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Effects of counter-rotating-wave terms of the driving field on the spectrum of resonance fluorescence
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We investigate the fluorescence spectrum of a two-level system driven by a monochromatic classical field by
the Born-Markovian master equation based on a unitary transformation. The main purpose is to understand the
effects of counter-rotating-wave terms of the driving on spectral features of the fluorescence. We have derived
an analytical expression for the fluorescence spectrum, which is different from Mollow’s theory, while Mollow’s
result on resonance is the limiting case of ours in moderately weak driving regimes. Our results demonstrate
precisely that the counter-rotating-wave terms of the driving play an important role in the fluorescence spectrum
for intense driving: (i) the counter-rotating coupling suppresses the red sideband in the Mollow triplet and it
enhances the blue one in explicitly contrast to the well-known equal intensity of the sideband in Mollow’s theory,
(ii) the higher-order Mollow triplets appear as a characteristic spectral feature arising from counter-rotating-wave
terms of the driving, and (iii) a significant frequency shift of the sidebands is observed, which depends on both
the detuning and driving strength.
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I. INTRODUCTION

Mollow initially derived the resonance fluorescence spec-
trum of a driven two-level system (TLS) [1]. The predicted
resonance fluorescence spectrum has been verified in tradi-
tional quantum optical experiments [2]. In Mollow’s theory, the
line shape of the resonance fluorescence spectrum depends on
both the TLS spontaneous decay rate and the driving strength.
Specifically speaking, the decay rate influences the full width
at half maximum (FWHM) of peaks in the spectrum, and the
driving strength determines the splitting. For weak driving
strengths, the resonance fluorescence spectrum is made up of
a single Lorentzian spontaneous emission line. For moderately
strong driving strengths, instead of the single Lorentzian line,
it consists of three split peaks known as the Mollow triplet.

Recently, there has been increasing experimental investi-
gation of the fluorescence spectrum in artificial atoms, for
instance, semiconductor quantum dots [3–9], single molecules
[10], and superconducting circuits [11]. The experiments are
not only to test fundamental theory but also to develop single-
quantum emitters for quantum light spectroscopy and quantum
information applications. It is reported in Ref. [11] that the
observed fluorescence spectrum is in quantitative agreement
with the predictions from Mollow’s theory. According to
Ref. [9], an individual Mollow sideband channel of the
resonance fluorescence from a single quantum dot can act as an
efficient single-photon source. However, so far most resonance
fluorescence observed in experiments is under conditions such
that the driving strength is of the magnitude of the spontaneous
decay rate, which is far less than the bare transition frequency
of the TLS. Thus, it is not surprising that the theory is consistent
with the data from experiments such as that in Ref. [11].

Apart from the experimental research on the fluorescence
spectrum, theoretical investigations, which are attractive and
significant, can be roughly grouped into two categories. One
is studying the influence of the various types of driving
and environments in which TLSs exist on the fluorescence
spectrum within the rotating-wave approximation (RWA) of
driving, such as the works concerning the resonance spectrum

of a quantum dot excited by a strong optical pulse [12] and
the influence from a solid-state environment [13]. The other
is extending the theory out of the framework of the RWA
of driving, such as the work carried out in Ref. [14], the
main idea of which is treating the counter-rotating (CR) wave
terms of the driving as perturbation in the so-called dressed
basis. In intense-driving regimes and on resonance, based on
perturbation calculation, the authors found unequally intense
sidebands, generation of higher-order Mollow triplets with
intensities comparable to those of the first, and an analytical
expression for the shift of sidebands in frequency [14].

Although the RWA-based theory succeeds in explaining
classical fluorescence experiments, we believe that it is
necessary to take into account the effects of CR-wave terms of
driving on the same footing as the rotating-wave terms for
the following reasons. On the one hand, the RWA loses
its validity when the driving strength is comparable to the
magnitude of the bare transition frequency of the TLS and/or
the driving frequency is detuned from the resonance. The
experiments in strongly driven TLS reported in Refs. [15,16]
reveal that theories beyond the RWA are needed to explain
the observed phenomena. In this work, we show clearly that
for a finite-detuning case the spectrum without the RWA
differs from the one with the RWA even in weak-driving
regimes. On the other hand, the CR-wave terms have important
effects on the coherently strongly driven dynamics of the
TLS [17,18], such as the intriguing phenomenon known as
coherent destruction of tunneling (CDT) [19]. Thus, one
can expect that the CR-wave terms should introduce some
characteristic spectral features of the scattered light from TLSs
in intense-driving regimes.

In this paper, we consider the effects of the CR-wave
terms of the driving on fluorescence from a TLS driven by
a monochromatic classical field. We take into account the
CR-wave terms of driving by means of the same unitary
transformation as that of Ref. [20], which has been used to
study the coherently driven dynamics of the TLS. Using the
unitary transformation, we obtain an effective Hamiltonian

053821-11050-2947/2013/88(5)/053821(10) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.053821
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with RWA form, but the corresponding parameters become
renormalized, which includes the effects of the CR-wave terms
of the driving. From the effective Hamiltonian, it is convenient
to calculate the fluorescence spectrum by Mollow’s method
(Sec. III). In this sense our method is as simple as the RWA
method. On the other hand, our previous work shows that the
method properly takes into account the CR-wave terms [20].
Using the effective Rabi frequency given in terms of the
renormalized parameters, we have calculated the well-known
Bloch-Siegert shift up to fourth order of the driving strength,
which is exactly the same as the prediction of Floquet theory
[21]. In this work we demonstrate the spectral features arising
from the CR-wave terms of the driving in three aspects: (i) the
asymmetry of the sidebands with respect to the central peak,
(ii) the generation of the higher-order Mollow triplets, and
(iii) frequency shifts of the sidebands. We discuss these
characters and the difference from other works in the
Secs. III A and III B.

II. UNITARY TRANSFORMATION
AND MASTER EQUATION

The Hamiltonian describing a TLS driven by a classical
monochromatic field with the frequency ωL in a vacuum
electromagnetic field reads (h̄ = 1)

H (t) = 1

2
ω0σz + � cos(ωLt)σx +

∑
k

ωkb
†
kbk

+ 1

2

∑
k

gk(b†k + bk)σx, (1)

where σx and σz are Pauli matrices describing the TLS. ω0

is the bare transition frequency between the two levels, �

is the driving strength, bk (b†k) is the annihilation (creation)
operator of the kth-mode electromagnetic field with frequency
ωk , and gkis the coupling between the TLS and the kth-mode
electromagnetic field.

In order to take into account the CR-wave terms of the
driving, we perform a unitary transformation proposed in
Ref. [20]. The generator of the unitary transformation is given
by

S(t) = i
�

ωL

ζ sin(ωLt)σx, (2)

where we introduce a parameter ζ to be determined later. The
transformation H ′(t) = eS(t)H (t)e−S(t) − ieS(t) d

dt
e−S(t) can be

done to the end and yields

H ′(t) = 1

2
ω0 cos

[
2�

ωL

ζ sin(ωLt)

]
σz

+ 1

2
ω0 sin

[
2�

ωL

ζ sin(ωLt)

]
σy

+�(1 − ζ ) cos(ωLt)σx +
∑

k

ωkb
†
kbk

+ 1

2

∑
k

gk(b†k + bk)σx. (3)

Using the identity given in Ref. [22],

exp(iz sin θ ) =
∞∑

n=−∞
Jn(z) exp(inθ ), (4)

where Jn(z) is a Bessel function of the first kind, we divide
the transformed Hamiltonian into two parts,

H ′(t) = H ′
0(t) + H ′

1(t), (5)

H ′
0(t) = 1

2
ω0J0

(
2�

ωL

ζ

)
σz + ω0J1

(
2�

ωL

ζ

)
sin(ωLt)σy

+�(1 − ζ ) cos(ωLt)σx +
∑

k

ωkb
†
kbk

+ 1

2

∑
k

gk(b†k + bk)σx, (6)

H ′
1(t) = ω0

∞∑
n=1

J2n+1

(
2�

ωL

ζ

)
sin [(2n + 1)ωLt] σy

+ω0

∞∑
n=1

J2n

(
2�

ωL

ζ

)
cos(2nωLt)σz. (7)

Up to now, the treatment is exact without any approximation.
To proceed, we first introduce an approximation where
we drop H ′

1(t) because the higher-order harmonic terms
(nωL,n � 2) are negligible according to Ref. [20].

Since our interest is the spectral features of the fluorescence
arising from the CR-wave terms of the driving, we assume
an RWA for the TLS-environment interaction as Mollow
did [1]. This is the second approximation we introduce in the
following. To derive the master equation, we further assume
weak TLS-environment coupling and the Born-Markovian
approximation as usual [23]. These are all the approximations
we use for deriving the master equation in this work. If the
parameter ζ is determined as

�(1 − ζ ) = ω0J1

(
2�

ωL

ζ

)
≡ �̃

2
, (8)

we obtain our reformulated rotating-wave Hamiltonian,

H ′(t) = 1

2
ω0J0

(
2�

ωL

ζ

)
σz + �̃

2
(eiωLtσ− + e−iωLtσ+)

+
∑

k

ωkb
†
kbk + 1

2

∑
k

gk(b†kσ− + bkσ+), (9)

where σ± = 1
2 (σx ± iσy). We perform the unitary rotating

transformation given by

R(t) = exp

[
iωLt

(
1

2
σz +

∑
k

b
†
kbk

)]
, (10)

then obtain a time-independent Hamiltonian,

H̃ = R(t)H ′(t)R†(t) + i
∂R(t)

∂t
R†(t)

= 1

2
(δ̃σz + �̃σx) +

∑
k

(ωk − ωL)b†kbk

+ 1

2

∑
k

gk(b†kσ− + bkσ+)

≡ H̃0S + H̃0B + H̃1, (11)

where the effective detuning δ̃ = ω0J0( 2�
ωL

ζ ) − ωL, H̃0S is the

dressed TLS-driving Hamiltonian, H̃0B is the environment
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term, and H̃1 is the TLS-environment coupling. Provided the
Born-Markovian approximation is used in the derivation of the
master equation in the rotating basis, the master equation for
the reduced density matrix of the TLS, ρ̃S(t) = TrB[ρ̃SB(t)],
takes the same form as Mollow’s:

d

dt
ρ̃S(t) = −i[H̃0S,ρ̃S(t)] − κ

2
[σ+σ−ρ̃S(t) + ρ̃S(t)σ+σ−

− 2σ−ρ̃S(t)σ+], (12)

where the subscript S denotes the TLS and κ is the spontaneous
decay rate of the TLS. The derivation of the master equation
is given in Appendix A.

According to Eq. (12), it is easy to obtain the Bloch
equations, which take the form

d

dt

⎛
⎝〈σ+(t)〉

〈σ−(t)〉
〈σz(t)〉

⎞
⎠ =

⎛
⎜⎝− κ

2 + iδ̃ 0 −i �̃
2

0 − κ
2 − iδ̃ i �̃

2

−i�̃ i�̃ −κ

⎞
⎟⎠

×
⎛
⎝〈σ+(t)〉

〈σ−(t)〉
〈σz(t)〉

⎞
⎠ +

⎛
⎝ 0

0
−κ

⎞
⎠ . (13)

Here,
〈
σμ(t)

〉 = Tr[ρ̃S(t)σμ], (μ = +, − ,z). The equations
have the steady-state solutions

〈σ+〉s = 〈σ−〉∗s = −�̃(2δ̃ − iκ)

2�̃2 + 4δ̃2 + κ2
, (14)

〈σz〉s = −4δ̃2 − κ2

2�̃2 + 4δ̃2 + κ2
. (15)

These results show that the solutions depend on the effective
detuning and modified driving strength. If we do not apply the
unitary transformation but assume the RWA for the driving and
follow the same procedure from Eq. (10) to (12), we obtain the
same differential equation without modified driving strength
and detuning. In other words, the parameters in the above
equations are replaced as follows:

�̃ → �, δ̃ → δ = ω0 − ωL, (16)

and they become the results of Mollow’s master equation [1].

III. FLUORESCENCE SPECTRUM

In general, the power spectrum of the scattered light is
obtained from the time-integrated Fourier transformation of
the first-order correlation function [24],

S(ω) = 1

2π
lim

T →∞
1

T

∫ T

0
dt

∫ T

0
dt ′g(1)(t,t ′)e−iω(t−t ′), (17)

where the correlation function g(1)(t,t ′) =
〈U †(t)σ+U (t)U †(t ′)σ−U (t ′)〉, with U (t) being the evolution
operator for the original Hamiltonian. We analytically derive
the fluorescence spectrum in Appendix B.

The fluorescence spectrum consists of the so-called co-
herent (Rayleigh scattering) and incoherent (inelastic scat-
tering) components. The coherent one arising from the term
〈σμ(τ → ∞)σν(0)〉 is the δ function,

Sc(ω) = 1

4π

∑
n odd

In,0δ(ω − nωL), (18)

with

In,0 = (
j 2
n + j ′2

n+2

)|〈σ+〉s|2 + jnj
′
n+2

(〈σ−〉2
s + 〈σ+〉2

s

)
+ (jnj

′
n+1 + j ′

n+1j
′
n+2)

×〈σz〉s(〈σ−〉s + 〈σ+〉s) + j ′2
n+1〈σz〉2

s , (19)

where the summation is taken over all positive odd integers
and coefficients jn and j ′

n have been defined in Appendix B.
We denote the roots of the third-degree polynomial (B12),
f (p), by −γ1 and −γ2 ± i�′. Then the incoherent part of the
spectrum is written as

Sinc(ω) = 1

4π
Re

∑
n odd

[
In,1

γ1 + i(nωL − ω)

γ 2
1 + (ω − nωL)2

+ In,2
γ2 + i(nωL − �′ − ω)

γ 2
2 + (ω − nωL + �′)2

+ In,3
γ2 + i(nωL + �′ − ω)

γ 2
2 + (ω − nωL − �′)2

+ I ′
n,1

γ1 − i(nωL + ω)

γ 2
1 + (ω + nωL)2

+ I ′
n,2

γ2 − i(nωL + �′ + ω)

γ 2
2 + (ω + nωL + �′)2

+ I ′
n,3

γ2 − i(nωL − �′ + ω)

γ 2
2 + (ω + nωL − �′)2

]
, (20)

with

In,l = j 2
nR

(−)
+,l + jnj

′
n+2R

(−)
−,l + jnj

′
n+1R

(−)
z,l + jnj

′
n+2R

(+)
+,l

+ j ′2
n+2R

(+)
−,l + j ′

n+1j
′
n+2R

(+)
z,l + jnj

′
n+1R

(z)
+,l

+ j ′
n+1j

′
n+2R

(z)
−,l + j ′2

n+1R
(z)
z,l , (21)

I ′
n,l = j 2

n+2R
(−)
+,l + j ′

njn+2R
(−)
−,l + jn+1jn+2R

(−)
z,l + j ′

njn+2R
(+)
+,l

+j ′2
n R

(+)
−,l + j ′

njn+1R
(+)
z,l + jn+1jn+2R

(z)
+,l

+ j ′
njn+1R

(z)
−,l + j 2

n+1R
(z)
z,l . (22)

The quantities in Eqs. (21) and (22) are defined and evaluated
in Appendix B.

Up to now, we have obtained the modified spectrum, which
takes a more complex form than Mollow’s. The expression
indicates that there are higher-order Mollow triplets, the central
peaks of which locate at odd multiples of the driving frequency
nωL. These higher-order triplets fail to be captured with the
RWA for the driving and are consistent with the predictions
from the previous works based on different methods [14,25].
In Eq. (20), the last three terms in the square brackets are the
additional terms arising from the CR-wave terms.

A. Spectral features and effects of the CR-wave terms

In the following, we illustrate precisely the spectral features
induced by the CR-wave terms. We set the bare transition
frequency ω0 as the unit. At the same time, we only show the
incoherent part of the fluorescence in the plots.

To begin with, we examine whether the fluorescence
spectrum on resonance obtained from our method coincides
with Mollow’s when the driving strength is moderately weak.
We show the spectrum on resonance for driving strength
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FIG. 1. (Color online) The resonance fluorescence spectrum as a function of frequency ω for � = 5κ and (a) �/ω0 = 0.01 and
(b) �/ω0 = 0.1. The solid line represents our spectrum, and the dashed line shows Mollow’s spectrum.

� = 5κ with �/ω0 = 0.01, 0.1 in Figs. 1(a) and 1(b), re-
spectively. It turns out that under the moderately weak driving
strength and resonance condition, the spectrum calculated by
our method is in good agreement with Mollow’s. However,
when �/ω0 = 0.1, our calculated spectrum is slightly different
from Mollow’s because it has a higher blue sideband and a
lower red sideband compared with Mollow’s. These results
indicate that the effects of CR-wave terms are negligible under
the weak driving strength and resonance condition. The effects
of driving CR terms become clearer with increasing driving
strength. Therefore, the RWA-based theory is adequate and
succeeds in explaining classical fluorescence experiments.

We now illustrate the influence of the CR-wave terms on
the line shape of the fluorescence spectrum when increasing

driving strength to the magnitude comparable to the bare
transition frequency. In Figs. 2(a)–2(c), we plot the spectrum as
a function of frequency ω for � = 10κ and �/ω0 = 0.6 with
the three detuning values δ/ω0 = 0.2, 0, −0.2, respectively.
The asymmetry of the two sidebands with respect to the
central peak for �/ω0 = 0.6 becomes noticeable. Comparing
our results with Mollow’s results in Figs. 2(a)–2(c), we
notice the common character that the red sideband of our
calculated spectrum is suppressed while the blue sideband
is enhanced. Furthermore, Fig. 3 shows that this effect can be
strengthened by increasing the driving strength. Moreover, our
theory predicts that a significant shift of the two sidebands in
frequency can be observed with proper detuning and driving
strength. In Fig. 4, we show the second Mollow triplet, whose
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FIG. 2. (Color online) The fluorescence spectrum as a function of frequency ω for � = 10κ , �/ω0 = 0.6, and (a) ωL = 0.8ω0, (b) ωL = ω0,
and (c) ωL = 1.2ω0. The solid line represents our spectrum, and the dashed line shows Mollow’s spectrum.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

units of ω0

κ
S
ω
p

FIG. 3. (Color online) The dimensionless height κS(ωp) as a
function of driving strength � with ωp = ωL,ωL ∓ �′, corresponding
to the central peak (solid line), red sideband (dashed line), and blue
sideband (dot-dashed line) in the first triplet. The driving frequency
is ωL = ω0, and the decay rate κ = 10−3ω0. All thick lines represent
our predictions, and the thin ones are Mollow’s predictions.

central peak is at the frequency ω = 3ωL on resonance and
�/ω0 = 0.9. Even for such strong driving, the intensity of
the second Mollow triplet is much less than that of the first.
This feature of the higher-order triplet is distinguished from
that in previous work [14]. Our method demonstrates that the
higher-order triplet clearly comes from the counter-rotating
term of the driving field which is depicted in Eq. (20), and
its intensity is determined by a coefficient with higher-order
Bessel functions. Therefore, the experimental study of the
higher-order triplet is an interesting challenge.

In Figs. 2, 3, and 4, we show the spectral features arising
from the CR-wave terms in three aspects: (i) the asymmetry
of the sidebands with respect to the central peak, (ii) the
generation of the higher-order Mollow triplets, and (iii) shifts
of the sidebands. Although some characters have been reported
in previous works [14,25]. we identify that there are dramatic
differences between our results and those in Ref. [14].

First of all, we clearly show that the CR-wave terms
enhance the emission of the red sideband while suppressing

0 1 2 3 4 5 6

10 6

10 5

10 4

0.001

0.01

0.1

ω units of ω0

κ
S
ω

Mollow' s

Ours

FIG. 4. (Color online) The fluorescence spectrum obtained by
our method (solid line) and Mollow’s method (dashed line) on a
logarithmic scale for � = 20κ , �/ω0 = 0.9, and ωL = ω0. The inset
shows the spectrum obtained in Ref. [14] with the same parameters.

that of the blue one compared with Mollow’s spectra. This
feature deterministically comes from the CR-wave terms and is
different from the result claimed in Ref. [14], i.e., the unequally
intense Mollow sidebands. Since the method in Ref. [14] has
taken into account the effects of the three different decay rates,
which also cause the unequally intense Mollow sidebands, we
believe that the unequally intense Mollow sidebands claimed
in Ref. [14] arise from the combined effects of both different
decay rates and the CR-wave terms.

Second, our calculations clearly show the higher-order
Mollow triplets, which come from the effects of the CR-wave
terms. Moreover, the detailed character is distinct from those of
Ref. [14]. We find that a higher-order Mollow triplet with very
weak intensities relative to the first one, while in Ref. [14]
the second Mollow triplet becomes comparable in intensity
to the first triplet. We show numerical results with the same
parameters as those in Fig. 6 of Ref. [14]. In Fig. 4, it is clearly
seen that the magnitudes of the three peaks of the second
Mollow triplet are far less than the magnitude of the central
line of the first one. The ratio of intensities between the
emission lines of the second Mollow triplet and central line of
the first triplet is about 1/100 for �/ω0 = 0.9, which shows
the dramatic difference between the results obtained by the
two methods (see the inset in Fig. 4). In contrast, the results
of Ref. [14] show that the height of the red sideband in the
second Mollow triplet is of the same magnitude as the central
line in the first triplet for �/ω0 = 0.9. However, the same
sideband in our calculated spectrum almost disappears for this
case.

Finally, we show a comparison of the shifts of sidebands
relative to Mollow’s spectrum predicted by our method and
Ref. [14]. In the weak-driving regime, both shifts are almost
the same. However, as the driving strength increases from
�/ω0 = 0.7 to 1 [see Fig. 5(b)], the shift obtained in Ref. [14]
sharply increases. This probably results from the second-
order energy corrections containing a divergent term. As a
comparison, the valid parameter space of our method is clearly
shown in Fig. 6 in our previous work [20]. Further, the method
works very well from the weak driving strength to intermediate
strong driving strength in the resonance and near-resonance
regimes. Moreover, since the Bloch-Siegert shift obtained by
our method is exact up to fourth order, it strongly proves
that our method properly takes into account the effects of the
CR-wave terms of the driving. Thus, we believe that the shift
obtained by our method is reliable.

B. CR-wave terms modulated frequency shift

In the following, we focus on the frequency shift of the
sidebands caused by CR-wave terms of the driving which may
be detectable in experiment. In a way similar to Mollow’s
theory, the third-degree polynomial equation [Eq. (B12) in
Appendix B], which takes the same form obtained by Mollow
but with the corresponding renormalized coefficients, com-
pletely determines the FWHM of the fluorescence spectrum,
i.e., γ1 and γ2, and the splitting between the central peak and
its satellite sidebands, i.e., �′. In general, the quantity �′
determined in Eq. (B12) is different from Mollow’s due to
the effects of the CR-wave terms. As a result, the sideband’s
shift in frequency occurs. In order to determine the influence
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FIG. 5. (Color online) (a) The shift ��′ of sidebands as a function of driving strength � for κ = 10−3ω0 and various driving frequencies:
ωL = 0.8ω0 (solid line), ωL = ω0 (dashed line), and ωL = 1.2ω0 (dot-dashed line). (b) The comparison between the shift obtained in Ref. [14]
and ours for the exact resonance and κ = 10−3ω0.

of the CR-wave terms on this frequency shift, we can define
the difference ��′ = �′

M − �′ as a significant frequency
shift, where �′

M denotes the splitting between the central
peak and its sidebands in Mollow’s theory. It is known that
in the intense-driving limit (� 
 κ), the splitting �′

M is
well approximated by the Rabi frequency �R = √

δ2 + �2

in Mollow’s theory. Thus, the modulated frequency shift due
to CR-wave terms can be approximated to the difference
�R − �̃R since the effective Rabi frequency �̃R =

√
δ̃2 + �̃2

in our method has taken into account the effects of the CR-wave
terms. It is worth noting that the shift obtained by our method
is beyond the second-order corrections [20]. As a comparison,
the shift obtained in Ref. [14] results from the second-order
energy corrections.

Figure 5 shows how the driving strength affects the shift.
��′ < 0 means that the sidebands of our prediction shift
outwards to the center, ��′ > 0 means that the sidebands
of our prediction shift inwards to the center, and ��′ = 0
means that the frequencies of the sidebands predicted by the
two methods are equal. Since the shift is slight on resonance for
weak driving, the RWA is a sufficiently good approximation
under such conditions. However, a significant amount of shift
emerges when the detuning δ = ±0.2ω0 even for a small
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0.06

δ units of ω0
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ω
0

0.9ω0
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0.01ω0

FIG. 6. (Color online) The shift ��′ of sidebands as a function
of detuning δ for � = 20κ and various ratios: �/ω0 = 0.01 (solid
line), �/ω0 = 0.1 (dashed line), and �/ω0 = 0.9 (dot-dashed line).

value of �. This indicates that it is necessary to take into
account the effects of the CR-wave terms in the off-resonance
case where the RWA breaks down even for weak driving
strength. When δ = 0.2ω0, the absolute value of the effective
detuning δ̃ changes nonmonotonously as � increases. As a
result, the shift increases slowly at first and then decreases
with increasing �. Figure 5(b) shows the difference between
the shift obtained in Ref. [14] and our result on resonance. In
the weak-driving regime, the shifts are almost the same. They
rise with increasing �. However, when the driving strength
increases from �/ω0 = 0.7 to 1, the shift obtained in Ref. [14]
sharply increases, which probably results from the divergent
term in the second-order energy correction.

Figure 6 shows the dependence of the shift on the detuning
δ for various driving strengths. For � � ω0, the shift is too
slight to be observed in the line shape of the spectrum. When �

is comparable to ω0, we notice that a negative detuned driving,
i.e., ωL > ω0, is favorable for obtaining a larger shift with a
given driving strength. In the intensive-driving regime, one
has ��′ = �R − �̃R . As δ/ω0 increases from zero to −0.2
in the case �/ω0 = 0.9, one can verify that the difference
between �R and �̃R increases monotonically. Thus, the shift
increases to a maximum value of 0.06ω0 at δ = −0.2ω0.
This helps us detect the CR-modified frequency shift in
experiment.

IV. CONCLUSIONS

In summary, we have developed an analytical approach
based on a unitary transformation to investigate the spectral
features of the scattered light from a two-level system driven
by a monochromatic classical field. The method has taken
into account the effects of the CR-wave terms of the driving
but still retains the simple RWA form of the driving with the
CR-modified parameters, which is distinct from the traditional
perturbative method. We have derived an analytical expression
for the fluorescence spectrum. Our calculated results clearly
show the spectral features arising from the CR-wave terms in
three aspects: (i) the asymmetry of the sidebands with respect
to the central peak, (ii) the generation of the higher-order
Mollow triplets, and (iii) shifts of the sidebands. First, since the
red sideband is suppressed while the blue sideband is enhanced
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in comparison with Mollow’s triplet, our calculation shows that
the CR-wave term of the driving induces the asymmetry of the
sidebands. Second, our theory also predicts the generation
of the higher-order Mollow triplets, which is qualitatively
consistent with the results of other methods in previous work
[14,25]. However, we have found that the intensities of the
higher-order Mollow triplets are far less than those of the first
triplet. This feature is distinct from that of the previous work.
Third, we readily observe that the sidebands in the first triplet
shift from the positions of the corresponding sidebands given
by Mollow’s theory in intense-driving regimes. Moreover, the
shift depends on both the driving strength and the detuning.
A negative detuning of the driving is favorable for generating
a larger shift for a fixed, moderately intense driving strength.
We expect that all the effects of the CR-wave terms would be
experimentally observable with elaborately designed detuning
and driving strength. Our results illustrate that the CR-wave
terms of the driving have significant effects on the spectral
features of fluorescence.
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APPENDIX A: MASTER EQUATION UNDER
BORN-MARKOVIAN APPROXIMATION

In the interaction picture of the dressed Hamiltonian, the
density matrix satisfies the equation of motion,

d

dt
ρ̃I

SB (t) = −i
[
H̃I (t),ρ̃I

SB(t)
]
, (A1)

where ρ̃I
SB (t) = ei(H̃0S+H̃0B )t ρ̃SB (t)e−i(H̃0S+H̃0B )t and

H̃I (t) = ei(H̃0S+H̃0B )t H̃1e
−i(H̃0S+H̃0B )t

= eiH̃0S H̃1(t)e−iH̃0S . (A2)

Equation (A1) can be integrated formally and yields

ρ̃I
SB(t) = ρ̃I

SB (0) − i

∫ t

0
dτ

[
H̃I (τ ),ρ̃I

SB(τ )
]
. (A3)

Substituting expression (A3) back into Eq. (A1) and taking
the trace over the degree of freedom of the environment, we
obtain the following equation:

d

dt
ρ̃I

S (t) = −TrB

∫ t

0
dτ

[
H̃I (t),

[
H̃I (τ ),ρ̃I

S (τ )ρB

]]
, (A4)

where we have used the Born approximation ρ̃I
SB(τ ) ≈

ρ̃I
S (τ )ρB since in the weak-coupling regime the influence of the

system on the environment is negligible. We further introduce
Markovian approximation, which assumes ρ̃I

S (τ ) ≈ ρ̃I
S (t) in

Eq. (A4), and transform the equation of motion back into
Shrödinger picture,

d

dt
ρ̃S(t) = −i[H̃0S,ρ̃S(t)] −

∫ ∞

0
dt ′TrB

× [H̃1(t),[e−iH̃0S t ′H̃1(t − t ′)eiH̃0S t ′ ,ρ̃S(t)ρB]].

(A5)

Here, we have replaced the variable τ by t − t ′ and let the
upper limit of the integral go to infinity, which is reliable since
the integrand vanishes sufficiently quickly as time increases
[23].

At zero temperature, the master equation in Eq. (A5) can
be rewritten as

d

dt
ρ̃S(t) = −i[H̃0S,ρ̃S(t)] −

∫ ∞

0
dt ′

∑
k

g2
k

4

{
e−i(ωk−ωL)t ′σ+e−iH̃0S t ′σ−eiH̃0S t ′ ρ̃S(t) − e−i(ωk−ωL)t ′e−iH̃0S t ′σ−eiH̃0S t ′ ρ̃S(t)σ+

− ei(ωk−ωL)t ′σ−ρ̃S(t)e−iH̃0S t ′σ+eiH̃0S t ′ + ei(ωk−ωL)t ′ ρ̃S(t)e−iH̃0S t ′σ+eiH̃0S t ′σ−
}

(A6)

since Tr(b†kbkρB) = 0. It is not difficult to derive following equations:

e−iH̃0S tσ±eiH̃0S t =
[

�̃2

2�̃2
R

+ 1

4

(
1 + δ̃

�̃R

)2

e∓i�̃Rt + 1

4

(
1 − δ̃

�̃R

)2

e±i�̃Rt

]
σ±

+ �̃

4�̃R

[
2δ̃

�̃R

−
(

1 + δ̃

�̃R

)
e∓i�̃Rt +

(
1 − δ̃

�̃R

)
e±i�̃Rt

]
σz + �̃2

4�̃2
R

(2 − e−i�̃Rt − ei�̃Rt )σ∓. (A7)

Substituting Eqs. (A7) into Eq. (A6), integrating with respect to t ′, and assuming

∫ ∞

0
dτ

∑
k

g2
k

4
e±i(ωk−ωL±�̃R)τ ≈

∫ ∞

0
dτ

∑
k

g2
k

4
e±i(ωk−ωL)τ ≈ κ

2
, (A8)

namely, assuming that the decay rate of a driven two-level system remains constant, we finally obtain the form of the master
equation presented in Eq. (12).
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APPENDIX B: THE DERIVATION OF THE FLUORESCENCE SPECTRUM

For the fluorescence spectrum, it is sufficient to evaluate the integral (17) in the steady-state limit. In this limit, due to the
time-dependent unitary transformations (2) and (10), we have the correlation function

g(1)(t,t ′) = Tr[R (t) eS(t)σ+e−S(t)R† (t) Ũ (τ ) R(t ′)eS(t ′)σ−e−S(t ′)R†(t ′)ρ̃ss ⊗ ρBŨ † (τ )], (B1)

where ρ̃ss is the steady-state solution for master equation (12), Ũ (τ ) = exp(−iH̃ τ ), and τ = t − t ′. The transform
R (t) eS(t)σ±e−S(t)R† (t) in the correlation function can be expressed in terms of σ± and σz with time-dependent coefficients,

R(t)eS(t)σ±e−S(t)R†(t) = 1 + cos
[

2�
ωL

ζ sin(ωLt)
]

2
σ±e±iωLt + 1 − cos

[
2�
ωL

ζ sin(ωLt)
]

2
σ∓e∓iωLt ∓ i

sin
[

2�
ωL

ζ sin(ωLt)
]

2
σz

= 1

2

∑
n odd

[(jne
±inωLt + jn+2e

∓inωLt )σ± + (j ′
ne

∓inωLt + j ′
n+2e

±inωLt )σ∓ + (jn+1e
∓inωLt + j ′

n+1e
±inωLt )σz],

(B2)

where the summation is taken over all positive odd integers and the series are defined as

jn =
⎧⎨
⎩

1 + J0

(
2�
ωL

ζ
)

, n = 1,

Jn−1

(
2�
ωL

ζ
)

, n �= 1,
(B3)

and

j ′
n =

⎧⎨
⎩

1 − J0

(
2�
ωL

ζ
)

, n = 1,

−Jn−1

(
2�
ωL

ζ
)

, n �= 1.
(B4)

When calculating the spectrum, according to Ref. [24], we approximate the integral by

I (ω) = lim
T →∞

1

T

∫ T

0
dt

∫ T

0
dt ′einωLt−imωLt ′ 〈σμ(τ )σν(0)〉se

−iω(t−t ′)

= lim
T →∞

1

T

∫ T

0
dt

∫ T

0
dt ′einωLτ−i(m−n)ωLt ′ 〈σμ(τ )σν(0)〉se

−iωτ

= lim
T →∞

1

T

∫ T

0
dt ′e−i(m−n)ωLt ′

∫ T −t ′

−t ′
dτ 〈σμ(τ )σν(0)〉se

i(nωL−ω)τ

= lim
T →∞

1

T

∫ T

0
dt ′e−i(m−n)ωLt ′

∫ +∞

−∞
dτ 〈σμ(τ )σν(0)〉se

i(nωL−ω)τ

= δm,n

∫ +∞

−∞
dτ 〈σμ(τ )σν(0)〉se

i(nωL−ω)τ , (B5)

where 〈σμ(τ )σν(0)〉s = Tr[σμ(τ )σν(0)ρ̃ssρB], (μ,ν = +, − ,z). Using this approximation, one can easily show that the spectrum
is given by

S(ω) = 1

4π
Re

∑
n odd

∫ ∞

0
dτe−iωτ

[ (
j 2
n einωLτ + j 2

n+2e
−inωLτ

) 〈σ+(τ )σ−(0)〉s + (j ′
njn+2e

−inωLτ + jnj
′
n+2e

inωLτ )〈σ−(τ )σ−(0)〉s

+ (jn+1jn+2e
−inωLτ + jnj

′
n+1e

inωLτ )〈σz(τ )σ−(0)〉s + (jnj
′
n+2e

inωLτ + j ′
njn+2e

−inωLτ )〈σ+(τ )σ+(0)〉s

+ (j ′2
n e−inωLτ + j ′2

n+2e
inωLτ )〈σ−(τ )σ+(0)〉s + (j ′

njn+1e
−inωLτ + j ′

n+1j
′
n+2e

inωLτ )〈σz(τ )σ+(0)〉s

+ (jnj
′
n+1e

inωLτ + jn+1jn+2e
−inωLτ )〈σ+(τ )σz(0)〉s + (j ′

njn+1e
−inωLτ + j ′

n+1j
′
n+2e

inωLτ )〈σ−(τ )σz(0)〉s

+ (
j 2
n+1e

−inωLτ + j ′2
n+1e

inωLτ
)〈σz(τ )σz(0)〉s

]
, (B6)

where Re(z) gives the real part of complex number z.
To obtain the explicit expression for the spectrum, it is necessary to evaluate the correlation function 〈σμ(τ )σν(0)〉s, which

is evaluated based on quantum regression theorem [26]. Notice that the dynamics of the quantity 〈〈σμ(τ )〉〉 = 〈σμ(τ )〉 − 〈σμ〉s

is determined by the homogeneous part of Bloch equations (13). Using quantum regression theorem, we obtain a close set of
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differential equations for the quantity 〈〈σμ(τ )σν(0)〉〉 = 〈σμ(τ )σν(0)〉s − 〈σμ〉s〈σν〉s, which is

d

dτ
〈〈σμ(τ )σν(0)〉〉 =

∑
λ

Mμλ〈〈σλ(τ )σν(0)〉〉, (B7)

M =

⎛
⎜⎝

− κ
2 + iδ̃ 0 −i �̃

2

0 − κ
2 − iδ̃ i �̃

2

−i�̃ i�̃ −κ

⎞
⎟⎠ . (B8)

One can obtain the following Laplace transforms without difficulty:

g+ν(p) =
∫ ∞

0
dτe−pτ 〈〈σ+(τ )σν(0)〉〉

= �̃2(x0ν + y0ν) − i�̃z0ν

(
p + iδ̃ + κ

2

) + x0ν(p + κ)(2p + 2iδ̃ + κ)

2f (p)
, (B9)

g−ν(p) =
∫ ∞

0
dτe−pτ 〈〈σ−(τ )σν(0)〉〉

= �̃2(x0ν + y0ν) + i�̃z0ν

(
p − iδ̃ + κ

2

) + y0ν(p + κ)(2p − 2iδ̃ + κ)

2f (p)
, (B10)

gzν(p) =
∫ ∞

0
dτe−pτ 〈〈σz(τ )σν(0)〉〉

= �̃(x0ν + y0ν)δ̃ + z0ν

[
δ̃2 + (

p + κ
2

)2] − i�̃
(
p + κ

2

)
(x0ν − y0ν)

f (p)
, (B11)

where

f (p) = p3 + 2κp2 +
(

�̃2 + δ̃2 + 5

4
κ2

)
p + κ

(
�̃2

2
+ δ̃2 + κ2

4

)
(B12)

and

x0ν = 〈〈σ+(0)σν(0)〉〉 , (B13)

y0ν = 〈〈σ−(0)σν(0)〉〉 , (B14)

z0ν = 〈〈σz(0)σν(0)〉〉 (B15)

are the initial conditions. These results lead to the solutions

〈〈σμ(τ )σν(0)〉〉 =
3∑

l=1

R
(ν)
μ,le

slτ . (B16)

Here, R
(ν)
μ,l = limp→sl

(p − sl)gμv(p), and sl denotes the three roots for f (p) = 0. Consequently, the fluorescence spectrum can
be completely determined.
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