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Antisymmetric PT -photonic structures with balanced positive- and negative-index materials
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We propose a class of synthetic optical materials in which the refractive index satisfies n(−x) = −n∗(x). We
term such systems antisymmetric parity-time (APT ) structures. Unlike PT -symmetric systems, which require
balanced gain and loss, i.e., n(−x) = n∗(x), APT systems consist of balanced positive- and negative-index
materials. Despite the seemingly PT -symmetric optical potential V (x) ≡ n(x)2ω2/c2, APT systems are not
invariant under combinedPT operations due to the discontinuity of the spatial derivative of the wave function. We
show that APT systems can display intriguing properties, such as spontaneous phase transition of the scattering
matrix, a flat total transmission band, and a continuous lasing spectrum.
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I. INTRODUCTION

The pursuit of artificial structures exhibiting unusual
electromagnetic properties is a major scientific endeavor.
It has led to, for example, the development of photonic
crystals for controlling the propagation of electromagnetic
waves, utilizing band structures created by Bloch scattering
in periodic systems [1]. Another achievement in this pursuit is
the design of negative-index materials (NIMs) that are useful
for subwavelength imaging [2–5]. In NIMs the refractive index
is negative over some frequency range, achieved by engineered
electromagnetic resonances in nanostructures. Reduced intrin-
sic loss and even net gain have been demonstrated in NIMs by
gain embedment [6–9].

More recently, there has been growing interest in systems
that display parity-time (PT ) symmetry, both in quantum field
theory [10–12] and optics [13–15]. By utilizing balanced gain
and loss satisfying n(−x) = n∗(x), many intriguing optical
phenomena have been predicted and observed, such as double
refraction [14], power oscillations [14,16,17], the coexistence
of coherent perfect absorption [18,19] and lasing [20–22], and
unidirectional transmission resonances [23,24].

In this paper we propose a class of synthetic systems
bridging NIMs and PT -symmetric photonics. Their refractive
index is antisymmetric under combined PT operations,
i.e., n(−x) = −n∗(x), with balanced positive-index materials
(PIMs) and NIMs. In addition, we require that the permeability
satisfies μ(−x) = −μ(x). The imaginary part of n(x) is
symmetric, which can be positive (loss), negative (gain), zero,
or any complicated spatial function. We term such synthetic
systems antisymmetric parity-time (APT ) structures, and
we found that they can display intriguing features, such as
spontaneous phase transition of the scattering matrix, a flat
total transmission band, and a continuous lasing spectrum.
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Below we base our discussion on the scalar Helmholtz
equation of the electric field,

[∇2 + n(x)2 (ω2/c2)]E(x; ω) = 0, (1)

which describes steady-state solutions for transverse electric
waves in one-dimensional (1D) and two-dimensional (2D)
systems. Henceforth we set the speed of light in vacuum c = 1
for convenience. At first glance one may think that all the
phenomena found in PT -symmetric systems would survive
since the optical potential V (x) ≡ n(x)2ω2 is still invariant
under PT operation. This is, however, not the case due to
the different boundary conditions at PIM and NIM interfaces.
Take a 1D APT heterostructure, for example (see Fig. 1);
the electric field itself is still continuous at PIM and NIM
interfaces, but its spatial derivation now satisfies [25,26]
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which changes abruptly due to the sign difference of μPIM and
μNIM. Below we first analyze wave propagation and lasing in
1D APT heterostructures, followed by a short discussion of
pseudo-APT symmetry for wave propagation in 2D with the
paraxial approximation.

II. SCATTERING PHASE TRANSITION

The phase transition of the scattering matrix (S matrix) in
a PT -symmetric system is predicted based on the invariance
of the system under combined PT operations [21]. We would
not expect a similar phase transition in APT systems since
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FIG. 1. (Color online) Schematic of a 1D APT photonic het-
erostructure, consisting of six layers with n(−x) = −n∗(x).
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flipping the sign of the real part of the refractive index
is not related to any symmetry operation of the physical
state. However, there do exist some special properties of the
transmission coefficient t and the left and right reflection
coefficients rL, rR in a 1D APT heterostructure:

rL = r∗
R, Im[t] = 0. (3)

To understand these properties, we start by noting one
observation: By changing the refractive index of each layer in
an arbitrary photonic heterostructure to its negative complex
conjugate and flipping the sign the magnetic permeability, i.e.,
n → −n∗, μ → −μ, the transfer matrix M , defined by(

A

B

)
= M

(
C

D

)
, (4)

becomes its complex conjugate at the same real frequency:

M(ω) → M∗(ω), Im[ω] = 0. (5)

The field amplitudes A, B, C, and D are defined by

E(x; ω) =
{

Ae−in0ω(x+L/2) + Bein0ω(x+L/2), x < −L/2,

Ce−in0ω(x−L/2) + Dein0ω(x−L/2), x > L/2

and are illustrated in Fig. 1. Here L is the length of the
heterostructure, n0 is the refractive index of the environment,
and we assume the corresponding μ0 = 1. The proof of (5) is
straightforward from the analytical expression of M:

M(ω) = D−1
0

[
�N

j=1mj

]
D0, (6)

obtained from the continuity of E(x; ω) and Eq. (2). The
matrices D0 and mj are given by

D0 =
(

1 1
n0 −n0

)
, (7)

mj (ω) =
(

cos(njω�j ) i
μj

nj
sin(njω�j )

i
nj

μj
sin(njω�j ) cos(njω�j )

)
, (8)

where �j is the width of the ith layer. Under
the transformation nj → −n∗

j , μj → −μj (j = 1, . . . ,N),
mj (ω) becomes m∗

j (ω) at a real frequency and so does M(ω).
Since M(ω) determines the wave propagation, all related
quantities such as rL, rR , and t become their complex conjugate
under this transformation.

Using (5) and performing a parity operation, we find the
following symmetry relation:

MAPT (ω) = σ
[
M−1

APT (ω)
]∗

σ, σ =
(

0 1

1 0

)
, (9)

where MAPT (ω) ≡ ( m11 m12
m21 m22

) is the transfer matrix of the whole
APT system. It is then straightforward to show that

Im[m11] = 0, Im[m22] = 0, m12 = −(m21)∗. (10)

The S matrix defined by(
A

D

)
= SAPT

(
B

C

)
≡

(
rL t

t rR

)(
B

C

)
(11)

can be expressed in terms of MAPT :

SAPT (ω) = 1

m22

(
m12 1

1 −m21

)
, (12)

from which we immediately find (3) using (10).
The phase transition of the S matrix can be inferred from

relations (3), which suggest the parametrization of the S matrix
by three independent real quantities: t , a ≡ Re[rL], and b ≡
Im[rL]:

S =
(

a + ib t

t a − ib

)
. (13)

We note that this general S matrix is pseudo-Hermitian [27]
with respect to σ , i.e., S† = σSσ−1. The eigenvalues of the
S matrix are given by

s± = a ±
√

t2 − b2, (14)

which have two phases, and the phase transitions occur at
t = ±b. The scattering eigenstates ψ±(ω) = ( B±

C± ) display a
transition simultaneously:

p± ≡ B±
C±

= 1

t
[ib ±

√
t2 − b2]. (15)

In one phase (|t | > |b|) the intensities of the two incident
beams are the same in a scattering eigenstate, i.e., |p±| = 1
(see Fig. 2). Thus we refer to this phase as the symmetric
scattering phase and the other as the symmetry-broken phase
(|t | < |b|). In the symmetric phase s± are real, meaning that the
symmetric inputs are either amplified or damped equally with
no phase added during the scattering process. In the symmetry-
broken phase the two scattering eigenstates have the same
scattering strength |s| (s+ = s∗

−), but with |p+| = |p−|−1.
Tuning to the phase-transition points requires either adjust-

ing the gain and loss of the system, adjusting the frequency of
the incident beams, or scaling the system size. Given that it is
challenging to maintain APT (or PT ) symmetry in the first
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FIG. 2. (Color online) Phase transition of the S matrix in an eight-
layer APT heterostructure. The widths of the four layers on the right
(x > 0) are �j = 1.2,0.996,0.165,0.531 μm, and their refractive
indices are Re[nj ] = 1.3,−2,−1.7,−3 with Im[n(x)] = 0.04. Thick
black solid lines show the transitions of the asymmetry factor |p|
and the scattering strength |s|. The thin green solid line in the top
panel shows |t2 − Im[rL]2|−1, which approaches infinity at the phase-
transition points (marked by dashed vertical lines). We take μPIM =
−μNIM = 1 and the speed of light in vacuum c = 1 in all the examples.
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two approaches due to material dispersion, the third approach
is probably the most practical, i.e., by fabricating multiple
scaled heterostructures and fixing the frequency of incident
beams at a value that achieves the APT symmetry.

III. TOTAL TRANSMISSION BAND

The phase transition discussed above is a general property
of all 1D APT systems, independent of whether the system
has net gain or loss. By flipping the sign of Im[n(x)], i.e.,
changing local gain into loss and vice versa, the system
merely undergoes a time reversal, and the scattering phase
transitions happen at exactly the same locations. There is one
exception, which occurs when the local gain or loss is zero, i.e.,
Im[n(x)] = 0. In this case anAPT heterostructure is always in
the symmetric phase. More striking, relations (3) now become

t = 1, rL = rR = 0, (16)

which is independent of the complexity and size of the
heterostructure or the frequency of the incident wave. This
phenomenon is robust upon a slight breakdown of the APT
symmetry or in the presence of a small Im[n(x)] �= 0 [see
Fig. 3(a)]. In addition, the total transmission is independent of
whether theAPT structure can stand alone or is integrated in a
photonic environment, as long as the neighboring elements are
the same [see Fig. 3(b)]. A total transmission band then forms if
the APT symmetry can be maintained over a finite-frequency
range, and a pulse transmitted within this frequency window
will be exactly the same as the initial pulse, with no pulse
distortion or shrinkage or expansion. This phenomenon is
independent of the propagation direction, in contrast to the one-
way invisibility found inPT -symmetric heterostructures [23].
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FIG. 3. (Color online) (a) Total transmission band in the APT
heterostructure studied in Fig. 2, but with material loss Im[n(x)] =
10−4. Thick solid black line, thin solid red line, and dotted blue
line show T = |t |2 ≈ 1, R = |rL|2 ≈ |rR|2 ≈ 0, and Arg[t] ≈ 0,
respectively. (b) Same as (a), but with n4 = n−4 = 3. The oscillations
in R and T have a single period �ωL = πL/2n4�4 = 5.64, as if the
whole structure were a uniform slab formed by the j = ±4 layers
only.

Relations (16) can be treated as a generalization of vanished
reflection that happens at the interface of two impedance-
matched PIM and NIM materials (see Ref. [2], for example).
There is at least one such interface in an APT system, i.e.,
at x = 0, but multiple reflections occur at other interfaces
between two NIMs, two PIMs, and an impedance-mismatched
NIM and PIM. One way to prove (16) is from the transfer
matrix MAPT (ω) directly:

MAPT (ω) = D−1
0

[
�N

j=−Nmj

]
D0, j �= 0. (17)

Note that

m−j (ω)mj (ω) = 1 (18)

when nj is real. Therefore

MAPT (ω) = D−1
0 [�j=−N,...,−2,2,...,N mj ]D0 = · · · = 1,

which implies (16). This derivation indicates not only that
relations (16) are due to the existence of matched PIM and
NIM layers but also that their spatial arrangement following
the APT symmetry is the key to achieve the phenomenon: it
would not occur when the order of the layers is shuffled to break
the APT symmetry since the transfer matrices of individual
layers do not commute in general [28]. In Ref. [29] special
band gaps (T = 0) were reported in photonic crystals with a
zero average index, requiring nj�j = −nj+1�j+1. Relations
(16) dictate that these band gaps cannot exist in an APT
heterostructure, even if the latter is periodic. Indeed, we found
that these band gaps narrow and disappear completely when
the APT condition is approached (see Fig. 4).
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FIG. 4. (Color online) Transition from special band gaps to full-
transmission band as the APT symmetry is approached in a photonic
crystal with zero average index. The unit cell has two layers of index,
2 and −2(1 + δ), and length, (1 + δ)a and a, and there are 32 unit cells
in the photonic crystal. δ = 0.25,0.05,0.01,0 from top to bottom, and
thick and thin lines indicate transmittance T = |t |2 and reflectance
R = |rL|2 = |rR|2 in each case.
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IV. CONTINUOUS LASING SPECTRUM

While loss is an extremely severe detrimental factor in
structures containing NIMs, there have been several proposals
to overcome it [6–8]. For example, net gain has been demon-
strated in optical NIMs by embedding an active medium [9],
which opens the possibility of achieving lasing in metamateri-
als. Lasing modes can be treated as eigenstates of the S matrix
with an eigenvalue approaching infinity, which corresponds
to a pole of the S matrix [i.e., m22 = 0 in Eq. (12)] on the
real frequency axis. There is usually a discrete set of solutions
for the lasing frequency ω

(m)
L and the corresponding threshold

τ (m) = −Im[n(x)] > 0 (assuming a spatially uniform gain).
Each lasing mode has its distinct intensity profile, and roughly
speaking, the mode order m indicates the number of peaks
inside the cavity. To determine {ωL,τ } of each mode in a 1D
heterostructure, one can, for example, solve the two equations
given by the real and imaginary parts of m22. However, Eq. (10)
shows that m22 is always real for an APT system, which
implies that there exists a continuous region(s) of ωL in which
a ωL-dependent τ can be found. In other words, an APT
heterostructure has a continuous lasing spectrum, and the mode
order m cannot be assigned.

A two-layer APT structure in the low-frequency regime is
shown as an example in Fig. 5. We observe a reduced threshold
as the lasing frequency increases and more oscillations
gradually appear in the intensity profile, which is symmetric
since lasing occurs only in the symmetric phase of the S matrix
in an APT heterostructure. This is because the transfer matrix
elements |m12| = |m21| = 1 at the pole of the S matrix in an
APT heterostructure, and Eq. (12) implies |a ± ib| → |t | →
∞ as we approach the pole condition. Therefore |t | > |b|
and the S matrix is in the symmetric phase. This observation
implies that the continuous lasing spectrum can span more
than one frequency window in a complicated APT system,
such as the one shown in Fig. 2. We note that it is the
broken-symmetry phase that supports lasing inPT -symmetric
structures instead [21].

If we consider the lasing modes in the corresponding PIM
cavity of the same length and |n|, we find that its discrete
lasing solutions lie exactly on the continuous threshold curve
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FIG. 5. (Color online) Threshold value τ (ωL) for the continuous
lasing spectrum in a two-layer APT heterostructure. Each layer is
500 nm thick and n = ±2. Squares indicate the discrete lasing solu-
tions ωL = 1.735, 3.245, 4.786 in a uniform PIM cavity of the same
length and n = 2. The insets show examples of the intensity profile at
ωL = 1.5, 3, 4.5 in the continuous lasing spectrum. Shadowed areas
indicate the cavity.

of the APT structure (see Fig. 5). Below we prove this result
analytically for the simple two-layer APT structure discussed
above. We note that the threshold τ (ωL) of the continuous
lasing spectrum in this case is given by the solution of the
following real equation:

| cos α|2 + n2
r − τ 2

n2
r + τ 2

| sin α|2

= −Im

[(
nr − iτ + 1

nr − iτ

)
sin α(cos α)∗

]
, (19)

in which nr is the real part of the refractive index in the PIM,
α ≡ (nr − iτ )ωLL/2, and we have taken μPIM = −μNIM = 1
for simplicity. In comparison, the threshold and the discrete
lasing frequency in a uniform PIM cavity of the same length
are determined by the following complex equation:

cos 2α = i

[(
nr − iτ + 1

nr − iτ

)
sin α cos α

]
. (20)

It implies that

tan α = −i(nr − iτ ),− i

nr − iτ
, (21)

or

Re

[
tan α

(tan α)∗

]
= n2

r − τ 2

n2
r + τ 2

. (22)

By taking the real part of both sides of (20) after multiplying
them by (cos α)∗/ cos α, we find

| cos α|2 + Re

[
tan α

(tan α)∗

]
| sin α|2

= −Im

[(
nr − iτ + 1

nr − iτ

)
sin α(cos α)∗

]
, (23)

from which we recover (19) using (22). This finding implies
that coherent feedback does occur in an APT -structure-based
laser, even though its spectrum is continuous as in other “white-
light” cavities [30–32].

Unlike the total transmission band, the continuous lasing
spectrum is singular and breaks down if the APT symmetry
is broken, which can be utilized as a sensitive measure of the
quantities of interest that lead to the latter. Here we consider
one scenario where the APT symmetry is broken due to a
slight length mismatch. Consider a two-layer cavity of length
L similar to that studied in Fig. 5 but with the PIM layer
wider than the NIM layer by δ. We found that all lasing modes
disappear except the ones at kL ≈ mπL/(|n|δ) (m = 1,2, . . .),
whose thresholds are about the same as when the APT
symmetry holds (δ = 0). Take L = 250 μm, δ = 250 nm,
and |n| = 2, for example; the corresponding wavelengths are
λ = m−1 μm, which are well separated and make it easy
to achieve single-mode lasing. These modes originate from
the resonances of the tiny section of length δ, which acts as
an external cavity for frequency selection. In this example,
the variation of δ (or L) is enhanced by four times in the
wavelength of the fundamental mode (m = 1) since �λ =
4�δ/m, which can be easily measured. As a comparison, the
sensitivity to detect δ is reduced by a factor of L/δ = 103 using
a lasing mode of roughly the same wavelength in a uniform
PIM cavity of length L, which also has a much denser spectrum
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to analyze. We note that the laser linewidths are comparable
in the two systems since the thresholds of the corresponding
modes are about the same as discussed.

V. DISCUSSION AND CONCLUSION

So far we have discussed theAPT symmetry with balanced
PIMs and NIMs. One may attempt to realize a “pseudo-APT ”
symmetry using only PIMs (or NIMs), satisfying n(−x) =
−n∗(x) but with μ(−x) = μ(x). Such a symmetry can be
realized, for example, for wave propagation in 2D paraxial
geometry [13,14], with transverse index variation n(x) = n0 +
δn(x) satisfying |δn(x)| 
 n0 and δn(−x) = −δn∗(x). Equa-
tion (1) for the transverse electric field E(x̃,z) = φ(x̃,z)eik0z

propagating in the z direction becomes [14]

i
∂φ(x̃,z)

∂z
+

[
∂2

∂x̃2
+ δn(x̃)k0

]
φ(x̃,z) = 0, (24)

where x̃ ≡ √
2n0k0x and φ(x̃,z) is the slowly varying ampli-

tude. The transverse optical potential now is proportional to

δn(x̃) instead of n2 in Eq. (1), and the intriguing phenom-
ena discussed above disappear. The only exception happens
when the system becomes equivalent to a conventional PT -
symmetric structure. The latter occurs, for example, if δn(x̃) =
A sin x̃ + iB cos x̃ (A,B ∈ R); shifting x̃ by π/2 transforms
δn(x̃) to A cos x̃ − iB sin x̃, satisfying n(−x̃) = n∗(x̃).

In summary, we propose a class of synthetic materials which
are antisymmetric under combined parity-time operations,
i.e., n(−x) = −n(x)∗. APT systems demonstrate interesting
features such as spontaneous phase transition of the S matrix, a
total flat transmission band, and a continuous lasing spectrum.
Properties of APT systems in higher dimensions are under
investigation and will be reported elsewhere.
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