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Phase-dependent optical effects in a four-level quantum system near a plasmonic nanostructure
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We study the linear absorption and dispersion properties of a four-level double-V-type quantum system near a
plasmonic nanostructure. The quantum system interacts with two orthogonal circularly polarized laser fields with
the same frequency and different phases and electric field amplitudes. We find that the presence of the plasmonic
nanostructure leads to strong modification of the absorption and dispersion spectra for one of the laser fields, in
the presence of the other, and show that one can use the phase difference and the relative electric field amplitudes
of the two laser fields for efficient control of the optical properties of the system. Effects such as complete optical
transparency, zero absorption with nonzero dispersion, and gain without inversion are obtained.
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I. INTRODUCTION

Recent studies have revealed that several coherent optical
phenomena can be strongly modified in quantum systems
near plasmonic nanostructures. Examples of these phenomena
include quantum interference effects in spontaneous emis-
sion [1–5], controlled population dynamics [6–11], optical
transparency and slow light [12–15], and enhanced second
harmonic generation and nonlinear optical switching [16,17],
as well as gain without inversion [18,19]. In addition, phase-
dependent effects in spontaneous emission lineshapes [20,21],
unexpected population inversions [22,23], controlled absorp-
tion and dispersion [24–26], and slow light [26] have been
studied in multilevel quantum systems that exhibit quantum
interference in spontaneous emission.

In this work we study phase-dependent effects on the linear
absorption and dispersion properties of a four-level double-
V-type quantum system near a plasmonic nanostructure. In
the quantum system under study one V-type transition is
influenced by the interaction with surface plasmons, while the
other V-type transition interacts with free-space vacuum. As a
plasmonic nanostructure we consider a two-dimensional (2D)
array of metal-coated dielectric nanospheres and calculate the
relevant decay rates by a rigorous electromagnetic Green-
tensor technique [1–3,14]. The quantum system interacts with
two orthogonal circularly polarized laser fields with the same
frequency and different phases and electric-field amplitudes,
which couple the lowest state with the upper states in the
free-space transitions. We use a density matrix methodology
for the calculation of the linear susceptibility and show that
the presence of the plasmonic nanostructure leads to strong
modification of the absorption and dispersion spectra for one
of the laser fields, in the presence of the other. In addition, we
show that one can use the phase difference and the relative
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electric-field amplitudes of the two laser fields for efficient
control of the optical properties of the system. Effects such as
complete optical transparency, zero absorption with nonzero
dispersion, and gain without inversion are shown, and the
conditions under which these phenomena occur are presented.

The article is organized as follows. In Sec. II we em-
ploy the density matrix equations for the interaction of the
double-V-type system with the laser fields and the plasmonic
nanostructure in order to calculate the linear susceptibility
of the system. Then, in Sec. III we present results for the
phase dependence of the absorption and dispersion spectra
for different parameters of the system. Finally, in Sec. IV we
summarize our findings.

II. THEORETICAL MODEL AND CALCULATION OF THE
LINEAR SUSCEPTIBILITY

The quantum system of interest is shown in Fig. 1. We con-
sider a four-level system with two closely lying upper states,
|2〉 and |3〉, and two lower states, |0〉 and |1〉. We call this system
a double-V-type system, in order easily to identify two different
three-level V-type transitions in the structure. The quantum
system is located in vacuum at distance d from the surface of
the plasmonic nanostructure. We take states |2〉 and |3〉 to char-
acterize two Zeeman sublevels. Then the dipole moment oper-
ator is taken as �μ = μ′(|2〉〈0|ε̂− + |3〉〈0|ε̂+) + μ(|2〉〈1|ε̂− +
|3〉〈1|ε̂+) + H.c., where ε̂± = (ez ± iex)/

√
2 describe the

right-rotating (ε̂+) and left-rotating (ε̂−) unit vectors and μ

and μ′ are taken to be real.
The quantum system interacts with two circularly polarized

continuous-wave electromagnetic (laser) fields, with total
electric field

�E(t) = ε̂+Ea cos(ωat + φa) + ε̂−Eb cos(ωbt + φb), (1)

where Ea (Eb) is the electric-field amplitude, ωa (ωb) is the
angular frequency, and φa (φb) is the phase of field a (b). Laser
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FIG. 1. The quantum system under study is a double-V-type
system where two upper states, |2〉 and |3〉, decay with spontaneous
emission to the two lower states, |0〉 and |1〉. The system also interacts
with two circularly polarized weak probe laser fields with equal
frequencies ωa = ωb. Laser field a couples state |0〉 with state |2〉
and laser field b couples state |0〉 with state |3〉.

field a couples state |0〉 with state |2〉 and laser field b couples
state |0〉 with state |3〉. We assume that both fields have equal
frequencies ωa = ωb = ω. The Hamiltonian that describes
the interaction of the electromagnetic field with the quantum
system, in the dipole and rotating-wave approximations, is
given by

H = h̄

(
−δ − ω32

2

)
|2〉〈2| + h̄

(
−δ + ω32

2

)
|3〉〈3|

−
(

h̄�ae
iφa

2
|0〉〈2| + h̄�be

iφb

2
|0〉〈3| + H.c.

)
. (2)

Here, δ = ω − ω̃ is the detuning from resonance with the
average transition energies of states |2〉 and |3〉 from state
|0〉, with ω̃ = (ω3 + ω2)/2 − ω0, ω32 = (ω3 − ω2)/2, and �a

and �b are the Rabi frequencies for fields a and b, respectively,
defined as �a = μ′Ea/h̄ and �b = μ′Eb/h̄. Also, h̄ωn, with
n = 0 − 3, is the energy of state |n〉. We note that Eq. (2)
describes only the interaction with the external laser fields.
The quantum system also interacts with the vacuum and
this process leads to spontaneous emission. For the form of
the interaction Hamiltonian of the quantum system with the
vacuum, see Eq. (28) of Ref. [27].

Both excited state |2〉 and excited state |3〉 decay sponta-
neously to state |0〉 with decay rates 2γ ′

2 and 2γ ′
3, respectively,

and to state |1〉 with decay rates 2γ2 and 2γ3, respectively.
We assume that transitions from |2〉 and |3〉 to |1〉 lie within
the surface-plasmon bands of the plasmonic nanostructure,
whereas transitions from |2〉 and |3〉 to |0〉 are spectrally distant
from the surface-plasmon bands and are not influenced by the
plasmonic nanostructure. Therefore, in transitions from |2〉 and
|3〉 to |0〉 the spontaneous decay occurs due to the interaction
of the quantum system with free-space vacuum modes. In
what follows, we refer to this decay as free-space spontaneous
decay. We choose the energy difference of states |2〉 and |3〉 to
be rather small, i.e., ω32 to be just a few �0, where �0 is the
decay rate of states |2〉 and |3〉 to state |1〉 in the vacuum. The
latter is taken to be the same for both states. We can therefore
assume that γ2 = γ3 = γ and γ ′

2 = γ ′
3 = γ ′ [2].

Using the Hamiltonian of Eq. (2) we obtain the following
equations for the density matrix elements of the system,
assuming a Markovian response:

ρ̇00(t) = 2γ ′[ρ22(t) + ρ33(t)] − i
�a

2
[ρ02(t)e−iφa − ρ20(t)eiφa ]

− i
�b

2
[ρ03(t)e−iφb − ρ30(t)eiφb ], (3)

ρ̇22(t) = −2(γ + γ ′)ρ22(t) + i
�a

2
[ρ02(t)e−iφa − ρ20(t)eiφa ]

− κ[ρ23(t) + ρ32(t)], (4)

ρ̇33(t) = −2(γ + γ ′)ρ33(t) + i
�b

2
[ρ03(t)e−iφb − ρ30(t)eiφb ]

− κ[ρ23(t) + ρ32(t)], (5)

ρ̇20(t) =
(

iδ + i
ω32

2
− γ − γ ′

)
ρ20(t)

+ i
�a

2
e−iφa [ρ00(t) − ρ22(t)]

− i
�b

2
e−iφbρ23(t) − κρ30(t), (6)

ρ̇30(t) =
(

iδ − i
ω32

2
− γ − γ ′

)
ρ30(t)

+ i
�b

2
e−iφb [ρ00(t) − ρ33(t)]

− i
�a

2
e−iφa ρ32(t) − κρ20(t), (7)

ρ̇23(t) = (iω32 − 2γ − 2γ ′)ρ23(t) + i
�a

2
e−iφa ρ03(t)

− i
�b

2
eiφbρ20(t) − κ[ρ22(t) + ρ33(t)], (8)

with ρ00(t) + ρ11(t) + ρ22(t) + ρ33(t) = 1 and ρnm(t) =
ρ∗

mn(t). Here, κ is the coupling coefficient between state |2〉 and
state |3〉 due to spontaneous emission in a modified anisotropic
vacuum [28] and it is responsible for the appearance of
quantum interference [29].

The values of γ and κ are obtained by [30–33]

γ = μ0μ
2ω̄2

h̄
ε̂− · ImG(r,r; ω̄) · ε̂+, (9)

κ = μ0μ
2ω̄2

h̄
ε̂+ · ImG(r,r; ω̄) · ε̂+ . (10)

Here, G(r,r; ω) is the dyadic electromagnetic Green’s tensor,
where r refers to the position of the quantum emitter, and μ0

is the permeability of vacuum. Also, ω̄ = (ω3 + ω2)/2 − ω1.
From Eqs. (9) and (10) we obtain the values of γ and κ as
[30–33]

γ = μ0μ
2ω̄2

2h̄
Im[G⊥(r,r; ω̄) + G‖(r,r; ω̄)]

= 1

2
(�⊥ + �‖), (11)

κ = μ0μ
2ω̄2

2h̄
Im[G⊥(r,r; ω̄) − G‖(r,r; ω̄)]

= 1

2
(�⊥ − �‖). (12)
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FIG. 2. (Color online) (a) A metal-coated dielectric nanosphere
and (b) a 2D array of such spheres used in this work.

Here, G⊥(r,r; ω̄) = Gzz(r,r; ω̄) and G‖(r,r; ω̄) = Gxx(r,r; ω̄)
denote components of the electromagnetic Green’s tensor,
where the symbol ⊥ (‖) refers to a dipole oriented normal—
along the z axis (parallel—along the x axis) to the surface
of the nanostructure. Finally, we define the spontaneous
emission rates normal and parallel to the surface as �⊥,‖ =
μ0μ

2ω̄2Im[G⊥,‖(r,r; ω̄)]/h̄. The degree of quantum interfer-
ence is defined as p = (�⊥ − �‖)/(�⊥ + �‖). For p = 1 we
have maximum quantum interference in spontaneous emission
[29]. This can be achieved by placing the emitter close to a
structure that completely quenches �‖. We stress that when
the emitter is placed in vacuum, �⊥ = �‖ and κ = 0, so no
quantum interference occurs in the system.

The plasmonic nanostructure considered in this study is
a 2D array of touching metal-coated silica nanospheres [see
Figs. 2(a) and 2(b)]. Periodic arrays of metallic nanoshells can
be fabricated via self-assembly [34,35], nanopatterning and
nanolithographic [36,37] techniques. The dielectric function
of the shell is provided by a Drude-type electric permittivity
given by

ε(ω) = 1 − ω2
p

ω(ω + i/τ )
, (13)

where ωp is the bulk plasma frequency and τ the relaxation
time of the conduction-band electrons of the metal. A typical
value of the plasma frequency for gold is h̄ωp = 8.99 eV.
This also determines the length scale of the system as c/ωp ≈
22 nm. The dielectric constant of SiO2 is taken to be ε = 2.1.
In the calculations we have taken τ−1 = 0.05ωp. The lattice
constant of the square lattice is a = 2c/ωp and the sphere
radius S = c/ωp with core radius Sc = 0.7c/ωp.

The electromagnetic Green’s tensor providing the corre-
sponding spontaneous emission rates �⊥ and �‖ is given
by [1,38,39]

GEE
ii ′ (r,r′; ω) = gEE

ii ′ (r,r′; ω) − i

8π2

∫ ∫
SBZ

d2k‖
∑

g

1

c2K+
g;z

× vgk‖;i(r) exp(−iK+
g · r)êi ′ (K+

g ), (14)

with

vgk‖;i(r) =
∑

g′
Rg′;g(ω,k‖) exp(−iK−

g′ · r)êi(K−
g′ ) (15)
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FIG. 3. (Color online) Absorption spectrum [Im(χ (1)); solid
curve] and dispersion spectrum [Re(χ (1)); dashed curve] of the
quantum system in units of Nμ′2/(h̄ε0�0), as given by Eq. (20),
in the absence of the plasmonic nanostructure. We take ω32 = 1.5�0

and γ ′ = 0.3�0.

and

K±
g = {k‖ + g, ± [q2 − (k‖ + g)2]1/2}. (16)

The vectors g denote the reciprocal-lattice vectors corre-
sponding to the 2D periodic lattice of the plane of scatterers,
and k‖ is the reduced wave vector which lies within the surface
Brillouin zone associated with the reciprocal lattice [40]. When
q2 = ω2/c2 < (k‖ + g)2, K±

g defines an evanescent wave. The
term gEE

ii ′ (r,r′; ω) in Eq. (14) is the free-space Green’s tensor,
and êi(K±

g ) the polar unit vector normal to K±
g . Rg′;g(ω,k‖)

is the reflection matrix, which provides the sum (over g’s)
of reflected beams generated by the incidence of a plane
wave from the left of the plane of scatterers [40]. Also, in
Eq. (14), the terms corresponding to s-polarized waves [those
containing components with the azimuthial unit vector êi(K±

g )
normal to K±

g ] make a small contribution to the decay rates
and have, therefore, been neglected.

We take ω̄ = 0.632ωp and the distance between the quan-
tum system and the surface of the plasmonic nanostructure,
d, to vary from 0.5c/ωp to c/ωp. For the results of �⊥ and
�‖ that are used in the present work, we refer to Fig. 3 in
Ref. [14]. We find that �‖ exhibits significant suppression
and its actual value becomes significantly lower than the
free-space decay rate. In addition, the value of �⊥ decreases
with increasing distance between the quantum system and the
plasmonic nanostructure. For distances close to the plasmonic
nanostructure, �⊥ becomes much larger than the free-space
decay rate. The value of �⊥ is larger than the free-space decay
rate for distances up to 0.6c/ωp, while for distances between
0.65c/ωp and c/ωp the value of �⊥ becomes lower than the
free-space decay rate.

The absorption and dispersion response for a weak laser
field a is determined by the linear electric susceptibility, which
is given by [26,41]

χ (1)(ω) = 2Nμ′

ε0Eae−iφa
ρ

(1)
20 = 2Nμ′2eiφa

ε0h̄

ρ
(1)
20

�a

, (17)

where ρ
(1)
20 is calculated in the steady state and in first order in

terms of Ea (or �a), ε0 is the vacuum permittivity, and N is
the density of the quantum systems.

Using perturbation theory and assuming that both field a

and field b are weak fields, we obtain from Eqs. (3)–(8), after

053832-3



PASPALAKIS, EVANGELOU, YANNOPAPAS, AND TERZIS PHYSICAL REVIEW A 88, 053832 (2013)

some algebra,

ρ
(1)
20 = i �a

2 e−iφa
(−iδ + i ω32

2 + γ + γ ′) − iκ �b

2 e−iφb(−iδ + i ω32
2 + γ + γ ′)(−iδ − i ω32

2 + γ + γ ′) − κ2
. (18)

We substitute ρ
(1)
20 from Eq. (18) into Eq. (17) and obtain

χ (1)(δ) = Nμ2

ε0h̄

δ − ω32
2 + iγ + iγ ′ − iκ Eb

Ea
eiφ(−iδ + i ω32

2 + γ + γ ′)(−iδ − i ω32
2 + γ + γ ′) − κ2

, (19)

where φ = φa − φb is the phase difference between the two
applied fields.

III. PHASE-DEPENDENT EFFECTS IN THE ABSORPTION
AND DISPERSION SPECTRA

In Fig. 3 we present the real (determines dispersion) and
imaginary (determines absorption) parts of χ (1) as a function
of the detuning δ with the quantum system in vacuum, i.e.,
without the plasmonic nanostructure. In this case,

χ (1)(δ) = Nμ2

ε0h̄

δ − ω32
2 + i�0 + iγ ′

(−iδ + �0 + γ
′)2 + ω2

32
4

. (20)

There, typical absorption and dispersion spectra [41] are
obtained, which are centered at δ = −ω32/2. Also, no phase
dependence is shown in this case.

The absorption and dispersion properties are very dif-
ferent when the quantum system is near the plasmonic

nanostructure. In order to obtain compact forms in the
following analysis we define A = Nμ2

ε0h̄
, α̃ = ω32

2 , γ̃ =
γ + γ ′, x = Eb

Ea
, α = α(φ,x) = κx sin φ − α̃, β = β(φ,x) =

γ̃ − κx cos φ, ε = α̃2 + γ̃ 2 − κ2 = α̃2 + (�‖ + γ ′)(�⊥ + γ ′)
(>0), and ζ = −2γ̃ (<0). Then the real and imaginary parts
of the susceptibility of Eq. (19) read as

Re[χ (1)(δ)] = A
(α + δ)(ε − δ2) + βζδ

(ε − δ2)2 + ζ 2δ2
(21)

and

Im[χ (1)(δ)] = A
β(ε − δ2) − ζ δ(α + δ)

(ε − δ2)2 + ζ 2δ2
. (22)

We first present the conditions corresponding to
zero absorption (Im[χ (1)(δ)] = 0) but nonzero dispersion
(Re[χ (1)(δ)] �= 0), which leads to enhancement of the index of
refraction without absorption [42,43]. We find that this occurs
at detunings

δ± = γ̃ (α̃ − κx sin φ) ±
√

γ̃ 2(α̃ − κx sin φ)2 + ε(κ2x2 cos2 φ − γ̃ 2)

γ̃ + κx cos φ
. (23)

This is accomplished if the quantity in the square root is
positive or zero, leading to

γ̃ 2(α̃ − κx sin φ)2 � ε(γ̃ 2 − κ2x2 cos2 φ) . (24)

When δ = 0 or ω = ω̃ (at this particular frequency the
system exhibits strong absorption suppression when it interacts
with a linearly polarized laser field [14]), Eq. (23) leads to
x2κ2 cos2 φ = γ̃ 2 or, for positive cos φ,

Eb

Ea

= �⊥ + �‖ + 2γ ′

(�⊥ − �‖) cos φ
, (25)

provided that �⊥ �= �‖. In this case,

Re[χ (1)(δ = 0)] = A
α

ε

= Nμ′2

2ε0h̄

−ω32 + (�⊥ + �‖ + 2γ ′) tan φ

ω2
32
4 + (�‖ + γ ′)(�⊥ + γ

′)
.

(26)

Next, we present the conditions for exact optical trans-
parency [χ (1)(δ) = 0]. From Eqs. (21) and (22) we obtain that

this occurs when β = 0 and δ = −α or

Eb

Ea

cos φ = �⊥ + �‖ + 2γ ′

�⊥ − �‖
(27)

and

δ = ω32

2
− �⊥ − �‖

2

Eb

Ea

sin φ. (28)

This means that exact optical transparency is possible for laser
a in this system as long as �⊥ �= �‖, which is a typical case
next to the plasmonic nanostructure [1]. In addition, the optical
transparency here is exact and not approximate and can occur
irrespective of the value of the free-space decay rate γ ′, in
contrast to the results found in Ref. [14], where the system
interacts with a single linearly polarized laser field.

Furthermore, for φ satisfying Eq. (27), Eq. (28) provides
complete optical transparency at

δ = ω32

2
− 1

2

√
(�⊥ − �‖)2

E2
b

E2
a

− (�⊥ + �‖ + 2γ ′)2 . (29)
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FIG. 4. (Color online) Absorption spectrum [Im(χ (1)); solid curve] and dispersion spectrum [Re(χ (1)); dashed curve] of the quantum system
in units of Nμ′2/(h̄ε0�0), as given by Eq. (19), in the presence of the plasmonic nanostructure. We take ω32 = 1.5�0, γ ′ = 0.3�0, Eb/Ea = 1.5,
ω̄ = 0.632ωp , and d = 0.4c/ωp , leading to �⊥ = 4.132�0 and �‖ = 0.0031�0. (a) φ = 0, (b) φ = π/2, (c) φ = π , and (d) φ = 3π/2.

We note that if the quantity in the square root is positive or 0
(which, in compact form, is written κ2x2 � γ̃ 2), then complete
optical transparency can always be obtained in the system.

When δ = 0, we obtain that exact optical transparency is
obtained for

tan φ = ω32

�⊥ + �‖ + 2γ ′ (30)

and

Eb

Ea

=
√

ω2
32 + (�⊥ + �‖ + 2γ ′)2

�⊥ − �‖
. (31)

If ω32 = 0, then φ = nπ with n = 0,1,2, . . . , and Eq. (31)
reduces to

Eb

Ea

= �⊥ + �‖ + 2γ ′

�⊥ − �‖
, (32)

which, for γ ′ = 0, provided that �⊥ � �‖ (typical case next
to the plasmonic nanostructure under study [1–3,14]), gives
approximately Ea ≈ Eb.

Furthermore, we can obtain gain [Im[χ (1)(ω̃)] < 0] in the
system, which is without inversion, as the vast majority of
population remains in state |0〉. The condition for gain without
inversion is also given by Eq. (24). Then we can obtain
gain without inversion between the values of δ− and δ+ for
κx cos φ + γ̃ > 0 or

(�⊥ − �‖)
Eb

Ea

cos φ + �⊥ + �‖ + 2γ ′ > 0, (33)

which, for cos φ � 0, is always satisfied next to the plasmonic
nanostructure. If, however, κx cos φ + γ̃ < 0, then we obtain
gain outside the region [δ−, δ+].

In Fig. 4 we present examples of the absorption and
dispersion spectra for different phases φ and for Eb

Ea
= 1.5

when the quantum system is placed at distance d = 0.4c/ωp

from the surface of the plasmonic nanostructure. We see that
the shape of the absorption and dispersion spectra is strongly
influenced by the change of φ. In addition, in all cases, zero
absorption with nonzero dispersion and gain without inversion
are obtained. The detuning values for zero absorption, which
also determine the region of gain without inversion, change
with φ too, due to the dependence of δ± on phase φ [see
Eq. (23)].

Next, in Fig. 5 we present the absorption and dispersion
spectra for the same parameters used in Fig. 4 but for a
different distance of the quantum system from the plasmonic
nanostructure, d = 0.7c/ωp. As the change in d leads to a
change in the values of �⊥ and �‖, the shape of the absorption
and dispersion spectra in this case is rather different from that
in Fig. 4. In addition, here we observe zero absorption with
nonzero dispersion and gain without inversion [Figs. 5(a), 5(c),
and 5(d)], as well as a case where only absorption appears
[Fig. 5(b)].

Finally, in Fig. 6 we present two cases where complete
optical transparency is obtained, namely, in Fig. 6(a) (d =
0.4c/ωp) and in Fig. 6(b) (d = 0.7c/ωp). In both cases the
phase φ is taken so as to satisfy Eq. (27). The shapes of the
absorption and dispersion spectra are different in the two cases
due to the difference in �⊥, �‖, and Eb

Ea
. However, complete

optical transparency is obtained at a detuning given by Eq. (28)
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FIG. 5. (Color online) The same as Fig. 4, but with d = 0.7c/ωp , leading to �⊥ = 0.722�0 and �‖ = 0.0039�0.

or (29). Besides complete optical transparency, zero absorption
with nonzero dispersion at different frequencies as well as gain
without inversion is also found. In addition, the dispersion
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FIG. 6. (Color online) Absorption spectrum [Im(χ (1)); solid
curve] and dispersion spectrum [Re(χ (1)); dashed curve] of the
quantum system in units of Nμ′2/(h̄ε0�0), as given by Eq. (19), in
the presence of the plasmonic nanostructure. We take ω32 = 1.5�0,
γ ′ = 0.3�0, and ω̄ = 0.632ωp . (a) d = 0.4c/ωp and Eb/Ea = 1.5.
(b) d = 0.7c/ωp and Eb/Ea = 2. In both cases the phase φ is chosen
to satisfy Eq. (27).

curve near the transparency window behaves very differently
in the two cases, implying that very different values of the
group velocity are obtained.

Before closing this section we outline some possibilities for
experimental realization of the double-V-type quantum system
that we study here. As the transitions from |2〉 to |1〉 (or |0〉) and
from |3〉 to |1〉 (or |0〉) have orthogonal dipole matrix elements,
the quantum system can be realized in several atomic systems,
having, for example, two J = 0 states for the lower states, |0〉
and |1〉, and M = ±1 sublevels of a J = 1 state for excited
states |2〉 and |3〉. The energy difference h̄ω32 can be changed
by a static magnetic field. In addition, the quantum system may
be realized in hyperfine sublevels of D lines in alkali-metal
atoms like 85Rb and 87Rb [4,9,15] or in dual CdSe/ZnS/CdSe
quantum dots [15].

Furthermore, the results presented above can also be
realized in a regular (single) V-type system as well, where the
optical transitions are influenced by the presence of the surface
plasmons and the laser fields couple in these transitions [8,44].
In that case, however, the electric-field amplitudes may also
be modified by the presence of the plasmonic nanostructure
[4,15], and this should be properly taken into account by
changing the initial values of the electric-field amplitudes.
This quantum system may be realized in various atoms, using
the prescription outlined above, as well as in semiconductor
quantum dots, where state |0〉 is the ground (no-exciton) state
and the upper states are the left and right circularly polarized
single-exciton states.

IV. SUMMARY

In this work we have studied the linear absorption and
dispersion properties of a four-level double-V-type quantum
system near a plasmonic nanostructure. In the quantum
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system under study one V-type transition is influenced by
the interaction with surface plasmons, while the other V-type
transition interacts with free-space vacuum. As a plasmonic
nanostructure we have considered a 2D array of metal-coated
dielectric nanospheres, in which case we have calculated the
relevant decay rates by a rigorous electromagnetic Green-
tensor technique [1–3,14]. The quantum system interacts with
two orthogonal circularly polarized laser fields with the same
frequency and different phases and electric-field amplitudes,
which couple the lowest state with the upper states in the
free-space transitions. Using a density matrix methodology
for the calculation of the linear susceptibility, we have shown
that the presence of the plasmonic nanostructure leads to strong
modification of the absorption and dispersion spectra of one of
the laser fields, in the presence of the other. In addition, we have
shown that the phase difference and the relative electric-field
amplitudes of the two laser fields can be used for efficient
control of the optical properties of the system. Effects such as
complete optical transparency, zero absorption with nonzero
dispersion, and gain without inversion have been identified,
along with the conditions under which these phenomena occur.

We note in closing that from the above analysis we have
found that the effects presented here are not limited to the
specific plasmonic nanostructure studied in this work (2D
array of metal-coated dielectric nanospheres) but can also
occur in other plasmonic nanostructures, such as, for example,
a metallic slab or a metallic nanosphere, where quantum
interference effects in spontaneous emission can occur [1].

Furthermore, our analysis has revealed that the studied effects
can also occur for large values of the free-space spontaneous
emission rate with proper adjustment of the parameters of
the phase difference and the relative electric-field amplitudes
of the two laser fields. This is in contrast to the quantum
coherence phenomena obtained when a single linearly po-
larized field interacts with the system [14]. Finally, in the
present study we have assumed that the quantum system and
the plasmonic nanostructure are in vacuum. The phenomena
reported above are manifested even when the quantum system
and the plasmonic nanostructure are embedded in a host
matrix, as long as �‖ is different from �⊥. In that case the
electric-field amplitudes or the Rabi frequencies should be
modified by the effective dielectric constant by taking into
account the local field effect due to the dielectric mismatch
[45]. Correspondingly, the values of �‖ and �⊥ will change.
If the host matrix is a polymer with a low index of refraction
(values from 1.3 to 1.4), then only weak quantitative changes
will be observed.

ACKNOWLEDGMENTS

This research was cofinanced by the European Union
(European Social Fund) and Greek national funds through
the Operational Program “Education and Lifelong Learning”
of the National Strategic Reference Framework–Research
Funding Program Heracleitus II, Investing in Knowledge
Society, through the European Social Fund.

[1] V. Yannopapas, E. Paspalakis, and N. V. Vitanov, Phys. Rev.
Lett. 103, 063602 (2009).

[2] S. Evangelou, V. Yannopapas, and E. Paspalakis, Phys. Rev. A
83, 023819 (2011).

[3] S. Evangelou, V. Yannopapas, and E. Paspalakis, Phys. Rev. A
83, 055805 (2011).

[4] Y. Gu, L. Wang, P. Ren, J.-X. Zhang, T.-C. Zhang, O. J. F. Martin,
and Q.-H. Gong, Nano Lett. 12, 2488 (2012).

[5] Y. Gu, L. Wang, P. Ren, J.-X. Zhang, T.-C. Zhang, J.-P. Xu, S.-Y.
Zhu, and Q.-H. Gong, Plasmonics 7, 33 (2012).

[6] M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, and Q.-Q. Wang,
Opt. Lett. 32, 2125 (2007).

[7] S. M. Sadeghi, Nanotechnology 20, 225401 (2009); Phys. Rev.
B 79, 233309 (2009).

[8] M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-
Granado, J. Cox, and M. R. Singh, Phys. Rev. B 86, 155305
(2012).

[9] M. Sukharev and S. A. Malinovskaya, Phys. Rev. A 86, 043406
(2012).

[10] M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-
Granado, and M. R. Singh, Phys. Rev. B 87, 195303 (2013).

[11] E. Paspalakis, S. Evangelou, and A. F. Terzis, Phys. Rev. B 87,
235302 (2013).

[12] Z. Lu and K.-D. Zhu, J. Phys. B 42, 015502 (2009).
[13] A. Hatef and M. R. Singh, Phys. Rev. A 81, 063816 (2010).
[14] S. Evangelou, V. Yannopapas, and E. Paspalakis, Phys. Rev. A

86, 053811 (2012).

[15] L. Wang, Y. Gu, H. Chen, J.-Y. Zhang, Y. Cui, B. D. Gerardot,
and Q. Gong, Sci. Rep. 3, 2879 (2013).

[16] M. R. Singh, Nanotechnology 24, 125701 (2013).
[17] J. D. Cox, M. R. Singh, C. von Bilderling, and A. V. Bragas,

Adv. Opt. Mater. 1, 460 (2013).
[18] S. M. Sadeghi, Nanotechnology 21, 455401 (2010); Phys. Rev.

A 88, 013831 (2013).
[19] S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis,

J. Phys.: Condens. Matter 25, 045304 (2013).
[20] E. Paspalakis and P. L. Knight, Phys. Rev. Lett. 81, 293 (1998).
[21] M. Macovei, J. Evers, and C. H. Keitel, Phys. Rev. Lett. 91,

233601 (2003).
[22] S.-Q. Gong, E. Paspalakis, and P. L. Knight, J. Mod. Opt. 45,

2433 (1998).
[23] S.-Q. Gong, Y. Li, S.-D. Du, and Z.-Z. Xu, Phys. Lett. A 259,

43 (1999).
[24] J.-H. Wu and J.-Y. Gao, Phys. Rev. A 65, 063807 (2002).
[25] W.-H. Xu, J.-H. Wu, and J.-Y. Gao, Phys. Rev. A 66, 063812

(2002).
[26] D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann,

Phys. Rev. A 63, 043818 (2001).
[27] H. Lee, P. Polynkin, M. O. Scully, and S.-Y. Zhu, Phys. Rev. A

55, 4454 (1997).
[28] G. S. Agarwal, Phys. Rev. Lett. 84, 5500 (2000).
[29] M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, in Progress in

Optics, edited by E. Wolf, Vol. 55 (Elsevier, Amsterdam, 2010),
p. 85.

053832-7

http://dx.doi.org/10.1103/PhysRevLett.103.063602
http://dx.doi.org/10.1103/PhysRevLett.103.063602
http://dx.doi.org/10.1103/PhysRevA.83.023819
http://dx.doi.org/10.1103/PhysRevA.83.023819
http://dx.doi.org/10.1103/PhysRevA.83.055805
http://dx.doi.org/10.1103/PhysRevA.83.055805
http://dx.doi.org/10.1021/nl300655n
http://dx.doi.org/10.1007/s11468-011-9272-x
http://dx.doi.org/10.1364/OL.32.002125
http://dx.doi.org/10.1088/0957-4484/20/22/225401
http://dx.doi.org/10.1103/PhysRevB.79.233309
http://dx.doi.org/10.1103/PhysRevB.79.233309
http://dx.doi.org/10.1103/PhysRevB.86.155305
http://dx.doi.org/10.1103/PhysRevB.86.155305
http://dx.doi.org/10.1103/PhysRevA.86.043406
http://dx.doi.org/10.1103/PhysRevA.86.043406
http://dx.doi.org/10.1103/PhysRevB.87.195303
http://dx.doi.org/10.1103/PhysRevB.87.235302
http://dx.doi.org/10.1103/PhysRevB.87.235302
http://dx.doi.org/10.1088/0953-4075/42/1/015502
http://dx.doi.org/10.1103/PhysRevA.81.063816
http://dx.doi.org/10.1103/PhysRevA.86.053811
http://dx.doi.org/10.1103/PhysRevA.86.053811
http://dx.doi.org/10.1038/srep02879
http://dx.doi.org/10.1088/0957-4484/24/12/125701
http://dx.doi.org/10.1002/adom.201300105
http://dx.doi.org/10.1088/0957-4484/21/45/455401
http://dx.doi.org/10.1103/PhysRevA.88.013831
http://dx.doi.org/10.1103/PhysRevA.88.013831
http://dx.doi.org/10.1088/0953-8984/25/4/045304
http://dx.doi.org/10.1103/PhysRevLett.81.293
http://dx.doi.org/10.1103/PhysRevLett.91.233601
http://dx.doi.org/10.1103/PhysRevLett.91.233601
http://dx.doi.org/10.1080/09500349808230496
http://dx.doi.org/10.1080/09500349808230496
http://dx.doi.org/10.1016/S0375-9601(99)00358-8
http://dx.doi.org/10.1016/S0375-9601(99)00358-8
http://dx.doi.org/10.1103/PhysRevA.65.063807
http://dx.doi.org/10.1103/PhysRevA.66.063812
http://dx.doi.org/10.1103/PhysRevA.66.063812
http://dx.doi.org/10.1103/PhysRevA.63.043818
http://dx.doi.org/10.1103/PhysRevA.55.4454
http://dx.doi.org/10.1103/PhysRevA.55.4454
http://dx.doi.org/10.1103/PhysRevLett.84.5500


PASPALAKIS, EVANGELOU, YANNOPAPAS, AND TERZIS PHYSICAL REVIEW A 88, 053832 (2013)

[30] G. X. Li, F.-L. Li, and S.-Y. Zhu, Phys. Rev. A 64, 013819
(2001).

[31] Y.-P. Yang, J.-P. Xu, H. Chen, and S.-Y. Zhu, Phys. Rev. Lett.
100, 043601 (2008).

[32] G.-X. Li, J. Evers, and C. H. Keitel, Phys. Rev. B 80, 045102
(2009).

[33] J.-P. Xu and Y.-P. Yang, Phys. Rev. A 81, 013816 (2010).
[34] H. Wang, J. Kundu, and N. J. Halas, Angew. Chem. 46, 9040

(2007).
[35] S. Zhang, W. Ni, X. Kou, M. H. Yeung, L. Sun, J. Wang, and

C. Yan, Adv. Func. Mater. 17, 3258 (2007).
[36] J. B. Liu, H. Dong, Y. M. Li, P. Zhan, M. W. Zhu, and Z. L.

Wang, Jpn. J. Appl. Phys. 45, L582 (2006).
[37] S. K. Yang, W. P. Cai, L. C. Kong, and Y. Lei, Adv. Func. Mater.

20, 2527 (2010).

[38] R. Sainidou, N. Stefanou, and A. Modinos, Phys. Rev. B 69,
064301 (2004).

[39] V. Yannopapas and N. V. Vitanov, Phys. Rev. B 75, 115124
(2007).

[40] N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys.
Commun. 113, 49 (1998); 132, 189 (2000).

[41] Z. Ficek and S. Swain, Quantum Interference and Coherence:
Theory and Experiments (Springer, New York, 2005).

[42] M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991).
[43] M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich,

and S.-Y. Zhu, Phys. Rev. A 46, 1468 (1992).
[44] A. Hatef, D. G. Schindel, and M. R. Singh, Appl. Phys. Lett. 99,

181106 (2011).
[45] Z. Zeng, E. Paspalakis, C. S. Garoufalis, A. F. Terzis, and

S. Baskoutas, J. Appl. Phys. 113, 054303 (2013).

053832-8

http://dx.doi.org/10.1103/PhysRevA.64.013819
http://dx.doi.org/10.1103/PhysRevA.64.013819
http://dx.doi.org/10.1103/PhysRevLett.100.043601
http://dx.doi.org/10.1103/PhysRevLett.100.043601
http://dx.doi.org/10.1103/PhysRevB.80.045102
http://dx.doi.org/10.1103/PhysRevB.80.045102
http://dx.doi.org/10.1103/PhysRevA.81.013816
http://dx.doi.org/10.1002/anie.200702072
http://dx.doi.org/10.1002/anie.200702072
http://dx.doi.org/10.1002/adfm.200700366
http://dx.doi.org/10.1143/JJAP.45.L582
http://dx.doi.org/10.1002/adfm.201000467
http://dx.doi.org/10.1002/adfm.201000467
http://dx.doi.org/10.1103/PhysRevB.69.064301
http://dx.doi.org/10.1103/PhysRevB.69.064301
http://dx.doi.org/10.1103/PhysRevB.75.115124
http://dx.doi.org/10.1103/PhysRevB.75.115124
http://dx.doi.org/10.1016/S0010-4655(98)00060-5
http://dx.doi.org/10.1016/S0010-4655(98)00060-5
http://dx.doi.org/10.1016/S0010-4655(00)00131-4
http://dx.doi.org/10.1103/PhysRevLett.67.1855
http://dx.doi.org/10.1103/PhysRevA.46.1468
http://dx.doi.org/10.1063/1.3658395
http://dx.doi.org/10.1063/1.3658395
http://dx.doi.org/10.1063/1.4789363



