object’s transient across
the source, reaching the line of sight when xo = 0. While the

TABLE I. Parameters for a typical laboratory demo and a stellar
imaging example of Kepler 20f.

Variable Lab demo Stellar imaging

λ (m) 1 × 10−6 1 × 10−6

Ls (m) 0.5 1.496 × 1011 (1 a.u.)
L (m) 0.5 8.948 × 1018 (290 pc)
rs (m) 0.01 6.955 × 108

rO (m) 0.001 6.371 × 106

β 2 (1 + 1.67) × 10−8

γ 0.1 9.16 × 10−3

λL/(2rs) (m) 2.5 × 10−5 6.433 × 103

intensity measurement at x = 0 is obviously independent of
this angle, the θ dependence of the correlation measurement
in Fig. 3 is evident. Thus in the stellar imaging example,
one would be able to learn about the planetary ecliptic plane
orientation from this measurement.

It should be mentioned that while the object shadow
observed at any single point does not provide information
about the transient direction, the shadow gradient may.
However, it is easy to show (see the Appendix) that in both the
laboratory demo and especially the stellar imaging cases the
intensity variation across the speckle size due to the shadow
is vanishingly small compared to the speckle variation itself.
This is because the sharp shadow condition [20] is opposite
to assumption (13). Therefore, the correlation measurement
indeed provides the information unavailable from the intensity
measurements.
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FIG. 2. (Color online) Normalized correlation measurement ob-
servable C(x,θ ) (left column) and its object-induced variation
�C(x,θ ) (right column) for the laboratory demo case (upper row)
and stellar imaging case (lower row) are plotted as a function of x

for θ/π = 0 (the inner curve), 0.1, 0.2, 0.3, 0.4, and 0.5 (the outer
curve). The object displacement from the line of sight xo is fixed as
shown.
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FIG. 3. (Color online) Widths of the correlation functions from
Fig. 2 normalized to the speckle width λL/(2rs) as a function of the
object’s transient parameter xo for θ/π = 0 (strongest dependence),
0.1, 0.2, 0.3, 0.4, and 0.5 (constant).

B. Gaussian-shaped objects

For the sources and objects that have a Gaussian profile, we
have

Ts( �ρ) = e−2| �ρ|2/r2
s and A( �ρ) = e−2| �ρ|2/r2

O , (22)

where again rO 
 rs . Substituting these into Eq. (17) and
carrying out similar approximations, we obtain

C = CP 2
G

L4β4

∣∣∣∣e− π2x2

8β2 − β2γ 2e−2β2x2
o e− π2

8 γ 2x2
e−iπxxo cos(θ)

∣∣∣∣
2

(23)

and

�C ≈ −2
CP 2

G

L4β2
γ 2e−2β2x2

o e
− π2x2

8β2 e− π2

8 γ 2x2
cos (πxxO cos(θ )) ,

(24)

where PG = Is(0)πr2
s /2, and all other variables have been

defined earlier. For the stellar interferometry case with β ≈ 1,
we obtain

C ≈ CP 2
G

L4

∣∣e− π2

8 x2 − γ 2e−2x2
o e− π2

8 γ 2x2
e−iπxxo cos(θ)

∣∣2
(25)

and

�C ≈ −2
CP 2

G

L4
γ 2e−2x2

o e− π2

8 (1+γ 2)x2
cos (πxxo cos(θ )) . (26)

In Figs. 4 and 5 we have plotted the same results as before, but
now for the Gaussian case studied here.

Let us note that despite some quantitative difference
between the disk and Gaussian models considered above,
they both capture the essential aspects of the object signature.
Therefore, we can use either the disk model for more realistic
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FIG. 4. (Color online) Gaussian case equivalent of Fig. 2.

approximation of stellar or planetary objects, or the Gaussian
model for more transparent analytical treatment.

IV. SIGNAL-TO-NOISE RATIO

In Sec. III we have shown that, under nominal conditions
applicable to a small object obscuring an extended source
(γ 
 1), the perturbation signature due to the object is weak
relative to the baseline signature from the source alone. While
a differential measurement can eliminate the source’s baseline
and improve the visibility of the object’s perturbation, it will
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not eliminate the noise contributed by the source. In this section
we derive the signal-to-noise ratio (SNR) of the differential
measurement in order to develop a better appreciation for
the sensitivity of this measurement and to carry out a valid
comparison with the intensity measurement.

Recall from Sec. II that the differential measurement can be
expressed as C1( �ρ1, �ρ2) − C0( �ρ1, �ρ2), where C1 is the Eq. (5)
measurement with the object of interest present and C0 is the
same measurement without the object. As typically these two
measurements are separated by a duration significantly longer
than the coherence time of the photocurrent fluctuations, the
two measurements can be assumed statistically uncorrelated.
Thus the variance of the measurement is

var(C1 − C0) = var(C1) + var(C0) ≈ 2 var(C0), (27)

where the last approximation stems from our earlier obser-
vation that the object’s perturbation signature is significantly
weaker than that of the source when γ 
 1. Consequently,
in this regime it can be assumed that the variance of either
measurement will be dominated by the source-induced shot-
and excess-noise fluctuations.

The SNR can, therefore, be expressed as

SNR = |〈C1 − C0〉|2
var(C1 − C0)

≈ |�C|2
2 var(C0)

. (28)

Let us point out that this definition of SNR applies to
the differential signal and differs from one in [7,8] which
would be applicable to measuring C0 or C1 alone. We have
derived the numerator of expression (28) in Sec. III; thus here
we concentrate on the denominator. Using the photocurrent
moments discussed above (4), we can express the variance as

var(C0) =
∫

dτ1

∫
dτ2

∫
dτ ′

1

∫
dτ ′

2

×Kh(τ1,τ2)Kh(τ ′
1,τ

′
2)Ki(τ1,τ2,τ

′
1,τ

′
2), (29)

where

Kh(τ1,τ2) = T −1
∫ T/2

−T/2
dt h(t − τ1)h(t − τ2) (30)

and

Ki(τ1,τ2,τ
′
1,τ

′
2)

= (ηA)2[〈|E1(τ1)|2|E2(τ2)|2〉δ(τ1 − τ ′
1)δ(τ2 − τ ′

2)

+ ηA〈|E1(τ1)|2|E1(τ ′
1)|2|E2(τ2)|2〉δ(τ2 − τ ′

2)

+ ηA〈|E1(τ1)|2|E2(τ2)|2|E2(τ ′
2)|2〉δ(τ1 − τ ′

1)

+ (ηA)2{〈|E1(τ1)|2|E1(τ ′
1)|2|E2(τ2)|2|E2(τ ′

2)|2〉
− 〈|E1(τ1)|2|E2(τ2)|2〉〈|E1(τ ′

1)|2|E2(τ ′
2)|2〉}]. (31)

Here, we have used the shorthand notation Em(τ ) ≡ ED( �ρm,τ )
for m = 1,2. The terms in Eq. (31) have intuitive physical
origins: the first term is the covariance of common-mode
fluctuations in the shot noise (i.e., the conditional variance)
from the two detectors, the next two terms are the covariances
between the shot-noise fluctuations in one detector and the
signal fluctuations in the other detector, and the last term is the
covariance between the signal fluctuations (i.e., the conditional
mean square) from the two detectors.

In order to evaluate Eq. (30), we first perform Gaussian
moment factoring [17] on each term in Eq. (31). This yields

expressions for every term in Eq. (31) in terms of KD( �ρ1, �ρ2),
which is given in Eq. (14). Next, we assume that the ac-coupled
photodetector impulse responses h(t) are Gaussian-shaped
with e−2-bandwidth �B , namely,

h(t) =
√

π�2
B

2
e−t2�2

B/8 −
√

π�2
N

2
e−t2�2

N/8. (32)

The second term here represents the dc notch with bandwidth
�N . Henceforth, we assume that �B � �N and �NT0 
 1,
which allows to us to effectively neglect the notch’s contribu-
tion to any nonzero-frequency terms. Our final assumption in
evaluating Eq. (30) is that the integration time T is much longer
than the detector’s response time (T �B � 1) and the optical
coherence time (T/T0 � 1), such that we may approximate
Eq. (30) as

Kh(τ1,τ2) = T −1rect

( |τ1 + τ2|
T

)
[h 


←−
h ](τ2 − τ1), (33)

where 
 denotes convolution and
←−
h denotes time reversal.

Skipping the steps of evaluating each term in the variance
expression, we state the final result for the SNR:

SNR = cos2(θd )α

σ 2
ss + σ 2

se + σ 2
ee

. (34)

Assuming symmetric detectors’ positions �ρs = 0, we can write

θd = πxxo cos(θ ) (35)

and

α ≡
∣∣∣∣ K

(n)
D ( �ρs, �ρd )

KO(0; L + LS)

∣∣∣∣
2

=
{

β4γ 4circ(βxO)
( 2J1(πγ x)

πγ x

)2

β4γ 4e−4β2x2
O e−π2γ 2x2/4,

(36)

where the upper case corresponds to the disk model and
the lower case corresponds to the Gaussian model discussed
above. When γ x 
 1, β ≈ 1, and βxO < 1 (as in the stellar
imaging case), both cases simplify to α ≈ γ 4.

The three terms in the denominator of the SNR expression
are given by

σ 2
ss ≡

√
2√

πT �B�N2

⎡
⎣1 + T0�B�

√
8
√

1 + �2
BT 2

0
8

⎤
⎦ , (37)

σ 2
se ≡ 2

√
2

T �B�N

1 + T 2
0 �2

B

16√
1 + T 2

0 �2
B

32

×

⎡
⎢⎣1 +

√
2T0�B�√

3

√
1 + T 2

0 �2
B

32√
1 + T 2

0 �2
B

8

√
1 + T 2

0 �2
B

24

⎤
⎥⎦ ,

(38)

σ 2
ee ≡

√
2π

T �B�

√
1 + T 2

0 �2
B

16

×
⎡
⎣1 + �2 + T0�B�√

1 + �2
BT 2

0
8

⎛
⎝1 + � +

√
1 + T 2

0 �2
B

16√
1 + T 2

0 �2
B

8

⎞
⎠

⎤
⎦ .

(39)
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Here, we have defined PS ≡ ∫
d �ρ Is( �ρ) as the mean photon

flux of the source, N ≡ ηAT0PS/(L + Ls)2 as the mean
photoelectron count registered per source coherence time, and

� ≡
∣∣∣∣KO( �ρd ; L + Ls)

KO(0; L + Ls)

∣∣∣∣
2

∈ [0,1] (40)

as the equal-time correlation coefficient between the
photocurrents registered at the two detectors, given in terms
of KO defined in Eq. (8).

It is useful to consider two limiting cases of the SNR
expression of the incident light being broadband (�BT0 
 1)
or narrow band (�BT0 � 1) relative to the photodetector’s
bandwidth. Because naturally occurring light sources are
nominally broadband and are filtered optically at the
measurement plane, typically the former limit will hold.
However, with the pseudothermal light sources typically used
in the laboratory the latter limit can also be true.

In the broadband (�BT0 
 1) limit, the Eq. (34) expression
simplifies to

SNR(bb) ≈ cos2(θd )αT �B�
√

2√
πN2 + 2

√
2

N
+ √

2π (1 + �2)
. (41)

The photodetector currents decorrelate over approximately
�−1

B time interval, so the SNR is proportional to T �B . For
N 
 1, the signature is photon starved and the SNR has a
quadratic dependence on mean photon flux. As N increases,
the SNR approaches its maximum value

SNR(bb)
max = αT �B

� cos2(θd )√
2π (1 + �2)

. (42)

Figure 6 shows the transition of the normalized SNR from the
photon-starved region to its maximum, as a function of N .

In the narrow-band (�BT0 � 1) limit, on the other hand,
the Eq. (34) expression is

SNR(nb) ≈ cos2(θd )α�
T

T0

[ √
2(1 + �)√

πN2T0�B

+ (1 + 2�)

N

+
√

π

2
√

2
(1 + 2(

√
2 + 1)� + (1 + 2

√
2)�2)

]−1

.

(43)
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FIG. 6. (Color online) Normalized signal-to-noise ratio of the
differential intensity covariance measurement is plotted as a function
of N for the broadband case. � = 1 is assumed. In this case the
normalized SNR has little dependence on the T0�B product.
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FIG. 7. (Color online) Normalized signal-to-noise ratio of the
differential intensity covariance measurement is plotted as a function
of N for the narrow-band case. � = 1 is assumed. In this case the
normalized SNR in the N 
 1 regime has a dependence on the T0�B

product such that a larger SNR is attained for larger product, but the
maximum (attained when N � 1) is independent of this product.

In this case the photocurrent correlation time is approximately
T0, so the SNR is now proportional T/T0. For N2T0�B 

1, the signature is photon starved and the SNR has a
quadratic dependence on mean photon flux. As N increases, if
N

√
T0�B � 1 and N 
 1 simultaneously hold, then the SNR

becomes linear in N . For N � 1 it saturates to its maximum
value,

SNR(nb)
max = T

T0

2
√

2� cos2(θd )α√
π(1 + 2(

√
2 + 1)� + (1 + 2

√
2)�2)

.

(44)

Figure 7 illustrates the variation of the normalized SNR as a
function of N in the narrow-band case.

Let us estimate the SNR for the two examples from Table I,
assuming � = 1 and cos(θd ) = 1. In the laboratory demo case
we assume that a laser-based pseudothermal light source is
implemented, for which the narrow-band limit is appropriate.
With such a source, N � 1 can be easily achieved, so we
can use the maximum SNR value (44) which yields SNRlab ≈
1.65β4

labγ
4
labT/T0 = 2.64 × 10−4T/T0. Thus, with a 1 MHz

wide laser we would need on the order of 10 ms integration
time to obtain a statistically significant signal. Remarkably, for
a better measurement within this scenario one needs a broader
band laser (provided that it remains narrow band compared to
the detectors).

To evaluate the SNR in the stellar case, we note that the
Kepler 20 is a magnitude 12.497 star in the V+R spectral
band [21], characterized by the central optical wavelength
λ ≈ 500 nm and FWHM spectral range �λ ≈ 200 nm. It pro-
duces a photon flux of approximately 5 × 105 photons/s/m2

per normalized spectral interval, given in terms of �λ/λ.
Let us assume that we have unity-efficient (η = 1), fast
photodetectors with the bandwidth �B = 100 GHz that are
coupled to the same kind of telescopes that were actually used
in the Kepler mission, with light collection area of 1.54 m2.
In the broadband case we would use the full spectral interval,
which gives us the coherence time T0 = 4.17 × 10−15 s and the
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photoelectron rate of 3.12 × 105 photons/s. Therefore, in the
broadband Kepler case N ≈ 1.3 × 10−9. Substituting this into
Eq. (41) and making the same assumptions � = 1, cos(θd ) = 1
as we did for the laboratory example, we find

SNR(bb)
stel ≈ 2 × 10−6β4

stelγ
4
stelT , (45)

where the integration time T is in seconds.
Alternatively, we can choose the narrow-band measurement

strategy and spectrally filter the source radiation so that � 

�B . It is easy to see that such filtering will not change the
spectral brightness of the source, and therefore will not change
N . Comparing Eqs. (41) and (43) in the limit of N 
 1 we
then find

SNR(nb)
stel = 1

2 SNR(bb)
stel . (46)

This result indicates that for a uniformly broadband thermal
light source the benefit of increasing the correlation function
contrast by going into the single-mode detection regime via
spectral filtering is negated by the consequent signal reduction.
A similar conclusion was reached in [8] by different reasoning.

V. CONCLUSIONS

We have derived an analytic approximation to the intensity
correlation function of an extended source partially occluded
by a dark object. We have applied the results to both a tabletop
demonstration scenario and a stellar imaging scenario. The
object signature, defined as a normalized variation of the
speckle width, is compared to the direct intensity and intensity
gradient signatures in Table II.

We have shown that the magnitudes of the signature ex-
pressed in intensity variation and in correlation measurement
(the first and the third lines of Table II, respectively) are very
close. The intensity variation, however, does not reveal any
information regarding the direction of the object’s transient
across the line of sight. Such information could in principle be
obtained from the intensity gradient measurement; however,
the magnitude of this observable (the second line of Table II)
is orders of magnitude smaller. Therefore, the intensity-
correlation measurement provides information unavailable
from direct intensity measurements. In particular, a differential
measurement (which subtracts the baseline of the unobscured
source) yields observable fluctuations that arise from the
presence of the object. We have presented our results for two
cases of interest, one with disk-shaped objects, and one with
objects having a Gaussian profile.

There are several prevailing conclusions to draw from our
analysis. First, returning to our key result stated by Eq. (17), we
point out that the intensity covariance measurement provides
information on the magnitude of the Fourier transform of the

TABLE II. Magnitude of the object’s signature in three types of
observables and the parameter sets from Table I.

Observable (normalized) Lab demo Stellar imaging

Intensity variation 9 × 10−2 2 × 10−4

Intensity gradient × speckle 1.3 × 10−4 1.0 × 10−17

Speckle width variation 7 × 10−2 1.7 × 10−4

absorption profile of the object of interest. Thus it is possible
that with a Gerchberg-Saxton type reconstruction algorithm
[10–14], one may be able to reconstruct projection shapes of
arbitrary dark objects using this signature. In addition, it is
clear from our analysis in Sec. III that the intensity covariance
measurement has an imprint of the direction of travel of the
object, if several snapshots are taken. Thus, even if full image
reconstruction proves too challenging, feature identification of
the object seems feasible.

The major challenge to attaining full images with any
algorithmic reconstruction is the signal-to-noise ratio of
the measurement. While in a benchtop experiment using a
monochromatic pseudothermal light source significant SNR
can be built up in a very short time, in the stellar case the
integration time required to match the SNR of the intensity-
based Kepler measurement turns out prohibitively long. This
difficulty arises from the γ 4 SNR scaling in (45), and from a
low spectral brightness of natural thermal sources relative to
the accessible detectors bandwidths. We should point out that
the assumed model of the uniform spectral density may not be
correct. Indeed, one might instead expect the presence of bright
narrow lines corresponding to atomic transitions. Using such
a line as a narrow-band thermal source may greatly improve
our SNR expectation (46). Further analysis is required to see
if this would lead to the SNR values comparable with those in
a direct intensity measurement. The main result of this work,
however, is the promise of learning more about an exoplanet
by utilizing measurements that do not require fully resolving
the exoplanet with an imaging system.
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APPENDIX: INTENSITY GRADIENT DUE TO A SHADOW

To compare our intensity correlation results with direct
intensity measurements, let us derive the mean signature
obtained by scanning a single pinhole detector at a fixed
transverse plane, i.e., let us evaluate

〈i( �ρ,t)〉 ≡ ηA

∫
dτ 〈|Ed ( �ρ,τ )|2〉hlp(t − τ ), (A1)

where Ed ( �ρ,t) is the incident stochastic field at the transverse
coordinate �ρ and time t and η is the quantum efficiency
of the detector, A is its area, and hlp(t) is a low-pass
filter representing the composite electrical bandwidth of the
detector and postdetection processing. The field moment in
the integrand is easily obtained by evaluating the right-hand
side of Eq. (10), with the substitutions �ρs = �ρ and �ρd = 0,
which yields

〈|Ed ( �ρ,τ )|2〉 = KO(0; L + Ls) − KD( �ρs,0)

= Ps

L2β2
[1 − β2In(β �ρo − (β − 1) �ρ)A(0)].

(A2)
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Here Ps ≡ ∫
d2ρ Is( �ρ), and In( �ρ) ≡ Is( �ρ)/Is(0) is the normal-

ized source intensity. It is worthwhile to recall that the mean
image signature derived herein also requires the assumptions
leading to Eqs. (7) and (14) to be valid.

Substituting Eq. (A2) into Eq. (A1) we assume that∫
dt hlp(t) = 1 (i.e., unity dc gain) and drop the time variable

in the stationary photocurrent. We arrive at

〈i( �ρ)〉 = ηAPs

L2β2
[1 − β2In(β �ρo − (β − 1) �ρ)A(0)] (A3)

as the direct observation signature. Here, the first term is
the uniform intensity illumination due to the unobscured
source, and the second term is the variation due to the object.
The shadow gradient, which may potentially be used for

determining the transient direction, can be defined as

1

〈i( �ρ)〉
∂〈i( �ρ)〉

∂ �ρ ≈ β2(β − 1)I ′
n(β �ρo − (β − 1) �ρ)A(0). (A4)

For the purpose of the order-of-magnitude estimate, we will
assume Gaussian distribution for both the source luminosity
and the object opacity (22). Then A(0) = πr2

o /2, and the
maximum value of I ′

n(ρm) = 2/rs is achieved at ρm = rs/2.
To make a fair comparison with the intensity interferometry

measurement, we need to multiply the gradient (A4) by the
measurement baseline, which is of the order of a speckle size
2(L + Ls)/(krs). We arrive at

�〈i〉
〈i〉 ≈ λLs

πR2
s

β3γ 2. (A5)

This expression gives us the values shown in Table II.
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